Boecherer, Siegfried and Das, Soumya (2018) Cuspidality and the growth of Fourier coefficients of modular forms. In: JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 741 . pp. 161-178.
Full text not available from this repository. (Request a copy)
Official URL: https://dx.doi.org/10.1515/crelle-2015-0075
Abstract
We characterize Siegel cusp forms in the space of Siegel modular forms of large weight k > 2n on any Siegel congruence subgroup Gamma of any degree n and any level N, by a suitable growth of their Fourier coefficients (e.g., by the well-known Hecke bound) at any one of the cusps. For this, we use a `local' approach as compared to our previous results on this topic. We also touch upon the question in the context of vector-valued modular forms.
Item Type: | Journal Article |
---|---|
Publication: | JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK |
Publisher: | WALTER DE GRUYTER GMBH, GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY |
Additional Information: | Copyright of this article belong to WALTER DE GRUYTER GMBH, GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 16 Aug 2018 16:03 |
Last Modified: | 16 Aug 2018 16:03 |
URI: | http://eprints.iisc.ac.in/id/eprint/60440 |
Actions (login required)
View Item |