Sheshadri, S and Lingaraju, GM and Varadarajan, R (1999) Denaturant mediated unfolding of both native and molten globule states of maltose binding protein are accompanied by large [Delta]Cp's. In: Protein Science, 8 (8). pp. 1689-1695.
PDF
Denaturant.pdf - Published Version Restricted to Registered users only Download (286kB) | Request a copy |
Abstract
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.
Item Type: | Journal Article |
---|---|
Publication: | Protein Science |
Publisher: | Cambridge University Press |
Additional Information: | Copyright of this article belongs to Cambridge University Press. |
Keywords: | heat capacity;molten globule;protein stability. |
Department/Centre: | Division of Biological Sciences > Molecular Biophysics Unit |
Date Deposited: | 17 Aug 2011 08:58 |
Last Modified: | 17 Aug 2011 08:58 |
URI: | http://eprints.iisc.ac.in/id/eprint/39935 |
Actions (login required)
View Item |