ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

3D-Printed Materials for Wastewater Treatment

Roy Barman, S and Gavit, P and Chowdhury, S and Chatterjee, K and Nain, A (2023) 3D-Printed Materials for Wastewater Treatment. In: JACS Au, 3 (11).

[img] PDF
jacs_3_11_2023.pdf - Published Version
Restricted to Registered users only

Download (3MB)
Official URL: https://doi.org/10.1021/jacsau.3c00409

Abstract

The increasing levels of water pollution pose an imminent threat to human health and the environment. Current modalities of wastewater treatment necessitate expensive instrumentation and generate large amounts of waste, thus failing to provide ecofriendly and sustainable solutions for water purification. Over the years, novel additive manufacturing technology, also known as three-dimensional (3D) printing, has propelled remarkable innovation in different disciplines owing to its capability to fabricate customized geometric objects rapidly and cost-effectively with minimal byproducts and hence undoubtedly emerged as a promising alternative for wastewater treatment. Especially in membrane technology, 3D printing enables the designing of ultrathin membranes and membrane modules layer-by-layer with different morphologies, complex hierarchical structures, and a wide variety of materials otherwise unmet using conventional fabrication strategies. Extensive research has been dedicated to preparing membrane spacers with excellent surface properties, potentially improving the membrane filtration performance for water remediation. The revolutionary developments in membrane module fabrication have driven the utilization of 3D printing approaches toward manufacturing advanced membrane components, including biocarriers, sorbents, catalysts, and even whole membranes. This perspective highlights recent advances and essential outcomes in 3D printing technologies for wastewater treatment. First, different 3D printing techniques, such as material extrusion, selective laser sintering (SLS), and vat photopolymerization, emphasizing membrane fabrication, are briefly discussed. Importantly, in this Perspective, we focus on the unique 3D-printed membrane modules, namely, feed spacers, biocarriers, sorbents, and so on. The unparalleled advantages of 3D printed membrane components in surface area, geometry, and thickness and their influence on antifouling, removal efficiency, and overall membrane performance are underlined. Moreover, the salient applications of 3D printing technologies for water desalination, oil-water separation, heavy metal and organic pollutant removal, and nuclear decontamination are also outlined. This Perspective summarizes the recent works, current limitations, and future outlook of 3D-printed membrane technologies for wastewater treatment. © 2023 The Authors. Published by American Chemical Society

Item Type: Journal Article
Publication: JACS Au
Publisher: American Chemical Society
Additional Information: The copyright for this article belongs to author
Department/Centre: Division of Mechanical Sciences > Materials Engineering (formerly Metallurgy)
Date Deposited: 01 Mar 2024 05:50
Last Modified: 01 Mar 2024 05:50
URI: https://eprints.iisc.ac.in/id/eprint/83834

Actions (login required)

View Item View Item