Anand, K and Tripathi, A and Shukla, K and Malhotra, N and Jamithireddy, AK and Jha, RK and Chaudhury, SN and Rajmani, RS and Ramesh, A and Nagaraja, V and Gopal, B and Nagaraju, G and Narain Seshayee, AS and Singh, A (2021) Mycobacterium tuberculosis SufR responds to nitric oxide via its 4Fe–4S cluster and regulates Fe–S cluster biogenesis for persistence in mice. In: Redox Biology, 46 .
|
PDF
red_bio_46_2021.pdf - Published Version Download (10MB) | Preview |
Abstract
The persistence of Mycobacterium tuberculosis (Mtb) is a major problem in managing tuberculosis (TB). Host-generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence. However, the mechanisms involved in NO sensing and reorganizing Mtb's physiology are not fully understood. Since NO damages iron-sulfur (Fe–S) clusters of essential enzymes, the mechanism(s) involved in regulating Fe–S cluster biogenesis could help Mtb persist in host tissues. Here, we show that a transcription factor SufR (Rv1460) senses NO via its 4Fe–4S cluster and promotes persistence of Mtb by mobilizing the Fe–S cluster biogenesis system; suf operon (Rv1460-Rv1466). Analysis of anaerobically purified SufR by UV–visible spectroscopy, circular dichroism, and iron-sulfide estimation confirms the presence of a 4Fe–4S cluster. Atmospheric O2 and H2O2 gradually degrade the 4Fe–4S cluster of SufR. Furthermore, electron paramagnetic resonance (EPR) analysis demonstrates that NO directly targets SufR 4Fe–4S cluster by forming a protein-bound dinitrosyl-iron-dithiol complex. DNase I footprinting, gel-shift, and in vitro transcription assays confirm that SufR directly regulates the expression of the suf operon in response to NO. Consistent with this, RNA-sequencing of MtbΔsufR demonstrates deregulation of the suf operon under NO stress. Strikingly, NO inflicted irreversible damage upon Fe–S clusters to exhaust respiratory and redox buffering capacity of MtbΔsufR. Lastly, MtbΔsufR failed to recover from a NO-induced non-growing state and displayed persistence defect inside immune-activated macrophages and murine lungs in a NO-dependent manner. Data suggest that SufR is a sensor of NO that supports persistence by reprogramming Fe–S cluster metabolism and bioenergetics.
Item Type: | Journal Article |
---|---|
Publication: | Redox Biology |
Publisher: | Elsevier B.V. |
Additional Information: | The copyright for this article belongs to the author. |
Keywords: | Dinitrosyl-iron-dithiol complex; Gene regulation; Inducible nitric oxide synthase; Redox potential; Spare respiratory capacity; Transcriptomics |
Department/Centre: | Division of Biological Sciences > Biochemistry Division of Biological Sciences > Molecular Biophysics Unit Division of Biological Sciences > Microbiology & Cell Biology Division of Biological Sciences > Centre for Infectious Disease Research |
Date Deposited: | 07 Aug 2023 07:17 |
Last Modified: | 07 Aug 2023 07:17 |
URI: | https://eprints.iisc.ac.in/id/eprint/82818 |
Actions (login required)
View Item |