Ghosh, S and Ramanathan, KV and Sood, AK (2004) Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. In: Europhysics Letters, 65 (5). pp. 678-684.
PDF
Water_at_nanoscale.pdf - Published Version Restricted to Registered users only Download (699kB) | Request a copy |
Abstract
Proton NMR studies have been carried out as a function of temperature from 210K to 300K on water confined within single-walled carbon nanotubes. The NMR lineshape at and below the freezing point of bulk water is asymmetric and can be decomposed into a sum of two Lorentzians. The intensities of both the components decrease with the lowering of the temperature below 273K, one component,$L_1$, vanishing below 242K and the other component, $L_2$, below 217K . Following the simulations of Koga et al. showing that the radial density profile of confined water in single-wall carbon nanotubes has a distribution peak at the center which disappears below the freezing temperature, the $L-1$-component is associated with the protons of the water molecules at the center and the $L_2$-component is associated with protons of water molecules at a distance of ~3A from the walls of the nanotubes. In this scenario the complete freezing of the water at ~212K is preceded by the withdrawal of the water molecules from the center.
Item Type: | Journal Article |
---|---|
Publication: | Europhysics Letters |
Publisher: | E D P Sciences |
Additional Information: | The copyright of this article belongs to EDP Sciences. |
Department/Centre: | Division of Chemical Sciences > Sophisticated Instruments Facility (Continued as NMR Research Centre) Division of Physical & Mathematical Sciences > Physics |
Date Deposited: | 09 Feb 2005 |
Last Modified: | 19 Jan 2012 07:08 |
URI: | http://eprints.iisc.ac.in/id/eprint/2720 |
Actions (login required)
View Item |