ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Modeling and rendering of gaseous phenomena using particle maps

Adabala, Neeharika and Manohar, Swami (2000) Modeling and rendering of gaseous phenomena using particle maps. In: The Journal of Visualization and Computer Animation, 11 (5). pp. 279-293.

Full text not available from this repository. (Request a copy)
Official URL: http://onlinelibrary.wiley.com/doi/10.1002/1099-17...

Abstract

Any modeling scheme for gaseous phenomena in graphics has to capture three aspects: the fuzzy geometry of the gas, the dynamics, characterized by the presence of vortices, and the interaction of light with the gaseous volume. We represent the gaseous volume as a particle system and apply vortex element methods (VEM) to model the dynamics. A Lagrangian formulation that is gridless and hence ideal for unbounded flows is used. A gridless approach to ray tracing the particle systems is developed using particle maps. These maps are used to estimate densities within a gaseous volume analogous to the way volume photon maps are used to estimate radiance during Monte Carlo ray tracing. A technique is proposed to merge particle and volume photon maps to obtain an effective method for simulating multiple scattering in a dynamic inhomogeneous participating medium. Our method for modeling and rendering gaseous phenomena is conceptually simple and grid free. Particle maps play an effective role, as the nearest neighbor information obtained during the rendering phase is exploited during the dynamics computation. We present results that demonstrate the effectiveness of our approach.

Item Type: Journal Article
Publication: The Journal of Visualization and Computer Animation
Publisher: John Wiley and Sons
Additional Information: Copyright of this article belongs to John Wiley and Sons.
Keywords: Computational fluid dynamics;Physically based animation;Ray tracing;Space-time ray tracing;Participating media;Vortex methods
Department/Centre: Division of Electrical Sciences > Computer Science & Automation
Date Deposited: 30 May 2007
Last Modified: 24 Feb 2012 09:02
URI: http://eprints.iisc.ac.in/id/eprint/10337

Actions (login required)

View Item View Item