ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Probability transport on the Fock space of a disordered quantum spin chain

Creed, I and Logan, DE and Roy, S (2023) Probability transport on the Fock space of a disordered quantum spin chain. In: Physical Review B, 107 (9).

[img]
Preview
PDF
phy_rev_107-9_2023.pdf - Published Version

Download (3MB) | Preview
Official URL: https://doi.org/10.1103/PhysRevB.107.094206

Abstract

Within the broad theme of understanding the dynamics of disordered quantum many-body systems, one of the simplest questions one can ask is, given an initial state, how does it evolve in time on the associated Fock-space graph, in terms of the distribution of probabilities thereon A detailed quantitative description of the temporal evolution of out-of-equilibrium disordered quantum states and probability transport on the Fock space is our central aim here. We investigate it in the context of a disordered quantum spin chain, which hosts a disorder-driven many-body localization transition. Real-time dynamics/probability transport is shown to exhibit a rich phenomenology, which is markedly different between the ergodic and many-body localized phases. The dynamics is, for example, found to be strongly inhomogeneous at intermediate times in both phases, but while it gives way to homogeneity at long times in the ergodic phase, the dynamics remain inhomogeneous and multifractal in nature for arbitrarily long times in the localized phase. Similarly, we show that an appropriately defined dynamical lengthscale on the Fock-space graph is directly related to the local spin autocorrelation, and as such sheds light on the (anomalous) decay of the autocorrelation in the ergodic phase, and lack of it in the localized phase.

Item Type: Journal Article
Publication: Physical Review B
Publisher: American Physical Society
Additional Information: The copyright for this article belongs to the Authors.
Keywords: Algebra; Dynamics; Probability distributions; Quantum chemistry; Quantum optics; Spin dynamics, Auto correlation; Ergodics; Fock spaces; Initial state; Localised; Many body; Quantum many-body systems; Quantum spin chains; Simple++; Space graphs, Autocorrelation
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 25 May 2023 07:37
Last Modified: 25 May 2023 07:37
URI: https://eprints.iisc.ac.in/id/eprint/81503

Actions (login required)

View Item View Item