ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Analysis of the binding of polymyxin B to endotoxic lipid A and core glycolipid using a fluorescent displacement probe

David, SA and Balasubramanian, KA and Mathan, VI and Balaram, P (1992) Analysis of the binding of polymyxin B to endotoxic lipid A and core glycolipid using a fluorescent displacement probe. In: Biochimica et Biophysica Acta (BBA), 1165 (2). pp. 147-152.

[img] PDF
213.pdf - Published Version
Restricted to Registered users only

Download (643kB) | Request a copy
Official URL: http://dx.doi.org/doi:10.1016/0005-2760(92)90180-4


Dansylcadaverine, a cationic fluorescent probe binds to bacterial lipopolysaccharide and lipid A, and is displaced competitively by other compounds which possess affinity toward endotoxins. The binding parameters of dansylcadaverine for lipid A were determined by Scatchard analysis to be two apparently equivalent sites with apparent dissociation constants (Kd) ranging between 16 μM to 26 μM, while that obtained for core glycolipid from Salmonella minnesota Re595 yielded a Kd of 22 μM to 28 μM with three binding sites. The Kd of polymyxin B for lipid A was computed from dansylcadaverine displacement by the method of Horovitz and Levitzki (Horovitz, A., and Levitzki, A. (1987) Proc. Natl. Acad. Sci. USA 84, 6654–6658). The applicability of this method for analyzing fluorescence data was validated by comparing the Kds of melittin for lipid A obtained by direct Scatchard analysis, and by the Horovitz-Levitzki method. The displacement of dansylcadaverine from lipid A by polymyxin B was distinctly biphasic with Kds for polymyxin B-lipid A interactions corresponding to 0.4 μM and 1.5 μM, probably resulting as a consequence of lipid A being a mixture of mono- and di-phosphoryl species. This was not observed with core glycolipid, for which the Kd for polymyxin was estimated to range from 1.1 μM to 5.8 μM. The use of dansylcadaverine as a displacement probe offers a novel and convenient method of quantitating the interactions of a wide variety of substances with lipid A.

Item Type: Journal Article
Publication: Biochimica et Biophysica Acta (BBA)
Publisher: Elsevier Science
Additional Information: Copyright of this article belongs to Elsevier Science.
Keywords: Endotoxin; Glycolipid; Dansylcadaverine; Polymyxin B.
Department/Centre: Division of Biological Sciences > Molecular Biophysics Unit
Date Deposited: 20 May 2010 08:44
Last Modified: 19 Sep 2010 06:00
URI: http://eprints.iisc.ac.in/id/eprint/27292

Actions (login required)

View Item View Item