ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Investigation of the effect of nonlocal scale on ultrasonic wave dispersion characteristics of a monolayer graphene

Narendar, S and Mahapatra, Roy D and Gopalakrishnan, S (2010) Investigation of the effect of nonlocal scale on ultrasonic wave dispersion characteristics of a monolayer graphene. In: Computational Materials Science, 49 (4). pp. 734-742.

[img] PDF
invest.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.commatsci.2010.06.016

Abstract

In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.

Item Type: Journal Article
Publication: Computational Materials Science
Publisher: Elsevier Science
Additional Information: Copyright of this article belongs to Elsevier Science.
Keywords: Graphene; Nonlocal elasticity; Wave dispersion; Phase speed; Wavenumber; Cut-off frequency; Escape frequency.
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 28 Sep 2010 05:52
Last Modified: 28 Sep 2010 05:52
URI: http://eprints.iisc.ac.in/id/eprint/32480

Actions (login required)

View Item View Item