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Probability transport on the Fock space of a disordered quantum spin chain
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Within the broad theme of understanding the dynamics of disordered quantum many-body systems, one of
the simplest questions one can ask is, given an initial state, how does it evolve in time on the associated
Fock-space graph, in terms of the distribution of probabilities thereon? A detailed quantitative description of
the temporal evolution of out-of-equilibrium disordered quantum states and probability transport on the Fock
space is our central aim here. We investigate it in the context of a disordered quantum spin chain, which hosts a
disorder-driven many-body localization transition. Real-time dynamics/probability transport is shown to exhibit
a rich phenomenology, which is markedly different between the ergodic and many-body localized phases. The
dynamics is, for example, found to be strongly inhomogeneous at intermediate times in both phases, but while
it gives way to homogeneity at long times in the ergodic phase, the dynamics remain inhomogeneous and
multifractal in nature for arbitrarily long times in the localized phase. Similarly, we show that an appropriately
defined dynamical lengthscale on the Fock-space graph is directly related to the local spin autocorrelation, and
as such sheds light on the (anomalous) decay of the autocorrelation in the ergodic phase, and lack of it in the
localized phase.
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I. INTRODUCTION

The out-of-equilibrium dynamics of isolated quantum
many-body systems can show a rich range of behavior in the
presence of disorder. One of the most striking examples is
the driving of such a system from the default ergodic phase
into a many-body localized (MBL) phase at sufficiently strong
disorder [1–8], via a dynamical phase transition [9,10]. In
contrast to the ergodic phase, the system in the MBL phase
fails to thermalize under its own dynamics, and memory of
the initial state survives locally for arbitrarily long times.
Standard signatures of these include the absence of transport
of conserved quantities, and autocorrelations of local observ-
ables saturating to finite values at long times [4,11,12], rather
than vanishing. As such behavior falls outside the paradigm
of conventional statistical mechanics, the dynamics in the
MBL phase is naturally of fundamental interest. At the same
time, even within the ergodic phase but at disorder strengths
preceding the MBL transition, the dynamics is anomalously
slow. This is commonly manifest in subdiffusive transport
of conserved quantities, and autocorrelations of local observ-
ables decaying in time with anomalous power-law exponents
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[13–18]. This behavior attests to the fact that the out-of-
equilibrium dynamics of disordered quantum systems across
a range of disorder strengths straddling the MBL transition is
an interesting question.

From a phenomenological point of view, there has been
substantial progress in understanding the dynamics, both in
the MBL phase as well as in the anomalous ergodic regime.
The absence of transport in the MBL phase can be ex-
plained via the presence of an extensive number of emergent
local integrals of motion (or equivalently, local conserved
charges), such that an effective model for the MBL phase
involves interactions only between these entities [19–21].
More recently, resonances between configurations of these
charges have been shown to further explain several features
of the MBL phase [22–27]. In the anomalous ergodic regime,
progress in understanding the slow dynamics has centered on
phenomenological theories based on rare Griffiths regions, as
well as anomalous spectral properties of local observables
[13,16,18]. It is nevertheless desirable to have a theoretical
framework, rooted in microscopics, for understanding both
the slow dynamics preceding the MBL phase and the arrested
dynamics in the MBL phase. Mapping the dynamics of the
many-body system to that of probabilities on its Fock-space
graph provides such a framework.

Indeed, understanding the physics of many-body localiza-
tion from the perspective of the associated Fock space (FS)
has emerged as a fruitful approach over the last few years
[1,28–52]. This approach involves recasting the Hamiltonian
of a disordered, interacting quantum system as a tight-binding
Hamiltonian on the complex, correlated FS graph of the
system [53]. The problem then becomes one of Anderson
localization (AL) of a fictitious particle on the FS graph, albeit
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a distinctly unconventional AL problem due to the strong
correlations in effective disorder on the FS graph [43]. This
mapping opens a new window into the connections between
the anatomy of the eigenstates on the FS graph, and their
manifestations in terms of real-space properties. For instance,
the spread of the eigenstates on the FS graph, and an asso-
ciated emergent correlation length, has been shown to carry
information about eigenstate expectation values of local ob-
servables [49] as well as that of the l-bit localization length
[46]. Higher-point correlations of eigenstate amplitudes en-
code their entanglement structure [51]. However, most of
these studies have focused on eigenstate properties, and much
less so in the context of dynamical, time-dependent properties.

Motivated by this, we investigate here the dynamics of
an out-of-equilibrium quantum state on the FS graph. Ar-
guably, the most fundamental question one can ask in this
regard is, given an initial out-of-equilibrium state, how do
the probability densities of the state on the FS graph evolve
in time and spread out on the graph? As will be shown, a
detailed characterization of this probability transport carries a
plethora of information providing insights into the dynamics
of disordered quantum many-body systems. This is the central
goal of the work. We begin with a brief overview of the paper.

Overview

As a concrete setting for our analysis, we consider a
quantum Ising chain with disordered longitudinal fields and
interactions, together with a constant transverse field (of
strength �). A description of the model and its associated FS
graph is given in Sec. II. Classical spin configurations form
a convenient set of basis states; they also form the nodes (or
“sites”) of the FS graph, with the transverse field generating
links between them. The Hamming distance [54] between
two classical spin configurations endows the FS graph with a
natural measure of distance. Initialising the state in a classical
spin configuration corresponds to initializing it on a site on the
FS graph. Consequently, the FS graph can be organized such
that the given initial state sits at the apex and all sites at a fixed
Hamming distance from the initial site are arranged row-wise
(see Fig. 1).

Although the FS graph for a chain of length L is an L-
dimensional hypercube, the above organization of the graph
gives rise to two natural “axes” along which the probability
transport can be defined; we refer to them as longitudinal
and lateral probability transport. The former quantifies how
the probability flows down sites which are at increasing dis-
tances from the initial FS site. Lateral probability transport on
the other hand measures how the probability spreads across
sites at the same Hamming distance from the initial site,
i.e., on a given row. Section III formalizes these two no-
tions of FS probability transport. We show in particular that
a time-dependent lengthscale r(t ), which characterizes the
longitudinal spread of the wavefunction, is directly related to
the real-space spin autocorrelation function. We also quantify
the extent to which the time-evolving state is (de)localized on
the graph, via t-dependent inverse participation ratios (IPR)
and their corresponding fractal exponents. These IPRs can be
defined over the entire FS graph, or can be defined row-wise
(which corresponds to the lateral transport).

FIG. 1. Fock-space (FS) graph of the disordered TFI model
Eq. (1) in the basis of σ z-product states, illustrated for L = 8. An
arbitrary FS site I is placed at the apex. The graph has L + 1 rows,
and the number of FS sites on row r is Nr = (L

r

)
. Any FS site J on

row r is a Hamming distance rIJ = r from I . Links/hoppings can
connect only FS sites on adjacent rows; with each FS site connected
to precisely L others.

In Sec. IV we analyze the short-time dynamics, which is
independent of whether the ultimate late-time behavior of
the system is ergodic or MBL in character. For �t � 1, the
probability of finding the system in a given FS site/state at
distance r is shown to scale as ∼(�t )2r . An essential outcome
of this is an emergent multifractality of the wavefunction over
the full FS, with a fractal exponent growing ∝ t2, independent
of disorder strength. By contrast, the row-resolved IPRs on
these timescales do not show fractal statistics, indicating that
the short-time wavefunction is spread homogeneously across
any given row of the FS graph. A further, rather striking
consequence of the analysis, is that r(t ) becomes extensive
in system size L at any finite O(1) time. This is mandated by
the spin autocorrelation being strictly <1 at any finite O(1)
time, and can be understood via the extensive connectivity of
the FS graph.

Section V is devoted to consideration of longitudinal prob-
ability transport, notably for long times. A central result here
is that, in the ergodic regime, the lengthscale r(t ) grows sub-
diffusively, ∼tα with α < 1/2, until it reaches its maximal
value of L/2 (modulo the role of mobility edges and finite-size
effects, as explained later). This is shown to imply that the
spin autocorrelation also decays as a power law with the same
exponent. In the MBL regime by contrast, r(t ) saturates to an
extensive but submaximal value, which in turn implies that the
spin autocorrelation remains nonzero at arbitrarily long times.
A further implication of these results is that the emergent
fractality present at short to intermediate times gives way to
fully delocalized states at long times in the ergodic regime,
whereas the fractality persists for arbitrarily long times in the
MBL regime.

In Sec. VI we turn to the analysis of lateral probability
transport, via row-resolved IPRs. The picture that emerges is
that, following the short-time homogeneity, at intermediate
times—and for any disorder strength—the time-dependent
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probabilities on any row develop strong inhomogeneities, re-
flected in (multi)fractal scalings of the row-resolved IPRs. For
sufficiently long times, however, this fractality gives way to
complete homogeneity in the ergodic regime, while it persists
in the MBL regime. Since the lateral transport in essence cap-
tures inhomogeneity in the evolution of probabilities on the
FS graph, it is also natural to study t-dependent distributions
of probabilities over sites on a given row. Consistent with the
above picture, we find that the inhomogeneities are accom-
panied by heavy-tailed Lévy distributions, whereas temporal
regimes in which probability spreads homogeneously are
characterized by narrow distributions.

We summarize our results in Sec. VII (see Fig. 16 for a
visual summary), and close with concluding remarks and a
future outlook.

II. MODEL AND FOCK-SPACE GRAPH

We consider a disordered transverse-field Ising (TFI) spin-
1/2 chain, specified by the Hamiltonian

H =
L−1∑
�=1

J� σ̂ z
� σ̂

z
�+1 +

L∑
�=1

[
h�σ̂

z
� + �σ̂ x

�

]
, (1)

where h� and J� are i.i.d. random variables, uniformly dis-
tributed with h� ∈ [−W,W ] and J� ∈ [J − δJ ,J + δJ ].
For numerical studies, we consider J = 1, δJ = 0.2, and
� = 1. With these parameters, and the range of system sizes
accessible in practice to exact diagonalization (ED), the crit-
ical disorder strength above which all eigenstates are MBL
is estimated to be Wc � 3.8 [55]. Some recent papers on
standard disordered models [23,27,56–62] have, however,
suggested that a genuine MBL phase, stable in the thermody-
namic limit L → ∞, can arise only for much larger values of
W , and that the apparent localization found for finite systems
at W > Wc is indicative of a prethermal regime. Here we take
the view that the MBL phenomenology clearly observed at
W > Wc ∼ 4 for ED-accessible system sizes persists in the
thermodynamic limit, albeit for larger W values.

Fock space (FS) provides a natural framework for studying
many-body localization [28–52], in part because a generic
many-body Hamiltonian maps exactly onto a tight-binding
model on the associated FS graph (or “lattice”), of form

H =
∑

J

EJ |J〉〈J| +
∑
J,K

′
TJK |J〉〈K| (2)

(where ′ means K �= J). The FS graph of the TFI model in the
basis of σ z-product states is an L-dimensional hypercube with
NH = 2L vertices, or FS sites, as illustrated in Fig. 1. A FS
site J represents a many-body quantum state |J〉 of L spins,
which is an eigenstate of each σ̂ z

� operator, σ̂ z
� |J〉 = S�,J |J〉

where S�,J = ±1. It is thus an eigenstate of H0 = ∑
�[h�σ̂

z
� +

J�σ̂
z
� σ̂

z
�+1], i.e., H0|J〉 = EJ |J〉, with EJ the corresponding site

energy for the FS site (with the {EJ} maximally correlated
[43], and not i.i.d.). Links, or hoppings, on the FS graph are
generated by the term H1 = H − H0 = �

∑
� σ̂ x

� . Each FS
site is thus connected to precisely L others, lying solely on
adjacent rows of the graph, and each of which corresponds to
flipping a spin on a particular real-space site. This generates

the hopping contribution to Eq. (2), in which all nonvanishing
hopping matrix elements are simply TJK = �.

As illustrated in Fig. 1 the graph consists of L + 1 rows,
r = 0 − L. A single FS site, denoted by I in Fig. 1 (and
with arbitrary spin orientations for the real-space sites) lies
at the apex of the graph, r = 0. The number of FS sites on
row r of the graph is Nr := (L

r

)
; with the final site, r = L,

corresponding to the state |I〉 in which all real-space spins
on |I〉 have been flipped. As a measure of distance between
two sites on the FS graph we use the Hamming distance, as
mentioned in Sec. I. For any pair of FS sites J, I separated by
a Hamming distance rIJ = r, then by definition r real-space
sites � have S�,J = −S�,I while L − r sites have S�,J = +S�,I .
Hence

L−1
∑

�

S�,I S�,J = 1 − 2
rIJ

L
. (3)

This connection between Hamming distance on the FS graph
and the spin orientations will prove important in Sec. III A
in relating the real-space spin autocorrelation function (or
imbalance) to the first moment of the FS probabilities.

III. DIAGNOSING PROBABILITY TRANSPORT

The basic underlying quantities considered are the proba-
bilities PIJ (t ) = |GIJ (t )|2 � 0, given by

PIJ (t ) = |〈J|�(t )〉|2 = |〈J|e−iHt |I〉|2 (4)

with |�(t )〉 the t-dependent wavefunction. We add here that,
unless stated otherwise, time is shown in units of �−1 in
all figures (i.e., � ≡ 1). Physically, PIJ (t ) gives the proba-
bility that the system will be found on FS site J at time t ,
given its initiation on site I (and with PII (t ) the commonly
studied return probability). As reflected in PIJ (t = 0) = δIJ ,
the initial state |I〉 is site-localized on the FS graph, and as
such wholly Anderson-localized thereon. On increasing t , the
distribution of probabilities spreads in some fashion through
the FS graph/lattice. Understanding at least some aspects of
this many-sided process, both temporally and as a function of
disorder strength, is the aim of this paper.

In the following H is presumed real symmetric, as relevant
to the TFI model considered explicitly, such that PIJ (t ) =
PJI (t ) = PIJ (−t ). Expressed in terms of eigenstate amplitudes
AnI = 〈I|n〉, with eigenstates |n〉 and corresponding eigenval-
ues En, note for later use that

PIJ (t ) =
∑
n,m

e−i(En −Em )t AnI AnJAmI AmJ . (5)

Probability is of course conserved, viz.,
∑

J PIJ (t ) = 1 for
all t and any initial FS site I . For any given I , PIJ (t ) can
thus be regarded as the time-dependent distribution, over all
FS sites J , of the conserved “mass” MI = ∑

J PIJ (t ) = 1. A
natural way to quantify such a distribution is via its moments.
To this end, first define

PI (r; t ) =
∑

J:rIJ =r

PIJ (t ),

P(r; t ) = N−1
H
∑

I

PI (r; t ), (6)
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with the J sum over all Nr = (L
r

)
FS sites on a given row

r of the graph, for which the Hamming distance rIJ = r (I
lying at the apex of the graph, see Fig. 1). PI (r; t ) gives the
total probability on row r [with

∑L
r=0 PI (r; t ) = 1 ∀t, I]; its

sample average over initial FS sites I is denoted P(r; t ). An
average over disorder realizations will be denoted, according
to convenience, either by an overbar [e.g., PI (r; t )], or by
angle brackets (〈· · · 〉d). The r and t dependence of P(r; t ) in
particular will be considered explicitly in Sec. V.

Moments of the {PIJ (t )} follow directly, e.g., the first mo-
ment

rI (t ) =
∑

J

rIJPIJ (t ) =
L∑

r=0

rPI (r; t ) , (7)

and its sample average r(t ) = N−1
H
∑

I rI (t ). In Sec. V we will
consider the disorder-averaged moments

r(t ) =
L∑

r=0

rP(r; t ), (8a)

δr2(t ) =
L∑

r=0

r2P(r; t ) −
(

L∑
r=0

rP(r; t )

)2

, (8b)

in particular the former. As now shown, for any disorder
realization, rI (t ) and r(t ) are in fact directly related to the real-
space spin autocorrelation function; providing thereby a direct
connection between real-space and Fock-space perspectives.

A. Longitudinal transport and spin autocorrelator

Consider C(t ) defined by

C(t ) = 1

L

L∑
�=1

C��(t ), C��(t ) = 1

NH
Tr

(
σ̂ z

� (t )σ̂ z
�

)
, (9)

with C��(t ) the local real-space spin autocorrelator. The
trace Tr can equivalently be either over FS sites, C��(t ) =
N−1
H
∑

I C [I]

��(t ) with C [I]

��(t ) = 〈I|σ̂ z
� (t )σ̂ z

� |I〉, or over eigen-
states, C��(t ) = N−1

H
∑

n C [n]

��(t ). A simple calculation then
relates C [I]

��(t ) to the probabilities {PIJ (t )},
C[I]

�� (t ) = S�,I

∑
J

S�,JPIJ (t ), (10)

where S�,I = 〈I|σ̂ z
� |I〉 (= ±1). Using Eq. (3), together with

conservation of probability, it follows directly that

C[I](t ) := L−1
∑

�

C[I]
�� (t )

is given by

C[I](t ) = 1 − 2

L

∑
J

rIJPIJ (t ) = 1 − 2

L
rI (t )

⇒ C(t ) = N−1
H
∑

I

C[I](t ) = 1 − 2

L
r(t ). (11)

Equation (11) relates directly the real-space spin autocor-
relation function to the first moment of the FS probabilities
{PIJ (t )} (and is not confined to the TFI model, holding equally
for XXZ or spinless fermion models). It is also interesting to

note that experiments where MBL has been observed [63,64]
essentially measure C[I]

�� (t ) by employing a similar protocol–
initializing the system in a specific σ z configuration |I〉, and
measuring the expectation value 〈σ̂ z

� (t )〉 ≡ 〈I|σ̂ z
� (t )|I〉 such

that C[I]
�� (t ) = 〈σ̂ z

� (t )〉 S�,I .
A striking feature of the dynamics is that, on timescales for

which C[I](t ) departs by merely a nonvanishing amount from
its t = 0 value of 1, the first moment rI (t ) ∝ L is extensive
in system size. Intuitively, one expects such timescales to be
determined by the hopping energy scale �, which acts to de-
phase the initially synchronized spins, and as such to be on the
order �t ∼ O(1). The resultant extensivity of rI (t ) means that
an excitation, initially Anderson-localized on the single FS
site I , spreads significantly throughout the Fock space on the
shortest timescales of order �t ∼ O(1)—and would appear to
do so regardless of whether the system is ultimately ergodic
or MBL. Understanding how this behavior arises, the essential
characteristics of the Fock-space graph which it reflects, and
the physical picture it gives rise to, is conceptually significant
and considered in Sec. IV (see also Sec. V).

One can also bound r(t ). Since rIJ � L, it follows triv-
ially from Eq. (11) [using

∑
J PIJ (t ) = 1 ∀t] that r(t )/L � 1

for all t . More useful is a bound in the t → ∞ limit. Re-
solving C��(t ) as an eigenstate trace, its infinite-time limit
C��(∞) = N−1

H
∑

n |〈n|σ̂ z
� |n〉|2, so C��(∞) and thus C(∞) can-

not be negative; whence [Eq. (11)] r(∞) � L/2 necessarily.
Sufficiently deep in an ergodic phase, with essentially all
many-body eigenstates delocalized and no remnant memory
of initial conditions, one expects C��(∞) to vanish. Hence
r(∞) = L/2—the midpoint of the FS graph—is characteristic
of such “complete” ergodicity. In an MBL phase by contrast,
persistent memory of initial conditions means C��(∞) > 0. In
that case, the long-time limit of r(t ) is perforce less than L/2.

B. Lateral transport

For any disorder realization, PI (r; t ) gives [Eq. (6)] the
total probability on row r of the graph/lattice. Study of its
(r, t )-dependence thus reveals how probability flows in time
“down” the FS graph, row by row. It does not, however, give
information on the important issue of how the distribution of
probabilities spreads out laterally, and in general inhomoge-
neously, across the rows of the graph.

One such measure of the latter, studied numerically in
Sec. VI, is provided by RI (r; t ) � 1 defined by

RI (r; t ) =
1

Nr

∑
J:rIJ=r P2

IJ (t )(
1

Nr

∑
J:rIJ=r PIJ (t )

)2 . (12)

For any given disorder realization, this is simply the ratio of
the mean squared probability per FS site on row r, to the
square of the corresponding mean probability, [N−1

r PI (r; t )]2.
So it provides an obvious measure of fluctuations in the dis-
tribution of PIJ ’s along a given row. In particular, RI (r; t ) = 1
in a limit of extreme homogeneity where all PIJ (t )’s on the
row are the same. The latter behavior will in fact be shown
in Sec. IV to arise at sufficiently short times, independently
of disorder strength W ; before evolving in t to a distribution
which is W dependent, and strongly inhomogeneous in the
MBL regime (Sec. VI).
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The average of RI (r; t ) over disorder realizations and FS
sites I will be denoted for brevity by 〈R〉 ≡ 〈R〉(r; t ),

〈R〉 = N−1
H
∑

I

〈RI (r; t )〉d (13)

with 〈· · · 〉d the disorder average. More generally, we also
study in Sec. VI A the full probability distribution of RI (r; t ),
given by

PR (x) = N−1
H
∑

I

〈δ(x − RI (r; t ))〉d (14)

(of which the first moment is
∫

dx xPR(x) = 〈R〉). In the MBL
regime in particular, PR(x) at sufficiently long times will be
shown to be characterized by a heavy-tailed Lévy alpha-stable
distribution.

The quantity RI (r; t ) is directly related to another nat-
ural measure of fluctuations in the distribution of PIJ (t )’s
along a given FS row: the row-resolved, t-dependent in-
verse participation ratio (IPR). To motivate this, consider
the t-dependent wavefunction following the initial quench,
|�(t )〉 = e−iHt |I〉, expanded as |�(t )〉 = ∑

J A(I )

J (t )|J〉; such
that, from Eq. (4), the squared amplitudes |A(I )

J (t )|2 = PIJ (t )
are just the probabilities of interest. Time-dependent wave-
function densities, normalized on any given row r, are
then given by |B(I )

J (t )|2 = |A(I )

J (t )|2/∑J:r |A(I )

J (t )|2 (with
∑

J:r
shorthand for

∑
J:rIJ =r); for which the associated generalized

IPR is II,q = ∑
J:r |B(I )

J (t )|2q. Hence, for the standard case of
q = 2 on which we focus explicitly, the IPR is related simply
to RI (r; t ) [Eq. (12)] via Nr = (L

r

)
,

II,2(r; t ) =
∑

J:rIJ=r P2
IJ (t )(∑

J:rIJ=r PIJ (t )
)2 = N−1

r RI (r; t )

⇒ 〈I2 〉 = N−1
H
∑

I

〈II,2(r; t )〉d = N−1
r 〈R〉 (15)

[with the corresponding probability distribution of II,2 follow-
ing trivially from that for RI (r; t ), Eq. (14)].

We can then reason physically as follows, consider-
ing some particular time t . If the amplitudes |B(I )

J (t )|2 =
PIJ (t )/

∑
J:r PIJ (t )—and hence the probabilities PIJ (t )—are

essentially uniformly distributed over the Nr FS sites on row r,
then each |B(I )

J |2 ∼ N−1
r . Hence 〈I2〉 ∼ N−1

r and in turn 〈R〉 ∼
O(1) should be of order unity (and as such L independent).
If by contrast the wavefunction is strongly inhomogeneously
distributed on the row, one might anticipate 〈I2〉 ∼ N−ν

r with
a fractal exponent ν ≡ ν(t ) < 1; and hence from Eq. (15)
that 〈R〉 ∼ N1−ν

r —which thus grows with increasing system
size L. These two behaviors will indeed be shown to arise in
Sec. VI, the former characteristic at long time of the ergodic
regime, and the latter characteristic of the MBL regime at
larger disorder strengths.

Finally, as a complement to PR(x) [Eq. (14)], we also study
in Sec. VI A the probability distribution

Prel(x) = 1

NH

∑
I

1

Nr

∑
J:rIJ=r

〈
δ

(
x − PIJ (t )

1
Nr

∑
J:rIJ =r PIJ (t )

)〉
d

.

(16)

For any given row r on the graph, this gives the distri-
bution of PIJ (t ) relative to its mean value on the row,
x = PIJ (t )/[N−1

r PI (r; t )]; its second moment being precisely∫
dx x2Prel(x) = 〈R〉, see Eqs. (13) and (12) (and its first mo-

ment is 1 by construction).

IV. SHORT-TIME BEHAVIOR

We turn now to the short-time behavior of probability
transport for the disordered TFI model. While the underlying
calculations are simple, the physical picture arising is rather
rich; including the emergence at short times of multifractality
in the t-dependent wavefunction |�(t )〉 = e−iHt |I〉—for any
disorder strength W , and as such independent of whether the
ultimate long-time behavior of the system is ergodic or MBL
in nature.

Consider PIJ (t ) = |GIJ (t )|2, where [Eq. (4)]

GIJ (t ) = 〈J|e−iHt |I〉 =
∞∑

n=0

(−i)n

n!
t n〈J|Hn|I〉, (17)

and separate H ≡ H0 + H1 [Eq. (2)], with H0 =∑
K EK |K〉〈K| and H1 the hopping term. With Km denoting

any FS site on row m, H|Km〉 connects solely to FS sites in
rows m ± 1 (and m), since nonzero hopping matrix elements
(�) connect only FS sites on adjacent rows of the graph. Now
let J in Eq. (18) be some given FS site on row r, call it Jr .
Obviously, 〈Jr |Hn|I〉 vanishes identically for all n < r. Hence

GIJr
(t ) = (−i)r

r!
t r〈Jr |(H1)r |I〉 + O(t r+1). (18)

The leading term here will clearly dominate GIJr (t ) for suf-
ficiently small t . Importantly, it involves solely FS hoppings,
consisting of “forward paths” from I to Jr , each containing
precisely r hops (i.e., r factors of �). For any given FS site
Jr there are however r! identical contributions to 〈Jr |(H1)n|I〉,
because there are r! distinct forward paths from I to Jr on the
FS graph; and each such contribution has a value of �r . This
cancels the 1/r! factor in Eq. (18), from which the leading
small-t behavior is GIJr

(t ) ∼ (−i)r (�t )r , and that of PIJr (t )
thus

PIJr
(t ) ∼ (�t )2r . (19)

Note the following points about this leading short-time
behavior:

(i) It holds for any r, and for all FS sites on row r. By
virtue of the latter, the distribution of probabilities along any
given row is fully homogeneous in the time window over
which Eq. (19) holds. In consequence, RI (r; t ) = 1 [Eq. (12)],
the distribution PR(x) = δ(x − 1) [Eq. (14)] is δ distributed,
and the row-resolved IPR I2(r; t ) = N−1

r [Eq. (15)]. By it-
self the above calculation does not of course prescribe the
timescale over which such behavior occurs, but we ascertain
it below. (ii) Relatedly, since solely the disorder-independent
hoppings � generate Eq. (19), the result is independent of
disorder strength W . (iii) Although PIJr (t ) ∼ (�t )2r decreases
exponentially rapidly with r, the number Nr = (L

r

)
of FS sites

on row r grows exponentially with r. Hence, even for short
times, one cannot neglect the contribution of sites on any row
r to, e.g., the first moment of the probability distribution,
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FIG. 2. ED results with L = 13 for r̄(t )/L vs t (� ≡ 1), shown
over the indicated range of disorder strengths W . For times t � 0.1,
the W -independent behavior of Eq. (21) (dashed line) is seen to arise.
Inset: Same results, on smaller t scale.

rI (t ) = ∑
J rIJPIJ (t ) ≡ ∑L

r=0

(L
r

)
rPIJr (t ), as considered be-

low. (iv) The calculation above naturally reflects the intrinsic
structure of the FS graph (Fig. 1) for the disordered TFI
model. We simply remark that the result arising would
be quite different if one considered a tree graph (Cayley
tree/Bethe lattice); for while in that case Eq. (18) holds for
any given site Jr on generation r of the tree, there is just a
single path connecting the root site I to the given Jr .

As it stands, direct use of Eq. (19) for each r fails to
conserve total probability. This, however, is readily taken
into account by writing PIJr (t ) = g(r; t )(�t )2r where, for
all r, g(r; t ) must satisfy (a) g(r; t = 0) = 1, such that the
leading low-t behavior of PIJr (t ) is Eq. (19); (b) g(r; t ) >

0 for all times for which the calculation is valid; and (c)
overall probability must be conserved,

∑
J PIJ (t ) = 1, i.e.,∑L

r=0

(L
r

)
g(r; t )(�t )2r = 1 ∀t . This has the solution g(r; t ) =

[1 − (�t )2](L−r). And g(r; t ) > 0 ∀r is satisfied provided �t <

1, which upper bounds the time-window over which the cal-
culation holds.

The essential result for the short-t behavior of PIJr (t ) is
then

P
IJr

(t ) = (�t )2r[1 − (�t )2](L−r). (20)

As this is independent of both the initial FS site I and disorder
strength W , the resultant first moments [Eqs. (7) and (8a)]
rI (t ) ≡ r(t ) ≡ r(t ) coincide, and follow from Eq. (20) as

rI (t ) ≡ r(t ) =
L∑

r=0

(
L

r

)
r P

IJr
(t ) = L(�t )2. (21)

That the short-time behavior is indeed W independent is cor-
roborated in Fig. 2, which shows ED results for r(t )/L vs
�t , over a range of disorder strengths W . In all cases, the
asymptotic behavior Eq. (21) indeed arises at short times—in
practice for �t � 0.1 or so, consistent with the bound above.

The fact that r(t ) ∝ L is extensive for finite �t means of
course that it is r(t )/L, which remains finite in the thermody-
namic limit L → ∞. The relevant fluctuations in this quantity

are thus embodied in δr2(t )/L2, direct evaluation of which
using Eq. (20) gives δr2(t )/L2 = (�t )2[1 − (�t )2]/L. Since
this is ∝1/L, such fluctuations vanish in the thermodynamic
limit, with r(t )/L distributed as a Dirac-delta function at its
mean.

Finally, although by itself a somewhat limited diagnostic of
probability transport on Fock space, we comment parentheti-
cally on the commonly studied [14,65,66] return probability,
PII (t ). This corresponds to r = 0 in Eq. (20), which for �t �
1 recovers the known behavior [66] PII (t ) ∼ exp(−L(�t )2),
whereby for any nonzero �t , even if small, the return proba-
bility is exponentially suppressed in system size L.

Emergent multifractality

As shown above, for �t small compared to unity but fi-
nite, the probability density has spread through Fock space to
macroscopically large Hamming distances on the order of L.
The probabilities PIJr (t ) are uniform on any given row of the
FS graph [Eq. (20)], symptomatic of which the row-resolved
IPR [Eq. (15)] is II,2(r; t ) = N−1

r .
One can however also ask for the behavior of the con-

ventional IPR over the full Fock-space. For a wavefunction
|�(t )〉 = ∑

J A(I )

J (t )|J〉, with squared amplitudes |A(I )

J (t )|2 (=
PIJ (t )) normalized to unity over all FS sites J , the generalized
(q-dependent) IPR is defined by

LI,q(t ) =
∑

J

∣∣A(I )

J (t )
∣∣2q =

∑
J

Pq
IJ (t ) , (22)

where only q > 1 is considered henceforth (trivially, for
all t , LI,0(t ) = NH and LI,1(t ) = 1). The L dependence of
LI,q(t ) is embodied in the exponent τq ≡ τq(t ) defined by

LI,q(t ) ∼ N
−τq

H . If τq = 0 for any specified t , then the wave-
function |�(t )〉 is Anderson localized on O(1) FS sites of the
graph/lattice, while if τq = q − 1 it is essentially uniformly
spread over all FS sites on the graph, and as such ergodic.
But if by contrast 0 < τq < q − 1, then the wavefunction is
fractal; more specifically, if τq is a nonlinear function of q,
then it is multifractal.

To consider this in the present context, it is convenient to
rewrite Eq. (20) in the binomial form

P
IJr

(t ) = [z(t )]r[1 − z(t )](L−r) (23)

with z(t ) = (�t )2 for short times �t � 1. This in turn can be
expressed as

P
IJr

(t ) = [
1 + e−1/ξF (t )

]−L
e−r/ξF (t ), (24)

in terms of a correlation length ξF (t ) defined by ξ−1
F (t ) =

ln( 1
z(t ) − 1). Since the short-time PIJr (t )’s are the same for

all
(L

r

)
sites on row r of the graph, LI,q(t ) ≡ ∑L

r=0

(L
r

)
Pq

IJr
(t ).

Hence from Eq. (24)

τq (t ) = log2

[
(1 + e−1/ξF (t ) )q

(1 + e−q/ξF (t ) )

]
, (25)

where e−1/ξF (t ) ∼ (�t )2 for �t � 1. For t = 0 precisely, τq =
0. This is just as expected, reflecting the fact that |�(t = 0)〉 =
|I〉 is Anderson localized on the FS graph.
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FIG. 3. t dependence of the IPR exponent τ2(t ) obtained from
ED calculations, with W = 1, 1.5, 2 exemplifying the ergodic phase
and W = 6, 7 the MBL regime. The data is obtained by fitting the
instantaneous IPR, L2(t ) to c(t )N−τ2(t )

H over the range L = 8 − 13
for each t . Dashed line shows the low-t asymptotic behavior τ2(t ) ∼
2(�t )2/ ln 2 [from Eq. (25)]. Full discussion in text.

However, for any nonzero �t � 1, Eq. (25) is readily seen
to be nonlinear in q and to satisfy 0 < τq(t ) � q − 1. The
wavefunction is thus multifractal. Moreover, this behavior
arises for any disorder strength W . Emergent multifractality
at short times is therefore common both to W ’s for which the
system is ergodic in the long-time limit, as well as for W ’s
for which it is MBL at long times. In the latter case, one
anticipates continued persistence of multifractality beyond
the short-time window. In the ergodic case by contrast, one
expects multifractality to dissipate with further increasing t ,
as the distribution of probabilities homogenises over the entire
graph and the long-time limit of τq(t = ∞) = q − 1 arises
[67].

That the above behavior indeed arises is illustrated in
Fig. 3, which, for the standard case q = 2, shows ED results
for the t-dependent exponent τ2(t ). We define the latter in
general via the averaged IPR,

L2(t ) = N−1
H
∑

I

LI,2(t ) , (26)

written as

L2(t ) = c(t )N−τ2(t )
H . (27)

Note that for short times �t � 1, this definition is the same
as that arising from Eq. (25), since PIJr (t ) in Eq. (24) is
independent of both disorder and the FS site I . For any chosen
t , a plot of lnL2(t ) vs ln NH ∝ L then gives −τ2(t ) from the
slope (c(t ) is assumed to be L independent); and very good
linear fits are indeed found for the data shown.

As seen in Fig. 3, for short times �t � 0.1, the W -
independent result from Eq. (25) is indeed recovered, viz.,
τ2(t ) ∼ 2(�t )2/ ln 2, and the wavefunction is multifractal for
all W . For W = 6, 7 illustrative of the MBL regime, τ2(t )
remains <1 on increasing t beyond the short-time regime and
multifractality persists at all times. But for W = 1, 1.5, 2 illus-
trating the ergodic regime, τ2(t ) grows with increasing t and
ultimately plateaus to a long-time value of τ2 = 1 (≡ q − 1),
indicating ergodic behavior.

FIG. 4. t-dependent Fock-space distribution P(r; t ), for W=1.5
(ergodic phase) in the left column, and for W = 7 (MBL) in the
right column. Top panels show P(r; t ) as a color map in the (r, t )
plane, with white denoting 0 and black denoting 1. Bottom panels
show P(r; t ) as a function of r/L for different time slices as indicated
in the legend. Data for L = 14, averaged over 2 − 3 × 103 disorder
realizations.

V. LONGITUDINAL PROBABILITY TRANSPORT

In this section we consider how, following a t = 0 quench
into some FS site, probability flows in time down the FS
graph, row by row.

To give an initial broad overview, Fig. 4 shows the r and t
dependence of the disorder-averaged total probability on row
r, P(r; t ) [Eq. (6)]; for W = 1.5 (left panels) as representative
of the ergodic phase, and for W = 7 (right panels) as typical
of the MBL regime. The top panels show P(r; t ) as a color
map in the (r, t )-plane, while the bottom panels show it as
function of r/L, for the (logarithmic) sequence of time slices
indicated. The qualitative features arising are clear. At short
times, �t � 0.1, P(r; t ) is the same for both W ’s, as expected
from the considerations of Sec. IV. The distributions begin to
spread out in an obvious sense for times �t � 0.5, and in prac-
tice reach their long-time steady state by �t ∼ 101 − 102. For
the W = 1.5 example, the mode of the long-time P(r; t ) lies
at r/L = 1/2, the midpoint of the FS graph; and its r-profile is
Gaussian (with a width that decreases with increasing system
size, a point to which we return later). Similar behavior is
found for W = 7, but with the notable difference that in this
case the mode of the long-time P(r; t ) occurs at an r/L that is
markedly less than 1/2.

Quite a bit of information is contained in plots such as
Fig. 4. To interrogate it, we turn now to the first moment of
the probability distribution, r(t ) = ∑L

r=0 rP(r; t ) [Eq. (8a)].
More specifically, we consider r(t )/L, since it is this quan-
tity which necessarily remains finite in the thermodynamic
limit L → ∞ (Secs. III and IV). We add here that in all
figures shown in the paper, disorder averages are taken over
a minimum of 103 realizations.
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FIG. 5. For W = 1 and 2, upper panels show ED results for
r̄(t )/L vs t , for L = 8 − 14. Lower panels show corresponding
r (n) (t )/L for band center eigenstates n. Full discussion in text.

A. r(t ): Ergodic regime

For disorder strengths W = 1, 2, the upper panels in Fig. 5
show the t dependence of r(t )/L, over a time window com-
parable to or in excess of the associated Heisenberg times tH
[the inverse of the mean level spacing, tH is discussed briefly
in Appendix B and given for the model by Eq. (B1)]. For both
W ’s, r(t )/L for �t � 0.1 is given by the W- and L-independent
short-time result Eq. (21) (as shown in Fig. 2). For the W = 1
case, on further increasing t , r(t )/L rapidly increases towards
a value, which, for practical purposes, is ∼1/2 for �t � 10 or
so. For W = 2, the situation is rather different. In that case,
while r(t )/L again grows rapidly up to around �t ∼ 1, the
“elbow” seen in Fig. 5 around this time is succeeded at longer,
intermediate times by a regime of slower dynamics, and the
long-time limit is discernibly <1/2 for the largest system size
studied.

To obtain some understanding here, it is first helpful to con-
sider the infinite-t limit. From Eq. (5), PIJ (∞) = ∑

n A2
nI A

2
nJ ,

from which r(∞) = N−1
H
∑

I,J rIJPIJ (∞) can be expressed as

r(∞) = N−1
H
∑

n

L∑
r=0

rF n(r) (28a)

with F n(r) =
∑

I,J:rIJ =r

A2
nI A

2
nJ . (28b)

F n(r) itself was studied in detail in [49], where it was
shown to be of form

F n(r) =
(

L

r

)
(1 + e−1/ξF,n )−Le−r/ξF,n , (29)

with ξF,n a FS correlation length for eigenstates n at the partic-
ular energy ω considered (while band center states ω = 0 were
considered explicitly in [49], there is nothing special about
this energy). Equations (28a) and (29) give

r(∞)

L
= N−1

H
∑

n

1

1 + e1/ξF,n

=
∫

dω
D(ω)

1 + e1/ξF (ω)
(30)

with D(ω) = N−1
H
∑

n δ(ω − En) the (self-averaging) many-
body density of states. The behavior of ξF (ω) with disorder
strength W is known from a detailed scaling analysis [49].
For W ’s greater than the critical Wc(ω) for which states at the
chosen energy ω become MBL, ξF (ω) remains finite (includ-
ing W = Wc(ω)+). For W < Wc(ω) by contrast, ξF (ω) ∝ L
and thus diverges in the thermodynamic limit, as expected for
delocalized states.

The disorder strength denoted throughout as Wc is that
above which all states in the band are MBL [i.e., Wc ≡
Wc(ω = 0), as band center states are the last to localize].
For W < Wc, some states in the band will be delocalized,
and others MBL—the spectrum hosts mobility edges. For any
such W then, from the above, delocalized states contribute a
factor of 1/2 to the summand in Eq. (30) as L → ∞, while
MBL states contribute a factor strictly <1/2. It is therefore
only if all states in the band are delocalized—or in practice all
but a tiny fraction—that the long-time limit r(∞)/L will be
1/2. From Fig. 5, this indeed appears to be the case for W = 1.
On further increasing W , however, a non-negligible fraction
of MBL states must arise, resulting in r(∞)/L < 1/2. The
W = 2 case in Fig. 5 appears to provide an example of this
(at least up to the largest L considered here). And the trend
certainly becomes more pronounced with increasing W , e.g.,
for W = 3, r(∞)/L is � 0.4 for the largest L studied.

Equation (30) shows that r(t = ∞)/L can be resolved as a
sum over contributions from all eigenstates in the band. This
in fact is true for any t . As elaborated in Appendix A, it arises
because PIJ (t ) can be eigenstate resolved in the form PIJ (t ) =
N−1
H
∑

n P(n)

IJ (t ), with P(n)

IJ (t ) pertaining to a particular state n of
energy En, and given by

N−1
H P(n)

IJ (t ) =
∑

m

cos[(En − Em)t]AnI AnJAmI AmJ ; (31)

such that for times �t � 1, P(n)

IJ (t ) is controlled by states m
lying in a progressively narrowing window |En − Em| � � in
the vicinity of the chosen energy En. We remark in passing
that N−1

H P(n)

IJ (t ) can equally be expressed as an eigenstate ex-
pectation value of an operator, see Eq. (A2).

Since r(t ) is linear in the {PIJ (t )}, it too can be eigenstate
resolved, r(t ) = N−1

H
∑

n r (n)(t ), with

r (n) (t ) = N−1
H
∑
I,J

rIJP
(n)
IJ (t ) . (32)

In particular, from Eq. (30), r (n) (∞)/L = 1/[1 + e1/ξF,n ]. The
lower panels in Fig. 5 show the t dependence of r (n)(t )/L
for states n in the immediate vicinity of the band center,
with W = 1, 2. Since W < Wc here, one expects the long-
time limit of r (n)(t )/L for band center states to be 1/2, which
appears consistent with the data. For the W = 2 example, it
is also seen from Fig. 5 that the regime of slower dynamics
mentioned above, setting in above �t ∼ 1, is evident in both
r(t )/L and r (n)(t )/L; suggesting that this behavior is associated
with delocalized states in the spectrum.

To examine further these slow dynamics at intermediate
times, we consider equivalently the t dependence of the spin
autocorrelation functions, C(t ) = 1 − 2r(t )/L [Eq. (11)] and
its eigenstate-resolved counterpart C [n]

(t ) = 1 − 2r (n) (t )/L.
The former is shown on a log-log scale in the left panel of
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FIG. 6. For W = 1.5, 2, and 2.5, with L = 14, ED results for
spin autocorrelation functions vs t , on a log-log scale. Left panel:
C(t ) = 1 − 2r(t )/L. Right panel: C [n]

(t ) = 1 − 2r (n) (t )/L for band
center eigenstates n. In either panel, for each W , dashed lines show
power-law fits to the intermediate-time behavior, with the power-law
exponents found to decrease with increasing W .

Fig. 6 for W = 1.5, 2, and 2.5, with L = 14. As seen from the
figure, C(t ) and hence r(t )/L exhibits an intermediate-time
power-law decay, C(t ) ∝ t−α with α < 1. With increasing W ,
the exponent α is found to decrease steadily and, subject to the
usual caveat of modest system sizes, appears to vanish in the
vicinity of W � Wc ∼ 4. For eigenstates n in the vicinity of
the band center, which are themselves ergodic for W < Wc,
the corresponding behavior of C [n]

(t ) is shown in the right
panel of Fig. 6. It too shows an intermediate-time power-law
decay, C [n]

(t ) ∝ t−α′
with an exponent α′, which, while larger

than the corresponding α at the same W , likewise decreases
steadily with increasing W and vanishes around Wc. The L-
dependence of C [n]

(t ) vs t for band center states is shown
in Fig. 7, from which the data is seen to scale progressively
further onto the power-law decay with increasing L.

Subdiffusive dynamics of the spin autocorrelation function,
in the ergodic phase for a wide range of disorder strength
preceding the MBL regime, has been extensively studied
in models with conserved total magnetization, such as the
disordered XXZ chain [13–18]. In the Ising spin chain (1)
considered here, total magnetization is not by contrast con-
served, so the appearance of subdiffusive dynamics warrants
explanation. Indeed, for a Floquet version of the Ising chain
(1), a previous numerical study raised the possibility that
the spin autocorrelation decays as a stretched exponential in

FIG. 7. For W = 1.5, 2, and 2.5, showing C [n]
(t ) =

1 − 2r (n) (t )/L vs t , for band center states n. Dashed lines show
power-law fits to the intermediate-time behavior, onto which the
data scales progressively with increasing L.

FIG. 8. For W = 7, ED results for the spin autocorrelation func-
tion C(t ) = 1 − 2r(t )/L (left panel) and r(t )/L itself (right panel), vs
t (� ≡ 1) and for the system sizes L indicated. Solid black line shows
for comparison the corresponding exact result for MBL0 Eqs. (36)
and (34); red line in the left panel gives the asymptotic behavior
Eq. (39).

time [68]. However, the key point here is that although total
magnetization is not conserved in our model, total energy
is (trivially, the Hamiltonian being time independent). As a
result, the autocorrelator of the local energy density shows
subdiffusive dynamics; 〈Ĥ�(t )Ĥ�〉 ∼ t−α′′

where Ĥ� ≡ h�σ̂
z
� +

�σ̂ x
� + 1

2 [J�σ̂
z
� σ̂

z
�+1 + J�−1σ̂

z
�−1σ̂

z
� ]. The spin operator σ̂ z

� is
not, however, orthogonal to the local energy density operator,
Tr[σ̂ z

� Ĥ�] �= 0. Therefore at intermediate to late times, the
spin autocorrelation picks up the (sub)diffusive tails emerging
from the autocorrrelator of the local energy density; explain-
ing physically the origin of the power-law decay of the spin
autocorrelator.

B. r(t ): MBL regime

To illustrate results in the MBL regime, Fig. 8 shows the
spin autocorrelation function C(t ), and r(t )/L itself, for dis-
order strength W = 7. The behavior seen is representative of
the MBL regime for W � 4.5 or so, and qualitatively different
from that characteristic of the ergodic regime.

C(t ) = 1 − 2r(t )/L in Fig. 8 shows clear damped oscilla-
tory behavior. It plateaus to a nonzero long-time value (∼0.7,
well above zero), indicative of persistent memory of initial
conditions; and is barely L dependent over the range studied.
Equivalently, the long-time limit of r(t )/L is � 1/2 (as seen
also in Fig. 4 for the mode of P(r; t ) at long times). This in
turn is consistent with Eq. (30) above, where, with all states
n MBL for W > Wc, all correlation lengths ξF,n are finite and
hence r(∞)/L < 1/2.

Two further points about Fig. 8 should be made at this
stage, each of which merits some understanding (Sec. V B 1
below). First, while the long-time behavior is seen to be
reached in practice by �t ∼ 102, damped oscillations about
that limit set in at shorter times �t ∼ O(1), above which
the envelope of the oscillation is in fact rather well fit by
a power-law decay ∝ t−β with β ≈ 1/2. Second, in paral-
lel to Sec. V A for the ergodic phase, in the MBL regime
one can equally consider the eigenstate-resolved C [n]

(t ) = 1 −
2r (n)(t )/L, e.g., for states n in the vicinity of the band center.
On doing that, one finds essentially no discernible difference
from the results for C(t ) shown in Fig. 8.
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1. MBL0

To obtain an understanding of the above results, we con-
sider now what we refer to as MBL0 [49]. Sufficiently deep
in the MBL phase, the model (1) is perturbatively connected
to the noninteracting limit J� = 0 (MBL0). Here, although
the system is “trivially” MBL—because H [Eq. (1)] is site-
separable in real-space and the system a set of noninteracting
spins—the behavior on the Fock space is known [49] to be
nontrivial, and the Fock-space H Eq. (2) remains fully con-
nected on the graph.

As outlined in Appendix C, for MBL0 the exact disorder-
averaged PIJ (t ) can be obtained, starting from the basic
definition PIJ (t ) = |GIJ (t )|2, Eq. (4). With J, I any pair of FS
sites separated by a Hamming distance rIJ = r, the result is

PIJ (t ) = [z0(t )]r[1 − z0(t )](L−r) (33)

with z0(t ) given by

z0(t ) =
〈

�2

h2 + �2
sin2(

√
h2 + �2 t )

〉
d

=
∫ W

0

dh

W

�2

h2 + �2
sin2(

√
h2 + �2 t ). (34)

Note that PIJ (t ) again has the binomial form Eq. (23), de-
duced on general grounds in Sec. IV for short times; and
Eq. (34) obviously recovers, as it ought, the known asymptotic
behavior z0(t ) = (�t )2 as �t → 0.

Equation (33) in fact depends solely on the Hamming
distance r and is otherwise independent of the particular FS
sites J, I (see Appendix C). Hence, from Eq. (6), PI (r; t ) is
independent of I , and P(r; t ) ≡ PI (r; t ) is thus

P(r; t ) =
(

L

r

)
[z0(t )]r[1 − z0(t )](L−r). (35)

From this follows the first moment r(t ) [Eq. (8a)] and hence
C(t ),

r(t )

L
= z0(t ), C(t ) = 1 − 2z0(t ), (36)

each of which is L independent for all t . Figure 8 compares
this result for C(t ) and r(t )/L, to ED results for the interacting
case. The strong qualitative parallels between the two are self
evident.

MBL0 is fully determined by z0(t ) [Eq. (34)], which, via
the double-angle formula for sin2θ (and setting � ≡ 1) is

z0(t ) = p − 1

2
K (t ), p = tan−1(W )

2W
(37)

with K (t ) = 〈(h2 + 1)−1cos(2
√

h2 + 1 t )〉d. K (t ) vanishes
as t → ∞ [see Eq. (38)]. The long-time limits are then
r(∞)/L = p and C(∞) = 1 − 2p; with p < 1/2 necessarily
such that C(∞) > 0 and r(∞)/L < 1/2, as characteristic of
an MBL phase. For W = 7, as in Fig. 8, the MBL0 C(∞) �
0.8, only slightly larger than its interacting counterpart of
C(∞) � 0.7.

We add that in Appendix C we also point out the connec-
tion P(r; ∞) ≡ F n(r) between the long-time limit of P(r; t )
and the eigenstate correlation function F n(r) [Eq. (28b),
which for MBL0 is the same for all eigenstates n].

The t dependence of K (t ) is readily determined. Its asymp-
totic behavior, formally for t � 1, is given by

K (t ) ∼ 1

2W

√
π

2

[cos(2t ) − sin(2t )]√
t

, (38)

vanishing as a power law ∝ 1/
√

t superimposed on the os-
cillating envelope of period π . The maxima of the oscillatory
part occur at the discrete set of points t = 7

8π + πn (n ∈ N0),
at which

C(t ) ∼
(

1 − tan−1(W )

W

)
+

√
π

2W

1√
t
. (39)

This is superimposed on the MBL0 result for C(t ) shown in
Fig. 8, and in practice is seen to account very well for the
behavior down to times t on the order of unity.

For MBL0 one can also determine the eigenstate-resolved
C [n]

(t ) = 1 − 2r (n)(t )/L for an arbitrary eigenstate |n〉. In this
case, reflecting the real-space site-separability of H, it can be
shown (although we do not prove it here) that the disorder-
averaged C [n]

��(t ) = 〈n|σ̂ z
� (t )σ̂ z

� |n〉 is independent of both the
site � and the particular eigenstate |n〉. In consequence,
C [n]

(t ) ≡ C(t ); providing a rationale for the fact, mentioned
in Sec. V B above, that our ED calculations of C [n]

(t ) in the
interacting case are barely discernible from those for C(t ).

2. Fluctuations

While our primary focus has been the first moment of
P(r; t ), higher central moments are also of course calculable.
As previously mentioned, the fact that it is r(t )/L, which
generically remains finite in the thermodynamic limit means
that it is fluctuations in this quantity one should consider, as
reflected in σ 2(t ) := δr2(t )/L2 [with δr2(t ) from Eq. (8b)].
As shown in Sec. IV for the short-t domain, which holds for
all disorder/interaction strengths, σ 2(t ) ∝ 1/L. Fluctuations
are thus entirely suppressed in the thermodynamic limit. Just
the same situation arises for MBL0, which, from Eq. (35) for
P(r; t ), gives σ 2(t ) = z0(t )[1 − z0(t )]/L. Indeed, employing
steepest descents on Eq. (35) shows P(r; t ) as a function of
y ≡ r/L to be Gaussian, with a mean of z0(t ) (= r(t )/L) and
variance σ 2(t ) ∝ 1/L; such that it becomes δ distributed in the
thermodynamic limit.

More generally, across essentially the full range of disorder
strengths, our ED calculations are also qualitatively consistent
with the above conclusions: aside from a small W interval
around Wc ∼ 4, with increasing L we find δr2(t )/L2 to pro-
gressively decrease, and the P(r; t ) profile to narrow.

VI. LATERAL PROBABILITY TRANSPORT

We turn now to the substantive question of how the t-
dependent wavefunction spreads out laterally, as reflected in
the time-dependent distribution of probabilities across the
rows of the FS graph.

As explained in Sec. III B, the quantity RI (r; t ) [Eq. (12)]
provides a natural measure of fluctuations in the distribution
of PIJ ’s along any given row r, and is related directly to
the row-resolved, t-dependent IPR by RI (r; t ) = NrII,2(r; t )
[Eq. (15)], with Nr = (L

r

)
the number of FS sites on row r. We
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FIG. 9. t dependence of the average 〈R〉 (= Nr〈I2〉), see
Eqs. (12), (13), and (15). Shown for r = L/2 with W = 1, 2 (top
row) and W = 5, 7 (bottom row), for system sizes indicated.

consider first the averages, 〈R〉 ≡ 〈R〉(r; t ) or 〈I2〉 [Eqs. (13)
and (15)], over disorder realizations and FS sites I , before
turning to the full probability distribution PR(x) [Eq. (14)] of
RI (r; t ).

There is no a priori requirement here to average over
all FS sites I , so in this section we choose (for numerical
convenience) to average over FS sites I whose site energies
EI lie close to their mean value of zero. Since our interest
lies in dynamics, we also focus on a particular, representa-
tive r throughout the section. We choose the midpoint of the
FS graph, r = L/2 [or r = (L − 1)/2 for odd L], and have
checked that the key results arising are not dependent on this
choice. Figure 9 shows the t dependence of 〈R〉 for the system
sizes indicated, with W = 1, 2 representative of the ergodic
regime and W = 5, 7 of the MBL regime.

Three notable points are evident in Fig. 9. First, in the
short-time domain t � 0.1, 〈R〉 = 1 independently of L, for
all interaction strengths W . As pointed out in Sec. III B [under
Eq. (12)], this is the limit of complete homogeneity, where all
PIJ (t )’s on any given row of the graph are the same (itself
shown in Sec. IV). In consequence, RI (r; t ) = 1 [Eq. (12)]
and hence 〈R〉 = 1, as seen; equivalently the row-resolved IPR
〈I2〉 = N−1

r 〈R〉 = N−1
r .

Second, consider now the opposite limit in Fig. 9, viz.
the long-time behavior. For W = 1, 2, 〈R〉 here is O(1) and
L independent, just as it is in the short-time domain; while
for W = 5, 7 by contrast, 〈R〉 clearly grows with increasing
L. As explained in Sec. III B [under Eq. (15)], the former
behavior again reflects the essentially uniform distribution
of probabilities PIJ (t ) over FS sites on the row, with 〈I2〉 =
N−1

r 〈R〉 ∝ N−1
r , as one expects for an ergodic regime at late

times. In the MBL regime by contrast, the growth of 〈R〉 with
L reflects that probabilities, and hence the wavefunction, are
strongly inhomogeneously distributed on the row.

As was conjectured on physical grounds in Sec. III B, the
L dependence of 〈R〉 in the MBL regime is indeed found
to be 〈R〉 ∼ N1−ν

r —or equivalently 〈I2〉 ∼ N−ν
r for the row-

resolved IPR—with a long-time (multi)fractal exponent ν <

1. That this is so is demonstrated in Fig. 10, right panel, where
in the MBL regime the long-time exponent ν is also seen

FIG. 10. Results here refer to long-time behavior (taken at t =
104). Left panel: 〈R〉 vs W for system sizes indicated. Right panel:
ln〈R〉 vs ln Nr , shown for W = 5, 6, 7 and W = 1; showing the scal-
ing behavior 〈R〉 ∼ N1−ν

r ≡ 〈I2〉 ∼ N−ν
r , with exponent ν < 1 in

the MBL regime and ν = 1 in the ergodic regime.

to decrease with increasing W (for W = 5, 7, ν � 0.4, 0.3
respectively). This figure also shows the same plot for W =
1, confirming the L independence of 〈R〉 (corresponding to
ν = 1). The left panel of Fig. 10 gives the late-time 〈R〉 as
a function of W , confirming both the strong L dependence
inside the MBL regime, and its corresponding absence in the
ergodic phase. Equally, it shows a typical “crossover W win-
dow”, whose presence is inevitable given accessible system
sizes; and which, without further detailed scaling analysis,
precludes substantive consideration of W ’s in the vicinity of
Wc ∼ 3.8 [55] (which is not our aim here).

Third, consider again Fig. 9 for the ergodic phase W ’s. Al-
though as above 〈R〉 ≡ 〈R〉(t ) is L independent at both short-
and long-times, for times t on the order of unity 〈R〉(t � 1)
shows a strong L dependence. This too is found to have the
form 〈R〉(t � 1) ∼ N1−ν

r , directly analogous to Fig. 10 (right
panel), and with an exponent ν ≡ ν(t � 1) that likewise de-
creases with increasing W [for W = 1, 2, ν(t = 1) � 0.8 and
0.7 respectively].

The overall physical picture arising from the above
is then as follows. Following the W -independent, short-
time complete homogeneity of the squared wavefunction
amplitudes/probabilities along the row of the graph, the L
dependence arising by t ∼ 1—again for all W —indicates the
dynamical emergence of multifractal behavior of the wave-
function. The latter persists with increasing t in the MBL
regime, until by t ∼ 10 or so the long-time multifractality is
well established. For the ergodic W ’s by contrast, that evo-
lution is arrested; and the system instead crosses over from
incipient multifractality to the ergodic behavior reflected in
〈R〉 ∼ N0

r ∼ O(1) (i.e., 〈I2〉 ∼ N−1
r ), indicating an essentially

uniform distribution of probabilities along the row. This pic-
ture, pertaining to the row-resolved IPR, provides a rather
natural and consistent complement to that shown in Sec. IV
to arise for the behavior of the conventional IPR over the full
Fock space (see Fig. 3).

Probability distributions

The discussion above has centered on the average value
〈R〉 of RI (r; t ) = NrII,2(r; t ) [Eq. (12)]. Now we consider the
full probability distribution of RI (r; t ), given by [Eq. (14)]
PR(x) = 〈δ(x − RI (r; t ))〉d,I (with the I averaging over sites
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FIG. 11. Probability distribution PR(x) of x ( ≡ RI (r; t )) for W = 1 (top row) and W = 7 (bottom), at the sequence of t’s specified, and for
different system sizes L as indicated. Full discussion in text.

whose FS-site energies are close to their mean, as mentioned
above); and the first moment of which distribution is precisely
〈R〉 considered above.

To illustrate the key points here, Fig. 11 shows PR(x) vs x
for W = 1 (top row) and W = 7 (bottom), at the sequence of
t’s indicated, and over the range of system sizes studied. Note
that, for either W , PR(x) for t = 0.1 is Dirac-delta distributed
at x = 1. This reflects the short-time regime (t � 0.1) for
which, as discussed above in relation to Fig. 9, RI (r; t ) = 1
(for any r, I and all W ), and hence PR(x) = δ(x − 1).

First consider W = 1 in Fig. 11, illustrating the ergodic
regime. For any given L, the PR(x) distribution evolves most
significantly with t over the interval 0.1 � t � 1. On further
increasing t , the mean (= 〈R〉) of PR(x) decreases, as also
evident from Fig. 9. By t = 100 the mean of the evidently
symmetrical PR(x) appears rather well converged over the
accessible L range; and the distribution is both narrow and
sharpening with increasing L (indeed that behavior is evident
by t ∼ 10). A simple fit to PR(x) for t = 100, shows it clearly
to be normally distributed, with a variance decreasing with L.

The situation is quite different in the MBL regime, illus-
trated by W = 7 in Fig. 11. Here again, PR(x) evolves most
significantly with t over the interval 0.1 � t � 1. For fixed
L, the distributions are in fact practically converged to their
long-time limit by t ∼ 1, above which little further tempo-
ral evolution occurs. Clearly, however, the late-time PR(x)
is much broader than its counterpart in the ergodic regime
(note the the greatly increased x scale compared to W = 1),
reflecting the substantial inhomogeneity arising in the MBL
regime, as discussed above. With increasing L the mean and
mode of PR(x) continue to increase, as discussed in regard
to Fig. 9. And the distribution is not only visibly broad but
appears to be heavy tailed.

To obtain some understanding of the form of PR(x) in the
MBL regime, note first that, in contrast to the ergodic phase,
the mean 〈R〉 of PR(x) is itself increasing with L (as per
Fig. 9). To distill this out from the large-x tail of PR(x), we

thus consider the distribution

P
R̃

(x) = 〈δ(x − R̃)〉d,I : R̃ = RI (r; t )

〈R〉 (40)

of R̃ = RI (r; t )/〈R〉, which has a mean of unity for all t . This
is shown in Fig. 12 (left panel) from which, given the modest
accessible L range, reasonable scaling behavior is seen; and
showing a power-law tail PR̃(x) ∼ x−α with α � 2.5, such that
the variance of the distribution, and all higher moments, are
unbounded.

It appears in fact that PR(x) itself is described by a general-
ized Lévy distribution,

PR,Lévy(x) = Aα−1

�(α − 1)

1

xα
exp(−A/x)

x�A∝ x−α (41)

[with A an L-dependent constant and �(z) the gamma func-
tion]; and which heavy-tailed distribution is stable provided
α < 3. The mode of PR,Lévy(x) is xmode = A/α and, provided

FIG. 12. Left panel: For W = 7 at t = 100, showing PR̃(x)
[Eq. (40)] vs x for L values indicated. Dashed line shows comparison
to the corresponding Lévy distribution PR̃,Lévy(x) [Eq. (42)]. Inset:
PR(x) for L = 13, compared to a two-parameter fit to PR,Lévy(x)
[Eq. (41)]. Right panel: Now for W = 2 at t = 1, showing PR̃(x) vs
x. Dashed line again compares to corresponding PR̃,Lévy(x).
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FIG. 13. For W = 1. Top panels: Distribution Prel (x) of x [Eq. (43)] vs x, at the t’s specified, and for system sizes L indicated. Bottom
panels: Cumulative distribution Prel,c(x). Red dashed line in final panel shows half-Gaussian fit to data (see text).

α > 2, its mean is finite and given by x = A�(α − 2)/�(α −
1) := A/ f (α). The corresponding Lévy distribution for R̃ is
then

P
R̃,Lévy

(x) = [ f (α)]α−1

�(α − 1)
x−α exp(− f (α)/x), (42)

and depends solely on α and not on A. The inset to the left
panel of Fig. 12 shows PR(x) itself (for L = 13 at t = 100),
compared to a two-parameter fit (viz., α, A) to PR,Lévy(x)
(leading to α � 2.5); the agreement is rather good. The left
panel of Fig. 12 shows PR̃(x) for increasing system sizes, com-
pared to the corresponding PR̃,Lévy(x) Eq. (42) (dashed line).
We add that the L dependence of the fit PR,Lévy(x) itself arises
largely from the L dependence of A; by contrast, over the
accessible L window, α varies relatively little (and for which
reason PR̃,Lévy(x) in Fig. 12 shows reasonable convergence
with increasing L).

While we have latterly focused on the MBL regime, it
was pointed out above that in the ergodic phase—e.g., W =
1, 2 in Fig. 9—the average 〈R〉(t ) shows strong L depen-
dence at times t � 1; reflecting incipient multifractality in the
wavefunction, which is arrested at later times as the system
crosses over to characteristic ergodic behavior. Naturally, such
behavior around t � 1 is equally apparent in the full PR(x) dis-
tributions for the ergodic phase shown in Fig. 11. Accordingly,
the right panel in Fig. 12 shows (for W = 2) the distributions
PR̃(x) for t = 1, in direct analogy to Fig. 12 left panel. Once
again the Lévy form appears to describe the data rather well;
now with a larger tail exponent (α � 7) than for the MBL
regime [such that the variance of PR̃(x) is finite].

Prel(x) distribution

Complementary insight into the spread of probabilities
across a row of the FS graph comes from the distribu-
tion Prel(x) [Eq. (16)]. For a given row r, this gives the
distribution—over disorder realizations, FS sites J on the row,

and initial FS sites I—of PIJ (t ) relative to its mean value on
the row,

x ≡ PIJ (t )
1

Nr

∑
J:rIJ=r PIJ (t )

= PIJ (t )
1

Nr
PI (r; t )

. (43)

The first moment of Prel(x) is 1 by construction, while its
second moment is the average 〈R〉 studied above.

First, consider W = 1 (again choosing r = L/2). The top
row of Fig. 13 show Prel(x) vs x at the sequence of t’s
specified, and for different system sizes L. Corresponding
cumulative distributions,

Prel,c(x) =
∫ x

0
dy Prel(y) , (44)

are shown in the bottom panels. While Prel(x) is not converged
in L for t = 1—as expected from the preceding discussion—
the distributions appear converged in L for the other t’s shown.
The long-time Prel(x) is reached by t = 102 (indeed essentially
so by t ∼ 10); and consistent with the convergence of Prel(x)
with L, the long-time value of 〈R〉 = ∫

dx x2Prel(x) is seen
from Fig. 9 to be O(1) and L independent. This long-time
Prel(x) is in fact rather well captured by a half-Gaussian distri-
bution, of form PG(x) = (2/π ) exp(−x2/π ) (for x � 0), with
a mean of unity and a corresponding cumulative distribution
Erf(x/

√
π ). The latter is compared to the ED data in Fig. 13

(final panel, dashed line), and seen to agree well with it.
The important physical point here is that the long-time

Prel(x) (or PG(x)) has a mean of unity, and fluctuations that
are also O(1). This means the probabilities PIJ are essentially
uniformly distributed across the row; as evident, e.g., from
Eq. (43) where, if all PIJ ’s on the row are comparable, then
x ∼ O(1). This is symptomatic of the ergodic behavior one
expects for weak disorder.

But now consider the case of W = 7, representative of the
MBL regime, for which corresponding results are shown in
Fig. 14. The situation here is very different since—particularly
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FIG. 14. For W = 7. Top panels: Distribution Prel (x) of x [Eq. (43)] vs x, at the sequence of t’s specified, and for system sizes L indicated.
Bottom panels: Corresponding cumulative distribution Prel,c(x).

in the wings of Prel(x)—the distribution is clearly not con-
verging with L for any t (save for t � 0.1, as known on
general grounds, Sec. IV). This is to be expected because, as
shown above, e.g., the long-time value of 〈R〉 = ∫

dx x2Prel(x)
grows with increasing L, as 〈R〉 ∼ N1−ν

r with exponent ν < 1.
The question then is, what features of the long-time Prel(x)
distribution determine that behavior? It must surely arise from
the large-x tails of Prel(x), which, from Fig. 14, are “filling
out” in an obvious sense with increasing L.

To examine this, consider the effective cumulative distribu-
tion

Fc (x) =
∫ x

0
dy y2Prel(y), (45)

giving the contribution to 〈R〉 arising from different parts of
the Prel distribution. This is shown in Fig. 15 for x > 1 (dashed
lines and right axis), together with Prel(x) itself (solid lines,

FIG. 15. For W = 7, with t = 100. Fc(x) [Eq. (45)] vs x (dashed
lines, right-hand scale), shown for x > 1 and different L as indicated;
and Prel (x) (solid lines, left-hand scale). Black arrowheads show Nr

(= ( L
L/2

)
for even L, and

( L
(L±1)/2

)
for odd L). Dashed black line shows

fit to Prel (x) data (see text).

left axis). We add in passing that while the large-x behavior
of Prel(x) does not appear to be a pure power law, it is quite
well captured by Prel(x) ∼ ax−n ln x (with n � 2.3), shown as
the black dashed line in Fig. 15. As seen from the figure, Fc(x)
for a given L tends to its saturation value at the x = xm(L) for
which Prel(x) “crashes” in a self-evident sense. xm(L) grows
strongly with L, and the Fc(x)’s for different L progressively
collapse onto an essentially common curve.

As discussed below, the maximum possible value of x
[Eq. (43)] in Prel(x) is in fact Nr = (L

r

)
(and thus exponentially

large in L for any finite r/L). That this is indeed the xm(L)
for which Prel(x) crashes and Fc(x) consequently plateaus is
seen in Fig. 15, where black arrows show Nr . The fact that
max(x) = Nr is evident from Eq. (43). Since all PIJ � 0 then,
over the set of probabilities PIJ for the Nr FS sites J on row r,
it arises in the case where only a single PIJ—call it PIJ∗—
completely dominates the others (such that

∑
J:rIJ=r PIJ ≡

PIJ∗ ). More generally, if the set of PIJ are correspondingly
non-negligible for an O(1) number of FS sites J on the row,
then the associated x is again O(Nr ).

As shown, it is then the large-x behavior of Prel(x), which
governs the second moment 〈R〉, and consequently all higher
moments, of the distribution. Physically, this arises from FS
sites J for which PIJ greatly exceeds the mean probabil-
ity N−1

r

∑
J:rIJ =r PIJ on the row. And that of course reflects

the strong inhomogeneity in the distribution of PIJ ≡ PIJ (t )
across a row, which is symptomatic of the MBL regime for
sufficiently long times.

VII. SUMMARY AND DISCUSSION

The central question we posed at the outset was, given an
initial spin configuration, how do the probability densities of
the time-evolving quantum state spread out on the FS graph of
a disordered quantum spin chain? In the course of investigat-
ing this question, a rather rich phenomenology was uncovered
for the anatomy of probability transport on FS. This can be
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FIG. 16. Schematic summary of the three main time windows
in the dynamics, and their characteristic features in the ergodic and
MBL phases.

conveniently summarized by considering three time windows,
as follows (see Fig. 16 for a visual summary).

(i) Short times, t � 1: In this regime, the system is agnos-
tic to which phase it is in, ergodic or MBL. The dynamics on
these scales is characterized by an emergent (multi)fractality
of the time-evolving state, but homogeneous lateral proba-
bility transport across rows of the FS graph. Another crucial
feature of this regime is that the emergent lengthscale r(t ) ∼
O(L) for any finite t , however small; this ensures that the
spin-autocorrelation C(t ) is necessarily less than unity. The
fractal exponent τ2, as well as the lengthscale r(t ), grows as
∝ t2 in this regime.

(ii) Intermediate times, 1 � t � tH : This is arguably the
most interesting dynamical regime. While the emergent
(multi)fractality of the entire wavefunction persists, albeit
with an increasing τ2, strong inhomogeneities in the lateral
probability transport also set in, reflected in (multi)fractal
scalings of the row-resolved IPRs. This is also manifest in
the distributions PR and Prel not being converged with L. On
these timescales, at intermediate disorder strengths preced-
ing the MBL regime, r(t ) (or r (n) (t )) grows subdiffusively,
∼tβ with β < 1/2, implying an anomalous t−β power-law
decay of the real-space spin autocorrelation. In the MBL
phase as well, there is a power-law envelope to the decay
of the spin autocorrelation, but with clear signatures of the
incipient saturation to a finite value, characteristic of that
phase.

(iii) Long times, t � tH: This is the regime where the
dynamics is essentially saturated and one sees the eigenstate
properties. In the ergodic phase, the (multi)fractality gives
way to a fully extended homogeneous state, both in terms of
the IPR of the entire state as well as the row-resolved IPRs;
and as also reflected in 〈R〉 saturating to an L-independent
value, and similarly for the distributions PR and Prel. This is
qualitatively different from the MBL regime, in which the
(multi)fractality, for both the full state and at the row-resolved
level, persists for arbitrarily long times. This is symptomatic
of strongly inhomogeneous probability transport on the FS
graph in the MBL phase, and is also manifest in PR exhibiting
a heavy-tailed Lévy alpha-stable distribution.

While the paper has presented quite a comprehensive pic-
ture of probability transport on the FS graph of a disordered

quantum spin chain, it also motivates several further ques-
tions of immanent interest. For conserved quantities, or local
observables which have a finite overlap with the former it is
worth asking if there exists a connection between potentially
anomalous transport of the conserved quantity in real space,
and FS probability transport. This naturally involves space-
time correlations in real space, and not just autocorrelations.
Going beyond systems with conserved quantities, one can also
ask about the fate of probability transport in the absence of
any conserved quantities, such that r(t ) is not restricted to be
subdiffusive nor C(t ) to decay as a power-law in time.

In this paper we focused on FS probability transport, which
is clearly a two-point correlation function on FS. One can
generalize the question to that of the dynamics of four-point
correlations on FS, with the aim of understanding entangle-
ment growth in disordered quantum systems [69–71], both in
the ergodic as well as the MBL phase.

The persistence of dynamical inhomogeneities in the MBL
phase can also provide us with a starting point for under-
standing and theorising about the role of resonances in the
MBL phase from a FS point of view. Speculating that these
resonances are caused by rare disorder fluctuations in real
space, it is also interesting to ask similar questions for MBL
phases with quasiperiodic potentials, which are devoid of such
rare regions [72–74].

Finally, we add that understanding probability transport on
Fock space is not solely of theoretical interest, but is also
of direct experimental relevance; as evident, e.g., in a recent
preprint [52] in which aspects of longitudinal FS probability
transport were studied in an experimental realization of a
two-dimensional disordered hard-core Bose-Hubbard model
on a superconducting quantum processor.
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APPENDIX A: PIJ (t ) EIGENSTATE RESOLUTION

As mentioned in Sec. V, the probabilities PIJ (t ) =
|〈J|e−iHt |I〉|2 can be eigenstate resolved in the form

PIJ (t ) = N−1
H
∑

n

P(n)
IJ (t ) (A1)

with the sum over eigenstates n. Any quantity linear in
the {PIJ (t )}’s can thus likewise be eigenstate resolved. For
example, the first moment rI (t ) = ∑

J rIJPIJ (t ) is rI (t ) =
N−1
H
∑

n r (n)

I (t ) with r (n)

I (t ) = ∑
J rIJP(n)

IJ (t ), and it is the dis-
order averaged r (n)(t )/L = N−1

H
∑

I r (n)

I (t )/L shown in Fig. 5;
similarly [see Eqs. (9) and (11)], C(t ) = N−1

H
∑

n C [n](t ) with
C [n](t ) = 1 − 2

L r (n)(t ).
Since PIJ (t ) ≡ RePIJ (t ) is pure real, Eq. (5) gives PIJ (t ) =∑
n,m cos[(En − Em)t]AnI AnJAmI AmJ . Hence on comparison to
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Eq. (A1), Eq. (31) follows directly, expressed in terms of (real)
eigenstate amplitudes (AmJ = 〈J|m〉) and eigenvalues.

Considering PIJ (t ) = Re[〈I|eiHt |J〉〈J|e−iHt |I〉], and in-
serting the identity operator 1̂ = ∑

n |n〉〈n|, gives

N−1
H P(n)

IJ (t ) =Re〈n|ÔJ (t )ÔI |n〉 : ÔJ = |J〉〈J|
= 1

2 〈n|(ÔJ (t )ÔI + ÔI ÔJ (t ))|n〉
(A2)

with the operator ÔJ = |J〉〈J| thus defined (a so-called be-
hemoth operator [75]); showing that P(n)

IJ (t ) can equally be
expressed as an eigenstate expectation value of the self-adjoint
operator, Ô(t ) = 1

2 (ÔJ (t )ÔI + ÔI ÔJ (t )).
While any PIJ (t ) itself is non-negative for all t , we add that

the same is not guaranteed for P(n)

IJ (t ); although it is obvious
from Eq. (31) that this does hold in the short- and long-time
limits, for which N−1

H P(n)

IJ (t = 0) = δIJA2
nI and N−1

H P(n)

IJ (t =
∞) = A2

nI A
2
nJ . In practice, this is, however, of little import,

with quantities such as r(n)(t )/L shown in Fig. 5 found to be
non-negative for all t , as expected physically.

APPENDIX B: HEISENBERG TIMES

The mean level spacing at energy ω is [NHD(ω)]−1, with
D(ω) the density of states/eigenvalues normalized to unity
over ω. Reflecting the central limit theorem, D(ω) is known
to be a Gaussian [34,53] with vanishing mean for the disor-
dered TFI model under consideration, and a variance μ2

E ∝ L
given exactly by [43] μ2

E = L[J 2 + 1
3 (δJ )2 + 1

3W 2 + �2].
The Heisenberg time tH is the inverse of the mean level
spacing. We consider it at the band center, ω = 0 (where it

is largest), so tH = NHD(0) = NH/

√
2πμ2

E and hence

tH = 2L√
2πL

[
J 2 + 1

3 (δJ )2 + 1
3W 2 + �2

] . (B1)

For all ED calculations, J = 1, δJ = 0.2 and � ≡ 1 are
fixed. tH obviously increases with L and decreases with disor-
der strength W . For W = 1, 2, and L ∈ [8, 14], tH ranges from
∼20 to ∼103, while for W = 6, 7 it correspondingly ranges
from ∼10 to ∼400.

APPENDIX C: MBL0

We outline basic steps underlying the results given in
Sec. V B 1 for MBL0, which corresponds to the noninteracting
limit J� = 0 of H, Eq. (1). The Hamiltonian in this case is
site-separable, H = ∑L

�=1 H�, with H� = h�σ̂
z
� + �σ̂ x

� . The
latter is diagonalized as

H� = φ�
ˆ̃σ z
� : φ� =

√
h2

� + �2 (C1)

in terms of the spin-1/2 operator

ˆ̃σ z
� = h�σ̂

z
� + �σ̂ x

�√
h2

� + �2
(C2)

(such that [ ˆ̃σ z
� ]2 = 1). An eigenstate |n〉 of H is simply a

product state of the set of σ̃ spins, |n〉 = |{σ̃ z
� }〉 with each σ̃ z

�

either +1 or −1.

Now consider the probability amplitude GIJ (t ) =
〈J|e−iHt |I〉 (with a general FS site |K〉 ≡ |{S�,K}〉 in the
notation specified in Sec. II). Since H is site-separable, GIJ (t )
is a separable product,

GIJ (t ) = 〈J|e−iHt |I〉 =
L∏

�=1

〈S�,J |e−iH�t |S�,I〉, (C3)

and e−iH�t = cos(φ�t ) − i ˆ̃σ z
� sin(φ�t ). The matrix elements in

the product are readily evaluated,

〈S�,J |e−iH�t |S�,I〉 =⎧⎨
⎩

cos(φ� t ) − ih�√
h2

�+�2
S�,I sin(φ� t ) : S�,J = S�,I

− i�√
h2

�+�2
sin(φ� t ) : S�,J = −S�,I

(C4)

according to whether the local spin S�,J = ±S�,I .
Let the FS sites J, I be separated by a Hamming distance

rIJ = r. Then by definition r real-space sites have S�,J =
−S�,I , while (L − r) sites have S�,J = +S�,I . Equations (C3)
and (C4) then give

GIJ (t ) =
∏
�∈r

⎡
⎢⎣ −i�√

h2
� + �2

sin(φ� t )

⎤
⎥⎦

×
∏

�∈(L−r)

⎡
⎢⎣cos(φ� t ) − ih�√

h2
� + �2

S�,I sin(φ� t )

⎤
⎥⎦

in an obvious notation. From this (recalling [S�,I ]2 = 1)
PIJ (t ) = |GIJ (t )|2 follows,

PIJ (t ) =
∏
�∈r

[
�2

h2
� + �2

sin2(φ� t )

]

×
∏

�∈(L−r)

[
1 − �2

h2
� + �2

sin2(φ� t )

]
.

(C5)

This can now be averaged over disorder realizations, and since
the random fields {h�} are i.i.d.,

PIJ (t ) =
〈

�2

h2
� + �2

sin2(φ� t )

〉r

d

×
〈
1 − �2

h2
� + �2

sin2(φ� t )

〉(L−r)

d

, (C6)

which is Eqs. (33) and (34) as required. Equation (C6) is
indeed seen to depend solely on the Hamming distance rIJ =
r between FS sites J, I; such that, from Eq. (6), P(r; t ) ≡
PI (r; t ) ≡ (L

r

)
PIJ (t ), as given explicitly in Eq. (35).

Equation (35) can obviously be cast in the form

P(r; t ) =
(

L

r

)
[1 + e−1/ξ 0

F (t )]−Le−r/ξ 0
F (t ) (C7)

in terms of a correlation length ξ 0
F (t ) defined by 1/ξ 0

F (t ) =
ln( 1

z0(t ) − 1). This is the MBL0 counterpart of the short-time
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result Eq. (24) [in the latter case, P(r; t ) ≡ (L
r

)
PIJr (t )]. Equa-

tion (24) itself is of course general—in the sense that it holds
for all interaction and disorder strengths—and Eq. (C7) cor-
rectly reduces to it for �t � 1.

We also point out the connection between the long-time
limit P(r; t = ∞) of Eq. (C7), and the eigenstate corre-
lation function F n(r) defined generally by Eq. (28b) and
given in terms of FS correlation lengths ξF,n for eigenstates
n by Eq. (29). P(r; ∞) is given generally by P(r; ∞) =
N−1
H
∑

n F n(r). For MBL0 one can however show that the

disorder-averaged A2
nI A

2
nJ is independent of the particular

eigenstate n. From Eq. (28b), F n(r) is thus independent of
n, whence P(r; ∞) ≡ F n(r) gives the connection sought.

Comparison of Eq. (C7) for t = ∞ to Eq. (29), F n(r) =(L
r

)
(1 + e−1/ξF,n )−Le−r/ξF,n , then relates directly the infinite-t

dynamical correlation length ξ 0
F (∞) to the (n-independent)

eigenstate correlation length, viz., ξ 0
F (t = ∞) ≡ ξF,n; given

explicitly [using Eq. (37)] by ξ 0
F (∞) = [ln( 1

p − 1)]−1, with

ξ 0
F (∞) ∝ 1/ ln W for W � 1.
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