Usha, S and Rao, AR (1997) Peristaltic transport of two-layered power-law fluids. In: Transactions of the ASME Journal of Biomechanical Engineering, 119 (4). pp. 483-488.
Full text not available from this repository. (Request a copy)Abstract
Peristaltic transport of two-layered power-law fluids in axisymmetric tubes is studied. Use of the power-law fluid model permits independent choice of shear thinning, shear thickening, or Newtonian fluids for the core and the peripheral layer. The interface between the two layers is determined from a transcendental equation in the core radius. The variation of the time-mean flow Q over-bar with the pressure rise or drop over one wavelength Δp is studied. It is observed that a negative time-mean flow is achieved under free pumping (Δp = 0) for the wave forms considered here if one of the peripheral layer and core fluids is non-Newtonian. The rheology of the peripheral layer fluid is a dominant factor in producing a negative or positive mean flow. It is noticed that a sinusoidal wave always yields a positive mean flow for power-law fluids. The trapped bolus volume for sinusoidal peristaltic wave is observed to decrease with an increase in the rate of shear thinning of the core and the peripheral layer fluids.
Item Type: | Journal Article |
---|---|
Publication: | Transactions of the ASME Journal of Biomechanical Engineering |
Publisher: | ASME |
Additional Information: | Copyright of this article belongs to ASME. |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 28 Mar 2007 |
Last Modified: | 27 Aug 2008 12:38 |
URI: | http://eprints.iisc.ac.in/id/eprint/9938 |
Actions (login required)
View Item |