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Abstract
Let G be a finite group and p be a prime number dividing the order of G. An irreducible
character χ of G is called a quasi p-Steinberg character if χ(g) is nonzero for every
p-regular element g inG. In this paper, we classify the quasi p-Steinberg characters of com-
plex reflection groups G(r, q, n) and exceptional complex reflection groups. In particular,
we obtain this classification for Weyl groups of type Bn and type Dn.
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1 Introduction

The Steinberg characters and their importance are well known for the finite groups of Lie
type; see Steinberg [25, 26], Curtis [6], and Humphreys [10]. Using the intrinsic property
of the Steinberg character, Feit [8] defined p-Steinberg character for any finite group G

and a prime p dividing the order of G (denoted |G|). Recall that an element x of G is
called p-regular if order of x is coprime to p. An irreducible character θ of G is called a
p-Steinberg character of G if θ(x) = ±|CG(x)|p for every p-regular element x in G. Here
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CG(x) denotes the centralizer of x in G and |n|p denotes the p-part of an integer n. Feit [8]
conjectured that if a finite simple groupG has a p-Steinberg character, thenG is isomorphic
to a simple group of Lie type in characteristic p. Darafasheh [7] proved this conjecture for
alternating and projective special linear groups, and Tiep [28] proved it for the remaining
finite simple groups. Consequently, in order to explore the structure of finite groups through
their characters, many variants of p-Steinberg characters have been studied recently; see,
for example, Pellegrini–Zalesski [20], and Malle–Zalesski [15]. Two authors of this article
(DP and PS) introduced the following variants of a p-Steinberg character of a finite group
G in [19].

Definition 1.1 Let G be a finite group and p be a prime dividing the order of G. An irre-
ducible character χ of G is called quasi p-Steinberg if χ(g) �= 0 for every p-regular
element g inG. A quasi p-Steinberg character χ is calledweak p-Steinberg if χ has degree
|G|p.

These variants were introduced to answer a question of Dipendra Prasad that asked
whether the existence of a weak p-Steinberg character of a finite group G implies that G is
a finite group of Lie type. We follow [3] for the definition and other related results regard-
ing the finite groups of Lie type. It is well known that every finite group of Lie type has a
p-Steinberg character for a prime p. Therefore, if a group does not have a non-linear quasi
p-Steinberg character, then it can not be a finite group of Lie type of characteristic p. This
naturally leads to asking for a classification of all quasi p-Steinberg characters of any finite
group G.

In [19], a classification of all quasi p-Steinberg characters was obtained for symmetric
groups (see Table 2), alternating groups, and their double covers. In this work, we clas-
sify the quasi p-Steinberg characters of all finite irreducible complex reflection groups.
This includes the infinite family of finite irreducible complex reflection groups, denoted
by G(r, q, n), and 34 exceptional groups. We refer [23] for the classification of irreducible
complex reflection groups. See Section 2 for the definition and other related results regard-
ing G(r, q, n). In particular, we also classify quasi p-Steinberg characters of Weyl groups
of type Bn and type Dn. As mentioned above, the parallel classification for Weyl groups of
type An was obtained in [19].

We now describe the main results of this paper. Note that every linear character (degree
one) of G is a quasi p-Steinberg character of G for p | |G|. Therefore, we will only focus
on non-linear characters of G. In this direction, the following is a general result that is true
for all finite groups.

Lemma 1.2 (i) For d ∈ {2, 3, 4}, any irreducible character of a finite group G of degree
d is a quasi p-Steinberg character of G for p | d .

(ii) For a finite group G and an automorphism a of G, an irreducible character χ of G

is quasi p-Steinberg if and only if the irreducible character aχ , defined by aχ(g) =
χ(a(g)) for g ∈ G, is quasi p-Steinberg.

See Section 3 for a proof of this result. Lemma 1.2(i) does not hold true for any d ≥ 5, see
Remark 3.1. In view of Lemma 1.2(i), we will focus on characterizing the quasi p-Steinberg
characters of G(r, q, n) of degrees greater than or equal to 5.

Let Y(r, n) denote the set of all r-partite Young diagrams with total number of boxes
being n. It is well known that the set Y(r, n) indexes the irreducible characters of G(r, 1, n).
For λ ∈ Y(r, n), we use χλ to denote the corresponding irreducible character of G(r, 1, n).
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Table 1 Quasi p-Steinberg characters of G(r, 1, n)

n λ λj p deg(χλ) (r, p) = 1

2 ̂λ
j,k

(1) 2 2 weak

3 ̂λ
j

(2, 1) 2 2 weak

3 ̂λ
j,k

(2), (1, 1) 3 3 weak

4 ̂λ
j

(2, 2) 2 2 not weak

4 ̂λ
j,k

(3), (1, 1, 1) 2 4 not weak

4 ̂λ
j,k

(2, 1) 2 8 weak

4 ̂λ
j

(3, 1), (2, 1, 1) 3 3 weak

5 ̂λ
j

(4, 1), (2, 1, 1, 1) 2 4 not weak

5 ̂λ
j

(3, 2), (2, 2, 1) 5 5 weak

6 ̂λ
j

(3, 2, 1) 2 16 weak

6 ̂λ
j

(4, 2), (2, 2, 1, 1) 3 9 weak

8 ̂λ
j

(5, 2, 1), (3, 2, 1, 1, 1) 2 64 not weak

In the following definition, we consider certain special elements of Y(r, n) that help us to
characterize the quasi p-Steinberg characters of G(r, q, n).

Definition 1.3 For j ∈ {0, 1, · · · r − 1}, definêλ
j = (λ0, λ1, . . . ,λr−1) ∈ Y(r, n) by

λj � n and λl = ∅ for l �= j,

and for j, k ∈ {0, 1, · · · r − 1} such that j �= k, definêλ
j,k = (λ0,λ1, . . . ,λr−1) ∈ Y(r, n)

by
λj � n − 1,λk = (1) and λl = ∅ for l /∈ {j, k}.

We use this definition to give a complete classification of quasi p-Steinberg characters
of G(r, 1, n) in the following theorem.

Theorem 1.4 For n ≥ 2, let λ = (λ0,λ1, . . . , λr−1) be an r-partite partition of n such
that λt /∈ {(n), (1n)} for every 0 ≤ t ≤ r − 1. All triples (n,λ, p) such that χλ is a quasi
p-Steinberg character of G(r, 1, n) are given in Table 1.

Table 2 Quasi p-Steinberg
characters of Sn

n μ p

3 (2, 1) 2

4 (2, 2) 2

4 (3, 1), (2, 1, 1) 3

5 (4, 1), (2, 1, 1, 1) 2

5 (3, 2), (2, 2, 1) 5

6 (3, 2, 1) 2

6 (4, 2), (2, 2, 1, 1) 3

8 (5, 2, 1), (3, 2, 1, 1, 1) 2
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While describinĝλ
j,k

in Table 1, we mention only λj because λk = (1). We prove the
above result (see Section 3) by showing that the problem of classifying quasi p-Steinberg
characters of G(r, 1, n) reduces to the χλ, where λ’s are as described in Definition 1.3 (see
Proposition 3.3).

From Theorem 1.4 and by the definition of weak p-Steinberg character, we note that a
quasi p-Steinberg character of G(r, 1, n) is a weak p-Steinberg character only if (r, p) = 1.
For (r, p) = 1, it is easy to identify the weak p-Steinberg characters by using the
Murnaghan–Nakayama rule (see Theorem 2.7). We indicate the weak p-Steinberg charac-
ters of G(r, 1, n), for r such that (r, p) = 1, in the last column of Table 1 by writing these
as “weak”. In particular, we obtain the following result.

Corollary 1.5 (i) The groups G(r, 1, n) do not have any weak p-Steinberg characters
for p | r .

(ii) For (r, p) = 1, the weak p-Steinberg characters χλ of G(r, 1, n) are the ones
mentioned in the last column of Table 1.

Given λ = (λ0, λ1, . . . , λr−1) ∈ Y(r, n), we use the notation (χλ)∗ to denote an irre-
ducible character of G(r, q, n) which appears in the decomposition of the restriction of the
irreducible character χλ of G(r, 1, n) to G(r, q, n). In our next result, we classify all quasi
p-Steinberg characters of G(r, q, n) of degrees greater than or equal to 5.

Theorem 1.6 Let n ≥ 2 and (χλ)∗ be an irreducible character of G(r, q, n) associated
with an r-partite partition λ = (λ0,λ1, . . . ,λr−1) of n such that deg((χλ)∗) ≥ 5. Then
(χλ)∗ is a quasi p-Steinberg characters of G(r, q, n) if and only if λ is as given in the
Table 1 and χλ is an irreducible character of G(r, 1, n) with deg(χλ) ≥ 5.

We obtain the above result from Theorem 3.6, which gives the complete classification
of quasi p-Steinberg characters of G(r, q, n). We use Clifford theory (see [11, Chapter 6]),
Theorems 1.2(i) and 1.4 to prove this result; see Section 3 for the proof. We now list a few
corollaries of our main results. The following result extends the parallel known results for
G(1, 1, n) (see [19, Corollary 1.7]).

Corollary 1.7 For n ≥ 9 and p ≤ n, every non-linear irreducible character χ of G(r, q, n)

has a zero at some p-regular element of G(r, q, n).

The proof of this result follows directly from Theorem 1.4 for q = 1 and from
Theorem 3.6 for q �= 1. The next result follows directly from Theorem 1.2(i) and
Corollary 1.7.

Corollary 1.8 For n ≥ 9, every non-linear irreducible representation of G(r, q, n) has
degree greater than or equal to five.

We also obtain the following result from Theorem 1.4, Table 1, and the Murnaghan–
Nakayama rule.

Corollary 1.9 (i) The groups G(r, 1, n), for n ≥ 9, do not have a weak p-Steinberg
character.

(ii) The groups G(r, 1, 2) for odd r have a weak 2-Steinberg character of degree 2, but do
not have p-Steinberg characters for every prime p.
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The above corollary shows that the groupsG(r, 1, n) for n ≥ 9 do not have a p-Steinberg
character for any prime p. Therefore these are not finite groups of Lie type. It also shows
that the groups G(r, 1, 2) for odd r have weak 2-Steinberg characters but are not finite
groups of Lie type. Hence, in general, it may be difficult to conclude the structure of a given
finite group by the existence of a weak p-Steinberg character.

Now we classify quasi p-Steinberg characters for exceptional finite irreducible com-
plex reflection groups. There are 34 such groups, say G(n), where n ∈ {4, . . . , 37} is the
Shephard–Todd number of the corresponding reflection group. Accessing character tables
of G(n) using Sagemath and GAP, we obtained the orders of elements on which a particular
irreducible character vanishes. This led us to the following result (see Section 4 for more
details).

Theorem 1.10 For n ∈ {4, . . . , 37}, every quasi p-Steinberg character of G(n) has degree
a power of p. Conversely, every irreducible character of G(n) with degree a power of p is
quasi p-Steinberg except the following:

(i) Any degree 5 irreducible character of G(32),G(33) is not quasi 5-Steinberg.
(ii) Any degree 7 irreducible character of G(36) is not quasi 7-Steinberg.

2 Preliminaries

2.1 Quasi p-Steinberg Characters of Symmetric Groups

It is well known that the set of integer partitions of n indexes conjugacy classes and irre-
ducible characters of Sn. Given a partition μ = (μ1, μ2, . . . , μl(μ)) of n (denoted by
μ � n), let κμ denote the corresponding irreducible character of Sn. All triples (n, μ, p)

such that κμ is a quasi p-Steinberg character of Sn are listed in Table 2. See [19, Theorem
1.3] for the proof.

2.2 Complex Reflection Groups G(r, q, n)

Given positive integers r and n, the symmetric group Sn acts on the direct product Zn
r of n

copies of the additive cyclic group Zr by permuting the coordinates. This action gives us
the wreath product of Zr by Sn, denoted by G(r, 1, n) := Z

n
r � Sn, i.e.,

G(r, 1, n) = {(z1, z2, . . . , zn; σ) | zi ∈ Zr for all 1 ≤ i ≤ n, σ ∈ Sn}.
For a positive integer q which divides r , we define a subgroup G(r, q, n) of G(r, 1, n) as

follows:

G(r, q, n) := {(z1, z2, . . . , zn; σ) ∈ G(r, 1, n) |
n

∑

i=1

zi ≡ 0(mod q)}.

The group G(r, q, n) is a normal subgroup of G(r, 1, n) of index q. By Shephard–Todd’s
classification, the family of groupsG(r, q, n) for n > 1, (except the groupG(2, 2, 2)), is the
only infinite family of finite irreducible imprimitive complex reflection groups [23, Section
2]. The group G(2, 2, 2) is imprimitive, but it is not irreducible [5, Theorem (2.4)]. The
group G(r, 1, n) is also known as the generalized symmetric group.

Some families of groups that are special cases of G(r, q, n) are:

(i) Cyclic group of order r , Z/rZ = G(r, 1, 1);
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(ii) Dihedral group of order 2r , D2r = G(r, r, 2);
(iii) symmetric group on n symbols, Sn = G(1, 1, n);
(iv) Weyl group of type Bn (also called hyperoctahedral group) is G(2, 1, n); and
(v) Weyl group of type Dn is G(2, 2, n).

2.3 Conjugacy Classes of G(r, q, n)

Let π = (z1, z2, . . . , zn; σ) ∈ G(r, 1, n) be such that the corresponding cycle decomposi-
tion of σ be c = (c1, c2, . . . , ct ), where the cycles are written in an arbitrarily fixed order.
For 1 ≤ i ≤ t , suppose that the cycle ci of length l(ci) is written as (ci1, ci2, . . . , cil(ci )). We
define the color of the cycle ci to be the cycle sum z(ci) := zci1 + zci2 + · · · + zcil(ci )

∈ Zr .
Let P denote the set of all partitions (by convention, 0 has a unique partition, called empty
partition, denoted by ∅). For π = (z1, z2, . . . , zn; σ) ∈ G(r, 1, n), define a map

τπ : Zr → P

by setting τπ (j) to be the partition associated to the multiset of lengths of all cycles in σ

whose color is j ; denote this partition by λj . The map τπ is called the type of π . Thus,
the type of π can be written as an r-tuple of partitions, λ = (λ0, λ1, . . . ,λr−1), such that
the total sum of all the parts is n. We call such r-tuple of partitions an r-partite partition
of size n. Given a partition, we consider the Young diagram associated with it. Throughout
this article, we use the notions of partition and the Young diagram interchangeably. Let
Y(r, n) denote the set of all r-partite Young diagrams with total number of boxes being
n. The following theorem (see [14, p.170] for a proof) states that the conjugacy classes of
G(r, 1, n) are indexed by the set Y(r, n).

Theorem 2.1 Two elements π1 and π2 in G(r, 1, n) are conjugate if and only if the
corresponding types are equal, i.e., τπ1 = τπ2 .

Let z(π) be the gcd of all nonzero z(ci) for 1 ≤ i ≤ t . Define

d(π) := gcd(z(π), l(c1), l(c2), . . . , l(ct ), q).

The following theorem describes the splitting of conjugacy classes of G(r, 1, n) into con-
jugacy classes of G(r, q, n); for more details about conjugacy classes of G(r, q, n), see
[22, Section 2].

Theorem 2.2 [22, Theorem 3] If π ∈ G(r, q, n), then the conjugacy class of π in G(r, 1, n)

splits into d(π) conjugacy classes in G(r, q, n).

Now, we give a characterization of an element in G(r, 1, n) to be an element of
G(r, q, n).

Lemma 2.3 Given π = (z1, z2, . . . , zn; σ) ∈ G(r, 1, n), let λ = (λ0,λ1, . . . , λr−1) be the

type of π . Then, π belongs to G(r, q, n) if and only if
r−1
∑

j=1
j l(λj ) ≡ 0(mod q).
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Proof The parts of the partition λj are the lengths of the cycles in σ whose color is j . For
each cycle (i1, . . . , ik) of color j , we have zi1 + · · · + zik = j . Thus, j appears l(λj ) times
in the sum z1 + · · · + zn. Therefore,

z1 + · · · + zn =
r−1
∑

j=0

j l(λj ) =
r−1
∑

j=1

j l(λj ).

2.4 Representation Theory of G(r, q, n)

The representation theory of the wreath product of a finite group by symmetric group Sn is
a well-studied subject, see [4, 12, 14, 16]. As stated in Section 2.3, the set Y(r, n) indexes
the irreducible representations of G(r, 1, n). The degree of an irreducible representation V λ

corresponding to λ ∈ Y(r, n) can be obtained from [16, Theorem 6.7].
Since G(r, q, n) is a normal subgroup of G(r, 1, n), the representation theory of

G(r, q, n) can be deduced from the representation theory of G(r, 1, n) using Clifford the-
ory. Let H denote the group of linear characters of G(r, 1, n) which contain G(r, q, n) in
their kernel. The group H acts on the set of irreducible representations of G(r, 1, n). Given
λ ∈ Y(r, n), let [λ] and Hλ denote the orbit of λ and the stabilizer subgroup of H with
respect to λ, respectively.

Given m := r
q
, let us define a combinatorial object, an (m, q)-necklace [9, p.174],

which will be useful in parametrization of irreducible G(r, q, n)-modules. Given λ =
(λ0,λ1, . . . , λr−1) ∈ Y(r, n), consider the q-tuple

λ̃(i) := (λi ,λm+i , λ2m+i , . . . , λ(q−1)m+i ),

for each 0 ≤ i ≤ m − 1. We depict λ̃(i) as a circular q-necklace in (x, y)-plane with the λi

node being placed on the positive y-axis and the j -th node λ(j−1)m+i , 2 ≤ j ≤ q, being
placed at a clockwise angle of 2π/(j − 1) with the positive y-axis. An (m, q)-necklace of
total n boxes obtained from λ ∈ Y(r, n), denoted by λ̃, is an m-tuple of q-necklaces

λ̃ = (λ̃(0), λ̃(1), . . . , λ̃(m−1)).

For 1 ≤ j ≤ q and 0 ≤ i ≤ m − 1, let λ̃(i,j) denote the j -th node in λ̃(i), i.e., λ̃(i,j) =
λ(j−1)m+i . Thus,

m−1
∑

i=0

q
∑

j=1

λ̃(i,j) = n.

Example 2.4 An example of (3, 4)-necklace of total 24 boxes obtained from

λ = ((2, 1), (2, 2), (1, 1), (1), (1, 1),∅, (2, 1), (2, 2), (1, 1), (1), (1, 1),∅) is :

,
, ∅∅ .
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Two (m, q)-necklaces, λ̃ and μ̃, both with total n boxes, are said to be equivalent if for
some integer t , λ̃(i,j) = μ̃(i,(j+t)(mod q)) for all 1 ≤ j ≤ q and 0 ≤ i ≤ m − 1. Let
Y(m, q, n) denote the set of inequivalent (m, q)-necklaces with total n boxes.

Theorem 2.5 describes the inequivalent irreducible representations of G(r, q, n). For
more details and proof of Theorem 2.5, see [2, 17, 18, 27].

Theorem 2.5 The irreducible G(r, q, n)-modules are indexed by the set of ordered pairs
(λ̃, δ), where λ̃ ∈ Y(m, q, n) and δ ∈ Hλ. Given λ ∈ Y(r, n), the restriction of the corre-
sponding irreducibleG(r, 1, n)-module V λ toG(r, q, n) has multiplicity free decomposition
given as:

ResG(r,1,n)
G(r,q,n)(V

λ) =
⊕

δ∈Hλ

V (λ̃,δ),

where V (λ̃,δ) denotes the irreducible G(r, q, n)-module indexed by (λ̃, δ). Moreover, for
λ, μ ∈ Y(r, n), we have ResG(r,1,n)

G(r,q,n)(V
λ) ∼= ResG(r,1,n)

G(r,q,n)(V
μ) if and only if μ ∈ [λ].

Next lemma is an important consequence of Clifford theory and will be helpful in study-
ing the character values of an element in G(r, 1, n) whose conjugacy class does not split in
the normal subgroup G(r, q, n).

Lemma 2.6 Let N be a normal subgroup of a group G. Suppose that ρ and τ are irre-
ducible representations of G and N with characters χρ and χτ , respectively, such that
〈χρ |N, χτ 〉N �= 0. Assume that x is an element of N such that its conjugacy class in G does
not split in N . Then, χρ |N(x) is a positive integral multiple of χτ (x).

Proof Assume that {g1 = id, g2, . . . , gk} be a set of coset representatives of the inertia
group of τ in G. By Clifford theory, ρ|N = ⊕k

i=1(τ
gi )f = (⊕k

i=1τ
gi )f , where τgi is a

conjugate representation of τ and f is the multiplicity of each conjugate representation.
Then the result follows from the following computation:

χρ |N(x) = f

k
∑

i=1

χgi
τ (x) = f

k
∑

i=1

χτ (g
−1
i xgi) = f

k
∑

i=1

χτ (x) = f kχτ (x).

2.5 Murnaghan–Nakayama Rule for G(r, 1, n)

The Murnaghan–Nakayama rule [27, Theorem 4.3] is a combinatorial method to compute
the irreducible characters ofG(r, 1, n). An edge-connected skew shape that does not contain
a 2×2 square of boxes is called a ribbon. Given a partition μ of n, a ribbon tableau of shape
μ is obtained by filling the boxes of μ with positive integers such that the entries in each
row and column are weakly increasing and each appearing integer forms a distinct ribbon.
Let λ = (λ0, λ1, . . . ,λr−1) be an r-partite partition of n. An r-tuple T = (T0, . . . , Tr−1) is
called r-partite ribbon tableau of shape λ if each Tj is a ribbon tableau of shape λj and for
each positive integer i, the ribbon containing i appears in at most one component of T .
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Given an r-partite ribbon tableau T = (T0, . . . , Tr−1)we denote its i-th index, i-th length
and i-th height by fT (i), lT (i) and htT (i), respectively, which are defined as follows:

fT (i) := index of the ribbon containing i in T ;
lT (i) := size of the ribbon containing i in T ;

htT (i) := one less than the number of rows in the ribbon containing i in T .

Theorem 2.7 [1, Proposition 2.2] (Murnaghan–Nakayama rule forG(r, 1, n)) Suppose that
χλ denotes the irreducible character of G(r, 1, n) corresponding to λ ∈ Y(r, n). Let π =
(z1, z2, . . . , zn; σ) ∈ G(r, 1, n) such that the corresponding cycle decomposition of σ in
an arbitrarily fixed order be c = (c1, c2, . . . , ct ). For 1 ≤ i ≤ t , let l(ci) and z(ci) be the
length and color of the cycle ci , respectively. Then,

χλ(π) =
∑

T ∈RTc(λ)

t
∏

i=1

(−1)htT (i)ωfT (i).z(ci ), (2.1)

where RTc(λ) is the set of all r-partite ribbon tableaux T of shape λ such that lT (i) = l(ci)

for all 1 ≤ i ≤ t , and ω = e2πι/r .

Let us illustrate Theorem 2.7 by an example.

Example 2.8 Consider the 3-partite partition λ = ((2, 1),∅, (1, 1, 1)) ∈ Y(3, 6) and the
element π of G(3, 1, 6)

π = (1, 1, 0, 0, 1, 0; (1, 2, 3)(4, 5)).

Here c = (c1, c2, c3), where we choose c1 = (1, 2, 3), c2 = (4, 5) and c3 = (6). The set
RTc(λ) consists of three 3-partite ribbon tableaux T = (T0, T1, T2) as described below

1 1

1
, ∅,

2

2

3

; 2 2

3
, ∅,

1

1

1

; 2 3

2
, ∅,

1

1

1

.

Consider ω = e2πι/3. The character value is

χλ(π) = (−1)(−1)ω2.1 + (−1)2ω2.2 + (−1)2ω2.2(−1) = ω2 + ω − ω = ω2.

Now consider another element of G(3, 1, 6):

π = (1, 1, 0, 0, 1, 0; (1, 2)(3, 5)(4, 6)).

Here l(ci) = 2 for all i = 1, 2, 3. Observe that there are no 3-partite ribbon tableaux
T = (T0, T1, T2) of shape λ such that lT (i) = 2. Hence the character value χλ(π) is zero.

In the following corollary of Theorem 2.7, we relate character values of G(r, 1, n) with
those of Sn.

Corollary 2.9 (i) For an r-partite partition λ = (λ0,λ1, . . . ,λr−1) of n, the character

value χλ((z1, z2, . . . , zn; (1, 2, . . . , n))) is nonzero if and only if λ = ̂λ
j
for some

0 ≤ j ≤ r − 1 with λj being a hook of size n. In such a case, we have

χλ((z1, z2, . . . , zn; (1, 2, . . . , n))) = ωj(z1+···+zn)
κ

λj ((1, 2, . . . , n)).
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(ii) For an element σ of Sn and 0 ≤ j ≤ r − 1, we have

χ
̂λ

j

((0, . . . , 0; σ)) = κ
λj (σ ).

(iii) For π = (z1, . . . , zn; σ) ∈ G(r, 1, n), we have

χ
̂λ
0

(π) = κ
λ0(σ ).

Moreover, for 0 ≤ j, k ≤ r − 1, χ̂λ
j

(π) is nonzero if only if χ̂λ
k

(π) is nonzero.

(iv) The character χ
̂λ

j

never vanishes on (z1, z2, . . . , zn; (1)) ∈ G(r, 1, n).

Proof (i) Let χλ((z1, z2, . . . , zn; (1, 2, . . . , n))) be nonzero. Since σ = (1, 2, . . . , n)

has a single part of length n, T must have only one nonempty component, say Tj ,

which must be a single ribbon of size n. That implies λ = ̂λ
j
and λj is a hook of size

n. The converse and the computation of character value are straightforward.

(ii) Here, ̂λ
j
has only one nonempty component and zi = 0 for i = 0, 1, . . . , r − 1.

We obtain the result by evaluating equation (2.1) and comparing it with Murnaghan–
Nakayama rule for Sn [24, Theorem 7.17.3].

(iii) Since Tj = ∅ for all j �= 0, fT (i) = 0 for all i. So Eq. 2.1 is equivalent to the
Murnaghan–Nakayama rule to compute irreducible characters of Sn corresponding to
the partition λ0. For the next part, a routine calculation shows that

χ
̂λ

j

(π) = ωj−kχ
̂λ

k

(π).

(iv) When σ = (1), the set RTc(λ) is nonempty and for each r-partite ribbon tableau
T ∈ RTc(λ), we have htT (i) = 0, fT (i) = j, z(ci) = zi for all i = 1, 2, . . . , n.

Next, we write some observations as a lemma which will be useful later.

Lemma 2.10 (i) If π = (z1, z2, . . . , zn; σ) is a p-regular element in G(r, 1, n), then σ

is a p-regular element of Sn.
(ii) The order of the sum of elements of odd order in an abelian group can never be even.

Proof (i) This follows from the observation that under the projection map

pr : G(r, 1, n) → Sn,

the order of pr(z1, z2, . . . , zn; σ) divides the order of (z1, z2, . . . , zn; σ).
(ii) Let g1, . . . , gs be elements of odd orders l1, . . . , ls respectively, in an abelian group.

Then the order of g1 + · · · + gs divides l1 · · · ls .

3 Proof of Theorems 1.4 and 1.6

We now prove the results stated in Section 1 for the groups G(r, 1, n) and G(r, q, n). The
groups G(r, 1, 1) and G(r, q, 1) are cyclic, all of whose irreducible characters are linear
and, thus, quasi p-Steinberg. Therefore, now onwards we assume that n ≥ 2 for G(r, 1, n)

and G(r, q, n).
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Proof of Lemma 1.2 (i) For d ∈ {2, 3, 4} with p | d , consider a degree d irreducible
character χ ofG and a p-regular element g, say of order t , inG. Then χ(g) is a sum of
t-th roots of unity and there are d-summands in this sum. This sum is always non-zero
by [13, Main Theorem, p.2] and therefore our result follows.

(ii) This follows from the fact that g ∈ G is p-regular if and only if a(g) is p-regular.

Remark 3.1 It is interesting to note that Theorem 1.2(i) is not true in general for any d ≥ 5.
The degree n irreducible character κ(n,1) of Sn+1 for n ≥ 5 is not a quasi p-Steinberg
character for any prime p ≤ n + 1 (see Table 2).

The following useful corollary follows directly from Theorem 1.2(ii) and Clifford theory.

Corollary 3.2 For a normal subgroup N and an irreducible character χ of G, either all
the irreducible characters of N appearing in the restriction χ |N are quasi p-Steinberg
characters or none of these are.

As an immediate application of Theorem 1.2(i), we list the triples (n,λj , p) in Table 3

which correspond to some specific quasi p-Steinberg characters χ
̂λ

j

of G(r, 1, n).

Proposition 3.3 Given an r-partite partition λ = (λ0, λ1, . . . ,λr−1) of n and a prime p,

assume that χλ is a quasi p-Steinberg character of G(r, 1, n). Then, either λ = ̂λ
j
for some

0 ≤ j ≤ r − 1 or λ = ̂λ
j,k

for some 0 ≤ j �= k ≤ r − 1.

Proof When p � n, the element α = (0, 0, . . . , 0; (1, 2, . . . , n)) is p-regular in G(r, 1, n).
Since χλ is a quasi p-Steinberg character, we have χλ(π) �= 0. By Corollary 2.9(i), we

must have λ = ̂λ
j
for some 0 ≤ j ≤ r − 1.

When p | n, consider the p-regular element α1 = (0, 0, . . . , 0; (1, 2, . . . , n − 1)). By
Murnaghan–Nakayama rule for G(r, 1, n), the only possible λ = (λ0, λ1, . . . ,λr−1) such

that χλ(π) �= 0 must satisfy λ = ̂λ
j
for some 0 ≤ j ≤ r − 1 or λ = ̂λ

j,k
for some

0 ≤ j �= k ≤ r − 1.

Proposition 3.4 Let μ be a partition of n such that μ /∈ {(n), (1n)}. The character χ
̂λ

j

,
where λj = μ, is a quasi p-Steinberg character of G(r, 1, n) if and only if κμ is a quasi
p-Steinberg character of Sn.

Table 3 Some specific quasi
p-Steinberg characters of
G(r, 1, n)

n λj deg(χ̂λ
j

) p

3 (2, 1) 2 2

4 (3, 1) 3 3

4 (2, 1, 1) 3 3

4 (2, 2) 2 2

5 (4, 1) 4 2

5 (2, 1, 1, 1) 4 2
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Proof Let χ
̂λ

j

, where λj = μ, be a quasi p-Steinberg character of G(r, 1, n). Consider a
p-regular element σ of Sn. Then, Corollary 2.9(ii) implies that

κ
μ(σ ) = χ

̂λ
j

((0, . . . , 0; σ)),

which is nonzero because (0, . . . , 0; σ) is a p-regular element of G(r, 1, n).
Conversely, assume that κ

μ is a quasi p-Steinberg character of Sn. Let π =
(z1, . . . , zn; σ) be a p-regular element of G(r, 1, n). Then, σ is a p-regular element of Sn

by Lemma 2.10(i), and we have κμ(σ ) �= 0. Now by Corollary 2.9(ii), we have

χ
̂λ
0

(π) = κ
μ(σ ).

and χ
̂λ

j

(π) is nonzero if and only if χ
̂λ
0
(π) is nonzero for any j . Therefore, χ̂λ

j

is a quasi
p-Steinberg character of G(r, 1, n).

Proof of Theorem 1.4 Given λ = (λ0, λ1, . . . ,λr−1), let χλ be the quasi p-Steinberg char-

acter of G(r, 1, n). By Proposition 3.3, we have either λ = ̂λ
j
for some 0 ≤ j ≤ r − 1 or

λ = ̂λ
j,k

for some 0 ≤ j �= k ≤ r − 1.
Using Proposition 3.4 and Table 2, we get the quasi p-Steinberg characters of G(r, 1, n)

corresponding tôλ
j
in Table 1.

Now we shall classify quasi p-Steinberg characters of G(r, 1, n) corresponding tôλ
j,k

.
As we observe in the proof of Proposition 3.3, this kind of character may appear only when
p | n.

When n ≥ 5, there does not arise a quasi p-Steinberg character of this kind because of
the following observations:

(i) Either α2 = (0, . . . , 0; (1, 2, . . . , n − 2)(n − 1, n)) or α3 = (0, . . . , 0; (1, 2, . . . , n −
3)(n − 2, n − 1, n)) is a p-regular element of G(r, 1, n);

(ii) χλ(α2) = χλ(α3) = 0.

Now we consider n < 5 in which some additional quasi p-Steinberg characters for
G(r, 1, n) will arise.

Let us start with n = 2, p = 2. The irreducible character corresponding to λ = ̂λ
j,k

,
where λj = (1), is a quasi 2-Steinberg character by Theorem 1.2(i).

Let us consider the case n = 3, p = 3. The irreducible characters corresponding tôλ
j,k

,
where λj � 2, are of degree three and hence, quasi 3-Steinberg characters of G(r, 1, 3) by
Theorem 1.2(i).

Now consider the case n = 4, p = 2. The irreducible characters corresponding to λ =
̂λ

j,k
where λj ∈ {(3), (1, 1, 1)}, are quasi 2-Steinberg characters of G(r, 1, 4) by Theorem

1.2(i) by virtue of being degree four characters.

We now discuss the final case: n = 4, p = 2 and λ = ̂λ
j,k

with λj = (2, 1). For an r-

partite ribbon tableau T = (T0, . . . , Tr−1) of shapêλ
j,k

, we have Tl = ∅ for all l /∈ {j, k}.
Let (z1, . . . , z4; σ) be a p-regular element in G(r, 1, 4), thus, either σ = (1) or σ has cycle
type (3, 1), and z1, . . . , z4 are of odd orders. When σ = (1), then there are exactly eight
r-partite ribbon tableaux T = (T0, . . . , Tr−1) as we have eight different pairs (Tj , Tk):

1 2

3
4 ; 1 3

2
4 ; 1 2

4
3 ; 1 4

2
3 ;



On Quasi Steinberg Characters of Complex Reflection Groups

1 3

4
2 ; 1 4

3
2 ; 2 3

4
1 ; 2 4

3
1 .

By Murnaghan–Nakayama rule for G(r, 1, n), we have

χλ((z1, z2, z3, z4, (1)))

= 2(ωjz1+jz2+jz3+kz4 + ωjz1+jz3+jz4+kz2 + ωjz1+jz2+jz4+kz3 + ωkz1+jz2+jz3+jz4)

= 2ωkz1+jz2+jz3+jz4(ω(j−k)(z1−z4) + ω(j−k)(z1−z2) + ω(j−k)(z1−z3) + 1),

which can be zero only when r is an even integer [13, Main Theorem, p.2]. However, when r

is even, the sum above is nonzero by Lemma 2.10(ii) because z1, z2, z3, z4 have odd orders
in Z/rZ [21, Table 3.1, p.141].

When σ is of cycle type (3, 1), say σ = (1, 2, 3), then there is exactly one r-partite
ribbon tableaux T given by

Tj = 1 1

1
Tk = 2 Tl = ∅ for all l �= j, k.

This implies that χλ((z1, z2, z3, z4, (1, 2, 3))) = −ωjz1+jz2+jz3+kz4 �= 0.

We now describe the quasi p-Steinberg characters of G(r, q, n) for q �= 1. Given an
r-partite partition λ = (λ0, λ1, . . . ,λr−1) of n, recall that the notation (χλ)∗ denotes an
irreducible character of G(r, q, n) which appears in the decomposition of the restriction of
the irreducible character χλ of G(r, 1, n) to G(r, q, n). Note that (χλ)∗ may not be unique
and is an irreducible character χ(λ̃,δ), where λ̃ is an (m, q)-necklace obtained from λ and
δ ∈ Hλ.

We need the following notation for Proposition 3.5, which deals with two specific kinds
of quasi p-Steinberg characters of G(r, q, n).

• For n = 3 and 0 ≤ j �= k �= l ≤ r − 1, define νj,k,l = (ν0, ν1, . . . , νr−1) ∈ Y(r, 3)
where νj = νk = νl = (1).

• For n = 4 and 0 ≤ j �= k ≤ r − 1, define νj,k = (ν0, ν1, . . . , νr−1) ∈ Y(r, 4) where
νj = νk � 2.

• For a multiple r of 3, define

X1 =
{

(j, k, l) | 0 ≤ j ≤ r − 1, k =
(

j + r

3

)

(mod r), l =
(

j + 2r

3

)

(mod r)

}

,

and for r even, define

X2 =
{

(j, k) | 0 ≤ j ≤ r − 1, k =
(

j + r

2

)

(mod r)
}

.

Proposition 3.5 (i) The irreducible character χνj,k,l
of G(r, 1, 3) for νj,k,l ∈ Y(r, 3)

decomposes into three irreducible characters of G(r, q, 3) if and only if r, q are
multiples of 3 and (j, k, l) ∈ X1.

(ii) The irreducible character χνj,k
of G(r, 1, 4) for νj,k ∈ Y(r, 4) decomposes into two

irreducible characters of G(r, q, 4) if and only if r, q are even and (j, k) ∈ X2.

Proof The proof follows by Theorem 2.5.
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We now prove Theorem 3.6 which characterizes quasi p-Steinberg characters of
G(r, q, n). In particular, this gives proof of Theorem 1.6.

Theorem 3.6 Given an r-partite partition λ = (λ0, λ1, . . . ,λr−1) of n, a non-linear irre-
ducible character (χλ)∗ of G(r, q, n) is a quasi p-Steinberg character if and only if one of
the following holds:

(i) λ corresponds to a quasi p-Steinberg character of G(r, 1, n) which are given in
Table 1. In this case,

(χλ)∗ = ResG(r,1,n)
G(r,q,n)χ

λ.

(ii) n = 3, r, q are multiples of 3 and λ = νj,k,l for (j, k, l) ∈ X1 for p = 2.
(iii) n = 4, r, q are even and λ = νj,k for (j, k) ∈ X2 for p = 3.

Proof For an r-partite partition λ = (λ0, λ1, . . . , λr−1) of n, consider a quasi p-Steinberg
character (χλ)∗ of G(r, q, n). By Corollary 3.2, either all the irreducible characters χ(λ̃,δ)

appearing in ResG(r,1,n)
G(r,q,n)χ

λ are quasi p-Steinberg or none of these are. Therefore, we can

arbitrarily choose (χλ)∗. We consider the cases p � n and p | n separately.
Case 1: p � n. SinceG(r, q, n) is a normal subgroup ofG(r, 1, n), our method is to apply

Lemma 2.6 by choosing a p-regular element in G(r, 1, n) whose conjugacy class does not
split in G(r, q, n). We consider the two subcases: p � n − 1 and p | n − 1.

Case 1(a): p � n − 1. The element α1 = (0, . . . , 0; (1, 2, . . . , n − 1)) is a p-regular
element of G(r, q, n). Thus (χλ)∗(α1) �= 0, and by Lemma 2.6 we get that χλ(α1) �= 0. By

Murnaghan–Nakayama rule, either λ = ̂λ
j
for some 0 ≤ j ≤ r − 1 or λ = ̂λ

j,k
for some

0 ≤ j �= k ≤ r − 1.
However, we do not get any non-linear quasi p-Steinberg character of G(r, q, n) in this

subcase because of the following reason. When λ = ̂λ
j
for some 0 ≤ j ≤ r − 1, Theorem

2.5 implies that (χλ)∗ = ResG(r,1,n)
G(r,q,n)χ

λ. When λ = ̂λ
j,k

for some 0 ≤ j �= k ≤ r − 1, for

n ≥ 3 we have (χλ)∗ = ResG(r,1,n)
G(r,q,n)χ

λ. From Table 1, we can see that there does not exist a
non-linear quasi p-Steinberg character of G(r, 1, n) when p � n and p � n − 1.

For n = 2 and λ = ̂λ
j,k

, χλ is a character of degree two which is not a quasi p-Steinberg
character ofG(r, 1, 2) for p �= 2. When χλ decomposes, the two linear characters appearing
in ResG(r,1,2)

G(r,q,2)χ
λ are quasi p-Steinberg characters for any prime p that divides the order of

G(r, q, 2).
Case 1(b): p | n−1. Then, p � n−2 and α2 = (0, . . . , 0; (1, 2, . . . , n−2)) is a p-regular

element of G(r, q, n). Thus (χλ)∗(α2) �= 0, and by Lemma 2.6 we have χλ(α2) �= 0.
Murnaghan–Nakayama rule for G(r, 1, n) implies that λ must be of one of the following
forms:

(a) λ = ̂λ
j
;

(b) λ = ̂λ
j,k

;
(c) λj � n − 2, λk � 2 for some k �= j , λl = ∅ for all l /∈ {j, k};
(d) λj � n − 2, λk = (1) for some k �= j , λl = (1) for some l /∈ {j, k}, and λu = ∅ for all

u /∈ {j, k, l};
When λ is of one of the forms (a)-(d) and for n ≥ 5, by Theorem 2.5 we have

(χλ)∗ = ResG(r,1,n)
G(r,q,n)χ

λ.
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For λ of the form (b), (c) or (d), χλ vanishes on the p-regular element α =
(0, . . . , 0; (1, 2, . . . , n)) which implies that the character (χλ)∗ is not a quasi p-Steinberg

character of G(r, q, n). Now consider that λ is of the form (a), i.e., λ = ̂λ
j
. By Corol-

lary 2.9(ii) and by (χ
̂λ

j

)∗ being a quasi p-Steinberg character of G(r, q, n), for a p-regular
element σ ∈ Sn, we have

κ
λj (σ ) = χ

̂λ
j

(0, . . . , 0; σ) = (χ
̂λ

j

)∗(0, . . . , 0; σ) �= 0.

This implies thatκλj is a quasi p-Steinberg character of Sn. Thus, χ
̂λ

j

is a quasi p-Steinberg
character of G(r, 1, n) by Proposition 3.4.

We now consider n < 5. Of course, n �= 2 as p | n − 1. For n = 3, p = 2, when λ is
of the form (a), (b) or (c), then it can be seen from Table 1 that χλ is a quasi 2-Steinberg
character of G(r, 1, 3). Thus, (χλ)∗ is a quasi 2-Steinberg character of G(r, q, 3) because

(χλ)∗ = ResG(r,1,3)
G(r,q,3)χ

λ.

A similar argument holds true when n = 4, p = 3 and λ is of the form (a). From Table 1,
we see that λ cannot be of the form (b) or (d) for n = 4, p = 3.

When λ is of the form (d) for n = 3, p = 2, i.e. λ = νj,k,l , then Theorem 1.2(i)
and Proposition 3.5 imply that (χλ)∗, being irreducible character of degree two, occurring
in ResG(r,1,3)

G(r,q,3)χ
λ is a quasi 2-Steinberg character if and only if r, q are multiples of 3 and

(j, k, l) ∈ X1. The analogous arguments can be used to deduce that when λ is of the form
(c) for n = 4, p = 3, i.e. λ = νj,k , the character (χλ)∗ occurring in ResG(r,1,4)

G(r,q,4)χ
λ is a quasi

3-Steinberg character if and only if r, q are even and (j, k) ∈ X2.
Case 2: p | n. Then, p � n − 1 and α1 = (0, . . . , 0; (1, 2, . . . , n − 1)) is a p-regular

element of G(r, q, n). Thus (χλ)∗(α1) �= 0, and by Lemma 2.6 we get that χλ(α1) �= 0.

By Murnaghan–Nakayama rule for G(r, 1, n), either λ = ̂λ
j
for some 0 ≤ j ≤ r − 1 or

λ = ̂λ
j,k

for some 0 ≤ j �= k ≤ r − 1. Using similar arguments as given in Case 1(b), we

deduce that if λ = ̂λ
j
for some 0 ≤ j ≤ r − 1, then χ

̂λ
j

is a quasi p-Steinberg character of
G(r, 1, n).

For λ = ̂λ
j,k

for some 0 ≤ j �= k ≤ r − 1 and for n ≥ 5, the character (χλ)∗ is not a
quasi p-Steinberg character of G(r, q, n) because of the following observations:

(a) α2 = (0, . . . , 0; (1, 2, . . . , n−2)) and α3 = (0, . . . , 0; (1, 2, . . . , n−3)) are p-regular
elements of G(r, q, n) for p > 3;

(b) α2 is 3-regular and α3 is 2-regular;
(c) χλ(α2) = χλ(α3) = 0;
(d) (χλ)∗ = ResG(r,1,n)

G(r,q,n)χ
λ.

Now, we discuss the case when λ = ̂λ
j,k

for some 0 ≤ j �= k ≤ r − 1 and n < 5.
For n = 2, p = 2, we have λj = (1) for some j , λk = (1) for some k �= j , λl = ∅ for
all l /∈ {j, k}. Therefore, the character χλ is a degree two quasi 2-Steinberg character of
G(r, 1, 2). The character (χλ)∗ is a non-linear quasi 2-Steinberg character of G(r, q, 2) if
and only if (χλ)∗ = ResG(r,1,2)

G(r,q,2)χ
λ. The character χλ decomposes into two linear characters

of G(r, q, 2) if and only if both r and q are even, and k = j + r
2 mod (r).

For n = 3, p = 3 and n = 4, p = 2, given λ = ̂λ
j,k

implies that (χλ)∗ = ResG(r,1,n)
G(r,q,n)χ

λ

(by Theorem 2.5). Also, all the possiblêλ
j,k

appear in Table 1. Thus, for n = 3, p = 3 and
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Table 4 Quasi p-Steinberg characters of G(n)

Group Order Degrees of non-linear irreducible characters p-Steinberg

G(4) 24 2, 3w all 3w

G(5) 72 2, 3

G(6) 48 2, 3w all 3w

G(7) 144 2, 3

G(8) 96 2, 3w, 4 two out of four 3w

G(9) 192 2, 3w, 4 four out of eight 3w

G(10) 288 2, 3, 4

G(11) 576 2, 3, 4

G(12) 48 2, 3w, 4 all 3w

G(13) 96 2, 3w, 4 all 3w

G(14) 144 2, 3, 4

G(15) 288 2, 3, 4

G(16) 600 2, 3w, 4, 5, 6

G(17) 1200 2, 3w, 4, 5, 6

G(18) 1800 2, 3, 4, 5, 6

G(19) 3600 2, 3, 4, 5, 6

G(20) 360 2, 3, 4, 5w, 6 one out of three 5w

G(21) 720 2, 3, 4, 5w, 6 two out of six 5w

G(22) 240 2, 3w, 4, 5w, 6 all 5w

G(23) 120 3w, 4, 5w all 5w

G(24) 336 3w, 7w, 8, 6 all 7w

G(25) 648 2, 3, 8w, 9, 6 one out of three 8w

G(26) 1296 2, 3, 8, 9, 6

G(27) 2160 3, 5w, 8, 9, 6, 10, 15

G(28) 1152 2, 4, 8, 9w, 16, 6, 12 all 9w

G(29) 7680 4, 5w, 16, 6, 10, 15, 20, 24, 30

G(30) 14400 4, 8, 9w, 16, 25w, 6, 10, 18, 24, 30, 36, 40, 48 all 25w

G(31) 46080 4, 5w, 9w, 16, 64, 6, 10, 15, 20, 24, 30, 36, 40, 45

G(32) 155520 4, 64, 81, 5, 6, 10, 15, 20, 24, 30, 36, 40, 45, 60, 80

G(33) 51840 64, 81w, 5, 6, 10, 15, 20, 24, 30, 40, 45, 60

G(34) 39191040 729, 6, 15, 20, 21, 35, 56, 70, 84, 90, 105, 120, 126,

140, 189, 210, 280, 315, 336, 384, 420, 504, 540,

560, 630, 720, 756, 840, 896, 945, 1260, 1280

G(35) 51840 64, 81w, 6, 10, 15, 20, 24, 30, 60, 80, 90 all 81w

G(36) 2903040 27, 512, 7, 15, 21, 35, 56, 70, 84, 105, 120

168, 189, 210, 216, 280, 315, 336, 378, 405, 420

G(37) 696729600 8, 4096, 28, 35, 50, 56, 70, 84, 112, 160, 168,

175, 210, 300, 350, 400, 420, 448, 525, 560, 567,

700, 840, 972, 1008, 1050, 1134, 1296, 1344, 1400,

1575, 1680, 2016, 2100, 2240, 2268, 2400,

2688, 2800, 2835, 3150, 3200, 3240, 3360, 4200,

4480, 4536, 5600, 5670, 6075, 7168
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n = 4, p = 2, the character (χ
̂λ

j,k

)∗ is a quasi p-Steinberg character of G(r, q, n) if and

only if χ
̂λ

j,k

is a quasi p-Steinberg character of G(r, 1, n).

4 Exceptional Complex Reflection Groups

In this section, we provide information regarding the quasi p-Steinberg, weak p-Steinberg
and p-Steinberg characters of exceptional irreducible complex reflection groups G(n) for
n ∈ {4, 5, . . . , 37}. The integer n for the groupG(n) denotes its Shephard–Todd number. We
have used GAP interface in SAGEMATH online via Cocalc.com to obtain this information
and have collected the details in Table 4. The second and third columns of Table 4 denote
the order and the degrees of the non-linear irreducible characters of the group, respectively.
By accessing character tables of G(n), we observe that for n ∈ {4, . . . , 37}, every quasi
p-Steinberg character of G(n) has degree a power of p. However, the converse does not
hold in general. The numbers in the bold font (and with suffix w) highlight the degrees
equal to a prime power p whose corresponding character is a quasi p-Steinberg (and a
weak p-Steinberg, respectively) character. We then consider the character values of weak p-
Steinberg characters and obtain the information regarding the p-Steinberg characters. The
details of this are included in the last column of Table 4.
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