ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Influence of cycle time and collector area on solar driven adsorption chillers

Jaiswal, Ankush Kumar and Mitra, Sourav and Dutta, Pradip and Srinivasan, Kandadai and Murthy, Srinivasa S (2016) Influence of cycle time and collector area on solar driven adsorption chillers. In: SOLAR ENERGY, 136 . pp. 450-459.

[img] PDF
Sol_Ene_136_450_2016.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.solener.2016.07.023

Abstract

Dynamic performance of a single-stage, two-bed, silica gel + water adsorption chiller operating in Bangalore, India is studied. Driving thermal energy is provided directly by an evacuated tube solar collector field. System dynamics are evaluated in the absence of thermal storage, which causes intra-day fluctuations in heat source and evaporator temperatures, which in turn influence the system performance. These dynamics are demonstrated for representative days in the months of April (summer) and December (winter). The focus is on the effect of variation of the collector area and the adsorption cycle time on the system performance. The maximum temperature of heat transfer fluid (water) is limited to 95 degrees C. The cyclic and daily averages of solar coefficient of performance (DACOPsoi) and cooling capacity (DACC) are used as key performance indicators. One of the key aspects of the this study is to show that both of them can be maximized by suitably choosing the collector area and cycle time. Further, it is demonstrated that the solar driven adsorption chiller described here is ideally suited for cascading with an air-cooled R-134a vapour compression refrigeration system (VCRS). The variable throughput obtained from the solar adsorption chiller can help in liquid sub-cooling and hence to cover the deficit in cooling capacity of the VCRS arising due to high ambient temperature. (C) 2016 Elsevier Ltd. All rights reserved.

Item Type: Journal Article
Publication: SOLAR ENERGY
Additional Information: Copy right for this article belongs to the PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
Department/Centre: Division of Mechanical Sciences > Mechanical Engineering
Division of Physical & Mathematical Sciences > Centre for High Energy Physics
Date Deposited: 03 Dec 2016 06:47
Last Modified: 03 Dec 2016 06:47
URI: http://eprints.iisc.ac.in/id/eprint/55324

Actions (login required)

View Item View Item