ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

EPR of Fe3+ ions in macro porous nanocrystalline wollastonite ceramics

UNSPECIFIED (2005) EPR of Fe3+ ions in macro porous nanocrystalline wollastonite ceramics. In: National Symposium on Electron Magnetic Resonance Spectroscopy, February 4 - 5, Pondicherry,India.

[img]
Preview
PDF
EMR2.pdf

Download (84kB)

Abstract

In recent years, materials with porous architecture and high surface area are being developed for numerous potential applications in nanotechnology, catalysis and separation science, molecular sieves, zeolites, hybrid optics, bio ceramics etc. We have synthesized porous wollastonite (CaSiO3) and $Fe^{3+}$ doped (0.5, 1, 1.5, 2, 2.5, 3 and 5 mol%) ceramic powders by a novel low-temperature initiated, self-propagating, gas producing solution combustion process. The ceramic powders have been studied by XRD, TG/DTA, SEM, EDS and EPR spectroscopic techniques. The effect of temperature on crystalline phase formation, amount of porogens and particle size of porous wollastonite has been investigated. The XRD patterns confirm that the ceramic powders undergo a clear single phase formation of \beta -CaSiO3 and \alpha -CaSiO3 at 950°C and 1200°C respectively. These formation temperatures were lower than those using other methods by the conventional solid-state reaction method. It is observed that the average particle size of the annealed wollastonite samples is in the range 29-50 nm. The samples calcined to 950°C has low porosity (17.5 %), however the porosity increases with calcination, and at 1200°C has a large porosity of (31.6 %). The surface areas of as formed, 950°C and 1200°C calcined wollastonite samples were 31.93 m2/g, 0.585m2/g and 3.48 m2/g respectively. The EPR spectra of all the investigated samples exhibit resonance signals characteristic of the $Fe^{3+}$ ions in rhombic and axial symmetry sites. The g values indicate that the paramagnetic ion is in trivalent state and the site symmetry is distorted octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibilities (\chi) has been evaluated from EPR data as a function of $Fe^{3+}$ content. The effect of alkali ions (Li, Na and K) on the EPR spectra, have also been studied and it is interesting to observe that they exhibit a marked alkali effect. The results obtained from these studies have been discussed in detail.

Item Type: Conference Proceedings
Keywords: Macro porous;nanocrystalline wollastonite;ceramic material;Electron Paramagnetic Resonance
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 02 Mar 2005
Last Modified: 19 Sep 2010 04:18
URI: http://eprints.iisc.ac.in/id/eprint/2830

Actions (login required)

View Item View Item