Ozden, Sehmus and Autreto, Pedro AS and Tiwary, Chandra Sekhar and Khatiwada, Suman and Machado, Leonardo and Galvao, Douglas S and Vajtai, Robert and Barrera, Enrique V and Ajayan, Pulickel M (2014) Unzipping Carbon Nanotubes at High Impact. In: NANO LETTERS, 14 (7). pp. 4131-4137.
PDF
nan_let_14-7_4131_2014.pdf - Published Version Restricted to Registered users only Download (2MB) | Request a copy |
Abstract
The way nanostructures behave and mechanically respond to high impact collision is a topic of intrigue. For anisotropic nanostructures, such as carbon nanotubes, this response will be complicated based on the impact geometry. Here we report the result of hypervelocity impact of nanotubes against solid targets and show that impact produces a large number of defects in the nanotubes, as well as rapid atom evaporation, leading to their unzipping along the nanotube axis. Fully atomistic reactive molecular dynamics simulations are used to gain further insights of the pathways and deformation and fracture mechanisms of nanotubes under high energy mechanical impact. Carbon nanotubes have been unzipped into graphene nanoribbons before using chemical treatments but here the instability of nanotubes against formation, fracture, and unzipping is revealed purely through mechanical impact. defect
Item Type: | Journal Article |
---|---|
Publication: | NANO LETTERS |
Additional Information: | Copy right for this article belongs to the AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA |
Department/Centre: | Division of Mechanical Sciences > Materials Engineering (formerly Metallurgy) |
Date Deposited: | 26 Aug 2014 06:36 |
Last Modified: | 26 Aug 2014 06:36 |
URI: | http://eprints.iisc.ac.in/id/eprint/49672 |
Actions (login required)
View Item |