ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Polarization signatures of Mars dust and clouds: Prospects for future spacecraft observations

Jaiswal, B and Mahapatra, G and Nandi, A and Sudhakar, M and Sankarasubramanian, K and Sheel, V (2021) Polarization signatures of Mars dust and clouds: Prospects for future spacecraft observations. In: Planetary and Space Science, 201 .

[img] PDF
pla_spa_sci_201_2021.pdf - Published Version
Restricted to Registered users only

Download (6MB) | Request a copy
Official URL: https://doi.org/10.1016/j.pss.2021.105193

Abstract

The study of polarized sunlight scattered from planetary atmospheres provides diagnostic tools that can help explore the possible composition and size distribution of clouds and aerosol particles. Previous studies have shown the potential of this technique in studying Water clouds on Earth and in the discovery of Sulphuric Acid clouds on Venus. The atmosphere of Mars is unique as it hosts three different types of aerosols: water (H2O) ice, carbon dioxide (CO2) ice and dust. We considered scenarios analogous to Martian conditions and calculated the single and multiple scattering polarization for Martian dust, water ice and carbon dioxide ice with the help of a Radiative Transfer algorithm for Nadir and Limb spacecraft observation positions. The polarization features (-Q/I) of Mars atmosphere have low amplitude and have been found to be within the range of ±0.1 in the Nadir/Limb geometry for the spherical, spheroidal and cylindrical shapes considered here. We study its dependence upon the observation geometry, shape, size and composition of the scatterer. Future spacecraft studies of microphysical properties of dust and clouds through polarization will reveal the nature of condensation processes active in the Martian atmosphere. © 2021 Elsevier Ltd

Item Type: Journal Article
Publication: Planetary and Space Science
Publisher: Elsevier Ltd
Additional Information: The copyright for this article belongs to Elsevier Ltd
Keywords: Aerosols; Atmospheric chemistry; Carbon dioxide; Chemical analysis; Clouds; Dust; Ice; Polarimeters; Polarization; Spacecraft, Cloud particles; Compositions distributions; Diagnostics tools; Future spacecraft; Mars; Mars dust; Planetary atmosphere; Polarization signatures; Polarized sunlight; Size-distribution, Spectroscopy
Department/Centre: Others
Date Deposited: 14 Jul 2021 11:43
Last Modified: 14 Jul 2021 11:43
URI: http://eprints.iisc.ac.in/id/eprint/68777

Actions (login required)

View Item View Item