ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Hypervelocity impacts on thin metallic and composite space debris bumper shields

Ramjaun, Djameel and Kato, Ichiro and Takayama, Kazuyoshi and Jagadeesh, Gopalan (2003) Hypervelocity impacts on thin metallic and composite space debris bumper shields. In: AIAA Journal, 41 (8). pp. 1564-1572.

Full text not available from this repository. (Request a copy)
Official URL: http://pdf.aiaa.org/jaPreview/AIAAJ/2003/PVJAIMP21...

Abstract

The mechanism of hypervelocity impact crater formation in metallic and composite space debris shields has been investigated. Both normal and oblique impact crater formations have been investigated using 2.2-mm-thick aluminum (At 2017), carbon fiber reinforced plastic (CFRP) and aramid fiber reinforced plastic (AFRP) space debris shields in a two-stage light gas gun. A cylindrical projectile made of high-density polyethylene (14 mm in diameter and length) at a muzzle speed of 5.0 +/- 0.2 km/s is used to create the craters in the debris bumper shields. The microscopic study reveals the formation of adiabatic shear bands near the crater zone, from where the secondary cracks emerge, ultimately resulting in the formation of the craters in thin aluminium plates at impact angles of 90, 51, and 64 deg. On the other hand, surface delamination zones caused by the peeling of surface piles surrounding the impact and exit craters are observed in the case of CFRP and AFRP debris shields at normal impact. To estimate the temperature near the craters, time-integrated spectrum of the light emission during the crater formation is recorded. The measurements are taken in the near-UV region of the spectrum. Based on the CN emission from the projectile material, the temperature of the debris cloud during normal and oblique impacts at 5 km/s are estimated to be between 7300 +/- 300 and 7600 +/- 300 K, respectively.

Item Type: Journal Article
Publication: AIAA Journal
Publisher: American Institute of Aeronautics and Astronautics
Additional Information: Copyright of this article belongs to American Institute of Aeronautics and Astronautics.
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 12 Aug 2009 10:50
Last Modified: 12 Aug 2009 10:50
URI: http://eprints.iisc.ac.in/id/eprint/17069

Actions (login required)

View Item View Item