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Surfaces of infinite-type are non-Hopfian

Les surfaces de type infini sont non-Hopfian
Sumanta Das™ % and Siddhartha Gadgil ¢
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Abstract. We show that finite-type surfaces are characterized by a topological analogue of the Hopf property.
Namely, an oriented surface X is of finite-type if and only if every proper map f: £ — X of degree one is
homotopic to a homeomorphism.

Résumé. Nous montrons que les surfaces de type fini sont caractérisées par un analogue topologique de la
propriété de Hopf. A savoir, une surface orientée X est de type fini si et seulement si toute application propre
f: Z— X de degré un est homotope 2 un homéomorphisme.
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1. Introduction

All surfaces will be assumed to be connected and orientable throughout this note. We will say a
surface is of finite-type if its fundamental group is finitely generated; otherwise, we will say it is of
infinite-type.

Recall that a group G is said to be Hopfian if every surjective homomorphism ¢: G — G is
an isomorphism. It is well known that a finitely generated free group is Hopfian, for instance, as
a consequence of Grushko’s theorem. On the other hand, a free group generated by an infinite
set S is not Hopfian as a surjective function f: S — S that is not injective extends to a surjective
homeomorphism on the free group generated by S which is not injective.

In this note, we show that there is an analogous characterization for orientable surfaces of
finite-type. The natural topological analog of a surjective homomorphism is a proper map of
degree one, and that of an isomorphism is a homotopy equivalence.

One-half of this characterization is classical, namely that any proper map of degree one from a
surface of finite-type to itself is a homotopy equivalence. For instance, a theorem of Olum (see [2,
Corollary 3.4]) says that every proper map of degree one between two oriented manifolds of the
same dimension is 7, -surjective. Now, the fundamental group of any surface is residually finite
(see [4]). Also, any finitely generated residually finite group is Hopfian. Thus, every degree one
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self map of a finite-type surface is a weak homotopy equivalence, hence a homotopy equivalence
by Whitehead’s theorem.
Our main result is that infinite-type surfaces are not Hopfian.

Theorem 1. Let X be any infinite-type surface. Then there exists a proper map f: X — X of degree
one such thatmy(f): n1(X) — m1(2) is not injective. In particular, f is not a homotopy equivalence.

2. Background

A surfaceis a connected, orientable two-dimensional manifold without boundary and a bordered
surfaces is a connected, orientable two-dimensional manifold wit non-empty boundary. A (pos-
sibly bordered) subsurface X’ of a surface ¥ is an embedded submanifold of codimension zero.

Let Z be a non-compact surface. A boundary component of X is anested sequence Py 2 P, 2 - --
of open, connected subsets of X such that the followings hold:

o the closure (in Z) of each P, is non-compact,
o the boundary of each P, is compact, and
» for any subset A with compact closure (in X), we have P, n A = @ for all large n.

We say that two boundary components Py 2 P, 2 --- and P| 2 P; 2 --- of X are equivalent if
for any positive integer n there are positive integers k, ¢, such that Py, < P}, and P;n c P,.Fora
boundary component & = P; 2 P, 2---, we let [#] to denote the equivalence class of Z.

The space of ends Ends(X) of Z is the topological space having equivalence class of boundary
components of X as elements, i.e., as a set Ends(Z) := {[Z] L@ is a boundary component }; with
the following topology: For any set X with compact boundary, at first, define

xt= {{#Z=P,2P,2-']|X2P,2Pys1 2 for some large n}.

Now, take the set of all such X' as a basis for the topology of Ends(Z). The topological space
Ends(X) is compact, separable, totally disconnected, and metrizable, i.e., homeomorphic to a
non-empty closed subset of the Cantor set.

For a boundary component [£] with & = P, 2 P, 2 ---, we say [] is planar if P, are
homeomorphic to open subsets R? for all large n. Define Endspp (2) := {[#?] : [#] is not planar}.
Thus, Ends,p(Z) is a closed subset of Ends(Z). Also, define the genus of T as g(Z) := sup g(S),
where S is a compact bordered subsurface of X.

Theorem 2 (Kerékjartd’s classification theorem [7, Theorem 1]). LetX;,X, be two non-compact
surfaces. Then X is homeomorphic to X, if and only if g(£,) = g(X2), and there is a homeomor-
phism @: Ends(X,) — Ends(Z,) with @(Endsnp(zl)) = Endspp(Z2).

Let X be a non-compact surface, and let &,,(Z) € &(Z) be two closed, totally-disconnected
subsets of $2 such that the pair Endspp(Z) € Ends(Z) is homeomorphic to the pair éanp ) <
& (%). Consider a pairwise disjoint collection {D; < SE\ &) : i € &7} of closed disks, where
0 < |</| < g(2), such that the following holds: For p € S$?, any open neighborhood (in $?) of p
contains infinitely many D; if and only if p € &,,(X). [7, Theorem 2] describes constructing such
a collection of disks.

Now, let M := (S \ &) \ ey int(D;) and N := | ;s S1,1, where Sy is the genus one
compact bordered surface with one boundary component. Define a non-compact surface Zpandie
as follows: Zpandie := M lgpm=on N- Then we have the following theorem.

Theorem 3 (Richards’ representation theorem [7, Theorems 2 and 3]). The surface Zyandie IS
homeomorphic to X.
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3. Proof of Theorem 1

Let M and N be two non-compact, oriented, connected, boundaryless smooth n-manifolds.
Then the singular cohomology groups with compact support Hl' (M;Z) and H (N; Z) are infinite
cyclic with preferred generators [M] and [N].If f: M — N is a proper map then the degree of f is
the unique integer deg(f) defined as follows: H (f)(IN]) = deg(f) - [M]. Note that deg is proper-
homotopy invariant and multiplicative. See [2, Section 1] for more details.

We will use the following well-known characterization of degree.

Lemma 4 ([2, Lemma 2.1b.]). Let f: M — N be a proper map between two non-compact,
oriented, connected, boundaryless smooth n-manifolds. Let D be a smoothly embedded closed disk
in N and suppose f~1(D) is a smoothly embedded closed disk in M such that f maps f~1(D)
homeomorphically onto D. Then deg(f) = +1 or —1 according as f|f~'(D) — D is orientation-
preserving or orientation-reversing.

We will prove Theorem 1 by considering the following three cases:
(1) X has infinite genus.
(2) X has finite genus and the set of isolated points .# (Z) of &(X) is finite.
(3) X has finite genus and the set of isolated points .7 (Z) of &(X) is infinite.

Remark 5. If X is an infinite-type surface of a finite genus, then &'(X) is an infinite set.
Our first result proves Theorem 1 in the case with infinite genus.

Theorem 6. Let X be a surface of the infinite genus. Then there exists a degree one map f: X — X
which is not my -injective.

Proof. Since X has infinite genus, there exists a compact bordered subsurface . < X such
that % has genus one and one boundary component. Define X' := £/ be the quotient of =
with .# pinched to a point and let g: £ — X' be the quotient map. Thus, X’ is also an infinite
genus surface. Further, there are compact sets in K < X and K’ ¢ ¥’ whose complements are
homeomorphic, so the pair (£'(2), &,p(Z)) is homeomorphic to the pair (&'(Z'), &np (X)) Hence,
by Theorem 2, there is a homeomorphism ¢: ¥’ — Z.

Let f: £ — X be the composition f = ¢ o q. By Lemma 4, the quotient map ¢: £ — X' is of
degree +1. Thus, deg(f) = £1 as homeomorphisms have degree +1. Notice that f sends 0.% to
a point. But 0.% does not bound any disk in X, i.e., 0.% represents a primitive element of 7, (%),
see [1, Theorem 1.7. and Theorem 4.2.]. Hence, f is not 7;-injective. If deg(f) = 1, then we are
done. Otherwise, we replace f by f o f to get a map that has degree one and is not injective
on . O

For the remaining two cases, we use a map from the sphere to the sphere, which has degree
+1 but with some disks identified. We will replace these disks with appropriate surfaces to get X.

Lemma 7. There exist pairwise disjoint closed disks 2y, 2, € S* and a map f: S*> — S? such that
the following hold:
o [7YDy) =Dy and flg,: Do — Dy is the identity map.
. f’1 (21) is the union of pairwise-disjoint closed disks 91,1,21,2, and 213 in S2; and
flay,: D1k — 21 is a homeomorphism for each k € {1,2,3}.
Further, there is a loop vy in S$2\int(Zy U D1,1 U D12 U Dy 3) which is not homotopically trivial in
S\ int(@o U D11 UD1 2 U D1 3) but such that f(y) is null-homotopic in S? \int(Zy U 2).

Proof. For each k € {0,1,2,3}, choose (ai,b;y) € R?> such that if we define % =
{(xx, ) €R?: (x—ap)® + (y— bp)? <1}, then {By, B, %, %3} is a pairwise-disjoint collection
of closed disks.
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Define X := $*\U3_;int(%;) and Y := S*\U]_,int(%;). Next, define a map f: 0X — Y as
follows:
e flom,: 0%y — 0% is the identity map for each k € {0, 1};
e flog,: 0%, — 0% is defined as f(x,y) = (—x+ax+ay,y—bo+by) forall (x,y) € 0%>.
e flog,: 093 — 0% is defined as f(x,y) = (x—az +ay,y — b3+ by) forall (x, y) € 0%3.

Hlu 0211

Yo 71 Y2

0 01 02 03

Figure 1. The four-holed sphere X by attaching a 2-cell.

For each k € {0,1,2}, let y¢: [0,1] — X be an embedding such that im(y) N dX consists of
Yk(0) = (ar +1,by) € 0By and yr(1) = (ag+1 — 1, bis1) € 0By 1.

Define I'y: [0,1] — Y as T'o(2) := yo(2) for all ¢ € [0,1]. Let I';, I, [0,1] — Y be the constant
loops based at the points (a; + 1, b;) € 0Y and (a; — 1, b)) € 0Y, respectively.

Next, define XV := X uim(yy) uim(y1) Uim(y»). Extend f: 0X — Y toamap XV — Y, which
we again denote by f: X! — Y, by mapping y, onto Iy by the identity, and, for each k = 1,2,
mapping Y to the constant loop I'.

Let 0y (resp. 03) be the simple loop that traverses 0%, (resp. 09%s3) in the counter-clockwise
direction starting from (ag + 1, by) (resp. (as — 1, b3)).

Let 6, ; (resp. 01,,) be the simple arc that traverses 098, N{y < b1} (resp. 6% N{y = b1}) counter-
clockwise direction. Similarly, define 8, ; and 0, .

Now, X = x® Up D?, (see Figure 1) where the attaching map ¢: S — XM can be described as

Q=00 Yo * 01,0 % Y1 %020 % Y2 %03 % T %02 %7y * 61,4 % To.

Notice that f(y;) =T'; and f(y2) =TI’z are constant loops. Also, as in Figure 2, fo0; ;= fo0,;
and fo0;,, = fo0,,. Thus, f o is homotopic to (f o8p) * I'g * (f 003) * .

Ifr: Y =S!x[0,1] — S' is the projection then ro f o8, and r o f 003 traverse S! in opposite
directions. Since r is a strong deformation retract, (f o) * Iy * (f 063) * Ty, and hence fog is
null-homotopic. Now, the null-homotopic map fo¢g: S! — Y can be extended to amap D? — Y.
Thus f: XY — ¥ can be extended to amap X = X" u, D> — Y, which will be again denoted by
f: X-Y.

Note that every homeomorphism S! — S! can be extended to a homeomorphism D? — D?
naturally. Thus, we can extend f: X — Y to a map $? — $?, which will be again denoted by
f: $2% - $2. Let D (resp. 21) be any closed disk, which is contained in int(%8) (resp. int(%)).

Finally, observe that if y = 01, * 01; % y1 % 03; * 02, *¥1, then v is a loop in $?\int(@y U P11 U
D12, U2, 3) which is not homotopically trivial in S$2\int(@, U21,1U%1,2U% 3), butsuch that f(y)
is null-homotopic in S$2\int(@y U 2y), as claimed. O

We now prove Theorem 1 in the two remaining cases, in both of which we have a finite genus
surface. Note that for a finite genus surface, all ends are planar, so in applying Theorem 2, it
suffices to consider the genus and the space of ends.
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fobO1y

To
febo \0_93/
fo02

foby

Figure 2. The map on the X!

Theorem 8. Let X be a finite genus infinite-type surface such that & (%) has finitely many isolated
points. Then there is a degree one map f: £ — Z which is not iy -injective.

Proof. Let .7 (Z) be the set of all isolated points of & (Z), let k € Nu {0} be the cardinality of .# (%),
and let g be the genus of . Then €' () := &(X) \ £ (X) is a non-empty, perfect, compact, totally-
disconnected, metrizable space as it is infinite (by Remark 5) and has no isolated points. Thus
% (2) is a Cantor space (see [5, Theorem 8 of Chapter 12]).

Let 29, 21,211,212, 213 <S?, f: S? — S?, and let y be as in the conclusion of Lemma 7. Let
C) cint(2;) be a subset homeomorphic to the Cantor set and let . c int(%;) be a set consisting
of k points (hence homeomorphic to .# (Z)). Let Cy,j = Fa (o)) N,; for j =1,2,3. Note that each
Cy,j is homeomorphic to the Cantor set. See Figure 3.

As f71Do) = Do and flg,: Do — Do is the identity map, we can say that f~1(#) = 7.
Let X1 be the surface obtained from $?\ (.# U C;) by attaching g handles along disjoint disks
Ay cint(@p)\.#, 1 < k < g and let 2, be the surface obtained from $?\ (.# U C;; UCy 2 U C; 3) by
attaching g handles along the (same) disks Ak, 1 < k < g. Then f induces a proper map, which
we also call f, from %, to ;. By Lemma 4, deg(f) = +1.

Further, we claim that f: X, — Z; is not injective on 7;. Namely, the fundamental group of Z,
is the amalgamated free product of four groups, one of which is 7, (S%\int(2, UZ1,1U21,2U92 3)).
As vy is not homotopic to the trivial loop in S$?\int(@y U 21,1912 U9 3), and components of an
amalgamated free product inject, y is not homotopic to the trivial loop in X,. However, f(y) is
homotopic to the trivial loop in $? \ int(?y U 21) and hence in X;. Hence, f is not injective on 7.

Both Z; and X, have genus the same as Z, and the space of ends homeomorphic to that of =
(as a finite disjoint union of Cantor spaces is a Cantor space by the universality of the Cantor set)
with all ends planar. Hence, by Theorem 2 both X; and X, are homeomorphic to X.

Identifying 2; and X, with Z by homeomorphisms, we get a proper map f: X — X which is not
injective on 7;. As homeomorphisms have degree +1, it follows that deg(f) = +1. Replacing f by
f o f if necessary, we obtain a proper map of degree one that is not injective on ;. g

Theorem 9. Let X be a finite genus surface such that &(X) has infinitely many isolated points.
Then there is a degree one map f: X — X which is not m; -injective.
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02, 0%

Figure 3. A non 7-injective degree +1 map f: X — X, where g =3 and |.¥| = 4.

Proof. Let .#(Z) be the set of all isolated points of &(X) and let g be the genus of X. Let
20,91, 211,212,213 < S2, f: $?% - $2, and let ¥ be as in the conclusion of Lemma 7. Let & be a
subset of int(%p) such that & is homeomorphic to &'(Z). Also, let p; € int(21) and py,; € int(21,;),
i =1,2,3 be points such that f(p;,;) = p; foreach i = 1,2, 3. See Figure 4.

Recall that f’l(,@o) =9 and flg,: Do — Do is the identity map. Thus f’l(é’) = &. Now,
let Z; be the surface obtained from S$?\ (§ U {p1}) by attaching g handles along disjoint disks
Ap cint(@g)\ 7, 1 < k < g and let 2, be the surface obtained from S\ (U {p1,1, P12, P1,3}) by
attaching g handles along the same disks A, 1 < k < g. Then f induces a proper map, which we
also call f, from X, to X;. By Lemma 4, deg(f) = £1.

Further, we claim that f: X, — X is not injective on ;. Namely, the fundamental group of X,
is the amalgamated free product of four groups, one of which is 7, (S%\int(2, UZ1,1U21,2U92 3)).
As vy is not homotopic to the trivial loop in S$2\ int(@g U D11 UD12U23), and components of an
amalgamated free product inject, y is not homotopic to the trivial loop in Z,. However, f(y) is
homotopic to the trivial loop in $? \ int(@y U2) and hence in ;. Hence, f is not injective on ;.

Both X; and XZ; have genus the same as X and, by Lemma 10 below, &(Z;) and & (Z,) are
homeomorphic to & (). Further, all ends of Z, £, and X, are planar. Hence, by Theorem 2 both
% and X, are homeomorphic to X.

Identifying £, and X, with X by homeomorphisms, we get a proper map f: £ — X whichis not
injective on ;. As homeomorphisms have degree +1, it follows that deg(f) = +1. Replacing f by
f o f if necessary, we obtain a proper map of degree one that is not injective on ;. U
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Figure 4. A non 7-injective degree +1 map f: X~ — X, where g =5 and . is an infinite set.

Lemma 10. Let & be a closed totally disconnected subset of S*. Let .% be the set of all isolated
points of &. Assume .7 is infinite. If F is a finite subset of S*\ &, then & U.7 is homeomorphic
0&.

Proof. Let .o/ :={ay,ap,...} be asubset of .# such that a,, — ¢ € & (< exists as & is compact and
infinite). Define % := o/ U.%. Write 8 as & = {b1, b,,...}. Then the map g: & U.F — & defined
by
{z ifze (EUF)\ %,
g2):=1"
a, ifz=b,€PB,

is ahomeomorphism. To prove this, note that g is a bijection from a compact space to a Hausdorff
space, so it suffices to show that g is continuous. But observe that g restricted to the closed set
(& UF)\ A is the identity, so g is continuous on (& U.%) \ A. Also g restricted to the closed set
P U {l} is continuous as b, — ¢ and g(b,) = a, — ¢ = g(¢), and all other points of B U {¢} are
isolated. Thus g is continuous, as required. U

Remark 11. In the paper [3], the authors have proved that for every infinite-type surface Z,
there exists a subsurface homeomorphic to X such that the inclusion map is not homotopic to
a homeomorphism. As our surfaces are connected, this type of inclusion map can’t be proper
because of the following two facts:

« Any injective map between two boundaryless topological manifolds of the same dimen-
sion is an open map. This follows from the invariance of domain.

* Any proper map between two topological manifolds is a closed map, as manifolds are
compactly generated spaces, see [6].
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Also, notice that all our results are related to proper maps.
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