Das, S and Gadgil, S (2023) Surfaces of infinite-type are non-Hopfian Les surfaces de type infini sont non-Hopfian. In: Comptes Rendus Mathematique, 361 . pp. 1349-1356.
PDF
Com_ren_mat_361_2023 - Published Version Download (612kB) |
Official URL: https://doi.org/10.5802/crmath.504
Abstract
We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface Σ is of finite-type if and only if every proper map f : Σ � Σ of degree one is homotopic to a homeomorphism. © 2023 Elsevier Masson SAS. All rights reserved.
Item Type: | Journal Article |
---|---|
Publication: | Comptes Rendus Mathematique |
Publisher: | Academie des sciences |
Additional Information: | The copyright for this article belongs to author. |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 04 Mar 2024 09:26 |
Last Modified: | 04 Mar 2024 09:26 |
URI: | https://eprints.iisc.ac.in/id/eprint/84291 |
Actions (login required)
View Item |