ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Cone snail prolyl-4-hydroxylase alpha-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom

Vijayasarathy, M and Balaram, P (2019) Cone snail prolyl-4-hydroxylase alpha-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom. In: JOURNAL OF PROTEOMICS, 194 . pp. 37-48.

[img] PDF
Jou_Pro_194-37-48_2019.pdf - Published Version
Restricted to Registered users only

Download (16MB) | Request a copy
Official URL: https://doi.org/10.1016/j.jprot.2018.12.028

Abstract

Putative prolyl-4-hydroxylase (P4H) alpha-subunit sequences have been extracted by mining transcriptomic data obtained from seven cone snail species C. amadis, C. monile, C. araneosus, C. miles, C. litteratus, C. frigidus, and C. ebraeus. Sequences ranging from 518 to 559 residues have been compared with representative animal P4H sequences. The alpha-subunitconsists of an N-terminus double domain, involved in dimerization and substrate binding, while the C-terminus contains the catalytic domain. Definitive functional annotation of the cone snail sequences has been achieved by an analysis of conserved residues responsible for catalytic function, specific conformational features, and subunit interactions, using two independent structures of the double domain, and the catalytic domain, previously reported in the literature. The variability of proline hydroxylation in conotoxins is illustrated by a mass spectrometric analysis of C. amadis venom. Site specific hydroxylation and the presence of peptides with multiple proline residues, resistant to modification, suggests that sequence and conformational effects may determine the substrate specificity of the Conus prolyl-4-hydroxylases. Significance: Proline hydroxylation is a widely observed post translational modification, with collagen being the pre-eminent example. Hydroxylation of proline is also widely observed in conotoxins, which are a major component of marine cone snail venom. This paper describes newly identified prolyl-4-hydroxylase sequences, using transcriptome data from seven Corms species. The predicted functional annotation of prolyl-4-hydroxylase sequences was carried out using two available crystal structures of independent domains. The mass spectrometric characterisation of proline/hydroxyproline containing peptides in C. amadis venom confirms sequence specific hydroxylation in Conus venom as shown previously by others.

Item Type: Journal Article
Publication: JOURNAL OF PROTEOMICS
Publisher: ELSEVIER SCIENCE BV
Additional Information: Copyright for this article belongs to Elsevier.
Keywords: Conus venom duct transcriptomics; Prolyl-4-hydroxylase; Conotoxins; Mass spectrometry; Hydroxyproline; Disulfide isomerase
Department/Centre: Division of Biological Sciences > Molecular Biophysics Unit
Date Deposited: 20 Mar 2019 05:18
Last Modified: 20 Mar 2019 05:27
URI: http://eprints.iisc.ac.in/id/eprint/61925

Actions (login required)

View Item View Item