ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

A deep rod finite element for structural dynamics and wave propagation problems

Gopalakrishnan, S (2000) A deep rod finite element for structural dynamics and wave propagation problems. In: International Journal for Numerical Methods in Engineering, 48 (5). pp. 731-744.

[img] PDF
page181.pdf
Restricted to Registered users only

Download (175kB) | Request a copy

Abstract

In this paper, a new element for higher order rod (normally referred to as Minlin-Herrman rod) is formulated by introducing lateral contraction eects. The cross-section is assumed to be rectangular. The stiness and mass matrices are obtained by using interpolating functions that are exact solution to the governing static equation. The studies using this element for free vibration analysis show that lateral contractional inertia has a pronounced eect on the natural frequencies of the rod systems. The formulated element is not only able to capture the two propagating spectrums but also the dispersive eects in a deep rod. The results obtained from this element is compared with the previously formulated exact higher order spectral rod element.

Item Type: Journal Article
Publication: International Journal for Numerical Methods in Engineering
Publisher: John Wiley & Sons, Ltd.
Additional Information: The copyright belongs to John Wiley & Sons, Ltd.
Keywords: finite element;lateral contraction;poissons effect;two propagating modes;dispersive behaviour;wave propagation
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 13 Feb 2006
Last Modified: 19 Sep 2010 04:23
URI: http://eprints.iisc.ac.in/id/eprint/5321

Actions (login required)

View Item View Item