ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

On Quasi Steinberg Characters of Complex Reflection Groups

Mishra, A and Paul, D and Singla, P (2023) On Quasi Steinberg Characters of Complex Reflection Groups. In: Algebras and Representation Theory .

alg_rep_the_2023.pdf - Published Version

Download (361kB) | Preview
Official URL: https://doi.org/10.1007/s10468-023-10201-5


Let G be a finite group and p be a prime number dividing the order of G. An irreducible character χ of G is called a quasi p-Steinberg character if χ(g) is nonzero for every p-regular element g in G. In this paper, we classify the quasi p-Steinberg characters of complex reflection groups G(r,q,n) and exceptional complex reflection groups. In particular, we obtain this classification for Weyl groups of type Bn and type Dn.

Item Type: Journal Article
Publication: Algebras and Representation Theory
Publisher: Springer Science and Business Media B.V.
Additional Information: The copyright for this article belongs to the Authors.
Keywords: Complex reflection groups; Finite groups; Irreducible characters; Murnaghan�nakayama rule; Prime number; Quasi steinberg character; Quasi-p; Regular elements; Weyl group
Department/Centre: Division of Physical & Mathematical Sciences > Mathematics
Date Deposited: 14 Mar 2023 07:12
Last Modified: 14 Mar 2023 07:12
URI: https://eprints.iisc.ac.in/id/eprint/80995

Actions (login required)

View Item View Item