ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Fair Cake Division under Monotone Likelihood Ratios

Barman, S and Rathi, N (2020) Fair Cake Division under Monotone Likelihood Ratios. In: 21st ACM Conference on Economics and Computation, EC 2020, 13-17, July 2020, Hungary, pp. 401-437.

pro_acm_con_eco_com_401-437_2020.pdf - Published Version

Download (1MB) | Preview
Official URL: https://dx.doi.org/10.1145/3391403.3399512


This work develops algorithmic results for the classic cake-cutting problem in which a divisible, heterogeneous resource (modeled as a cake) needs to be partitioned among agents with distinct preferences. We focus on a standard formulation of cake cutting wherein each agent must receive a contiguous piece of the cake. While multiple hardness results exist in this setup for finding fair/efficient cake divisions, we show that, if the value densities of the agents satisfy the monotone likelihood ratio property(MLRP), then strong algorithmic results hold for various notions of fairness and economic efficiency. Addressing cake-cutting instances with MLRP, first we develop an algorithm that finds cake divisions (with connected pieces) that are envy-free, up to an arbitrary precision. The time complexity of our algorithm is polynomial in the number of agents and the bit complexity of an underlying Lipschitz constant. We obtain similar positive results for maximizing social (utilitarian) and egalitarian welfare. In addition, we show that, under MLRP, the problem of maximizing Nash social welfare admits a fully polynomial-time approximation scheme (FPTAS). Many distribution families bear MLRP. In particular, this property holds if all the value densities belong to any one of the following families: Gaussian (with the same variance), linear, binomial, Poisson, and exponential distributions. Furthermore, it is known that linear translations of any log-concave function satisfy MLRP. Therefore, our results also hold when the value densities of the agents are linear translations of the following (log-concave) distributions: Laplace, gamma, beta, Subbotin, chi-square, Dirichlet, and logistic. Hence, through MLRP, the current work obtains novel cake-cutting algorithms for multiple distribution families.

Item Type: Conference Poster
Publication: EC 2020 - Proceedings of the 21st ACM Conference on Economics and Computation
Publisher: Association for Computing Machinery, Inc
Additional Information: The copyright of this article belongs to Association for Computing Machinery, Inc
Department/Centre: Division of Electrical Sciences > Computer Science & Automation
Date Deposited: 26 Aug 2020 07:36
Last Modified: 26 Aug 2020 07:36
URI: http://eprints.iisc.ac.in/id/eprint/66366

Actions (login required)

View Item View Item