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Abstract
The current manual visual inspection of built environments is time-
consuming, labor-intensive, prone to errors, costly, and lacks scal-
ability. To address these limitations, automated building inspec-
tion techniques have emerged in recent years, leveraging low-cost
computer vision systems, drones and mobile robots. However, the
practical implementation of these systems is hindered by the lack
of robust and generalizable models trained on comprehensive de-
fect image datasets. In this paper, we present BD3: Building De-
fects Detection Dataset, a comprehensive image dataset designed
to benchmark computer vision techniques aimed at improving the
robustness and generalizability of automated building inspection
systems. The BD3 dataset contains 3,965 high-quality, manually col-
lected, and annotated images. Unlike other datasets that primarily
focus on crack and non-crack images, BD3 includes images of six
distinct building defects (algae, major crack, minor crack, peeling,
spalling, and stain), as well as images representing normal building
conditions. We benchmarked the BD3 using five state-of-the-art
computer vision models to classify defect and normal images. The
experimental results indicate that the Vision Transformer (ViT)
model achieved the highest F1-scores of 0.9342 and 0.9879 on the
original and augmented datasets, respectively. The BD3 dataset and
its accompanying reproducible codebase are publicly available for
benchmarking other defect detection algorithms.
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1 Introduction
Maintaining built environments, particularly older buildings

with defects, and ensuring their structural integrity presents sig-
nificant challenges. Currently, manual visual inspection methods,
which involve skilled professionals, are widely employed. These
methods also utilize handheld gadgets, digital meters, and other
tools to facilitate the inspection process. While manual inspec-
tion techniques can be comprehensive and flexible, they are often
time-consuming, labor-intensive, costly, and susceptible to human
error [3, 16]. Additionally, they face limitations in accessibility,
particularly in high-rise buildings, and scalability, making them
less effective for the proactive maintenance of built environments.
In response, the recent development of low-cost computer vision
technologies, together with mobile robots and drones, presents
promising opportunities for automating and modernizing defect
inspection methods. These technologies offer a more scalable ap-
proach to defect detection and analysis. They can support or com-
plement manual methods by addressing expertise gaps and enabling
more detailed, consistent inspection results [3, 22].

In recent years, there has been growing interest in using Artifi-
cial Intelligence (AI) and computer vision techniques to automate
building inspection methods [8, 17]. However, developing efficient
computer vision models presents multiple challenges related to
the availability of datasets for training [6]. Firstly, the quality and
quantity of available image datasets for training these models are
significant concerns. Computer vision models generally require
large samples of images per class that include variations; without
sufficient data, their performance may suffer when deployed. Sec-
ondly, the diversity of defects poses a challenge; existing public
datasets contain only a limited number of defect types, making it
difficult for models to accurately identify various building issues.
Finally, the variability in building types, materials, and environmen-
tal conditions complicates the training process and can negatively
impact the performance of computer vision models in real-world
scenarios. To address these challenges, there is a pressing need for
the development of large datasets containing images of multiple
defects collected from different buildings under varying conditions.
Such datasets would enable the training of AI-based building inspec-
tion systems that are more accurate, robust, and generalizable [6].

In this paper, we present BD3: Building Defects Detection Dataset,
a manually collected and annotated dataset of 3,965 RGB images
for training and evaluating the robustness of computer vision tech-
niques to improve building inspection methods. The BD3 dataset
includes images of six different defect types (algae, major crack, mi-
nor crack, peeling, stain, spalling), as well as images of defect-free
buildings, collected from diverse building types. It also includes
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(a) Algae (b) Major crack (c) Minor crack

(d) Peeling (e) Spalling (f) Stain

Figure 1: Sample images of 6 defect classes in our BD3 dataset.

an augmented version of the original dataset, containing 14,000
samples that feature multiple variants of the original images to en-
hance the dataset’s generalizability. These variants include changes
in lighting conditions, image angles, scales, and other alterations to
simulate defects in various real-world built environments. Further-
more, we evaluate the utility of BD3 by implementing five state-
of-the-art computer vision models: Vision Transformer (ViT) [4],
VGG16 [19], ResNet18 [7], AlexNet [9], and MobileNet-V2 [18], and
we compare their performance using various evaluation metrics.
Our experimental results showed that ViT models achieved the
highest F1-scores of 0.9342 and 0.9879 on the original and aug-
mented datasets, respectively. The BD3 dataset and the accompany-
ing reproducible benchmarking code are released as open-source
for community use1.

2 Related Works
There are several studies in the literature that discuss the need

for high-quality annotated datasets and the implementation of
vision-based defect detection systems [13, 20]. These studies also
emphasize the necessity for datasets to be recorded in a standard-
ized manner. A comparison of existing datasets for image-based
structural inspection is presented in [1]. In [2], authors introduced
a dataset containing images of cracks in masonry structures. In [22],
authors presented a wall defect dataset with four classes: cracks,
chalk, joints, and normal surfaces. Whereas, in [10], authors pre-
sented an aggregated dataset from various open source containing
9000 samples. The SDNET2018 [3] dataset includes 56,000 samples
of crack of walls and pavements augmented from only 230 original
images and compared the model performance in both fully trained
and transfer learning settings. In [5], authors presented a study
focusing on the visual tracking of cracks in historical buildings
facilitating early identification of structural health issues through
architectural examinations. Furthermore, in [15], authors conducted
a multidimensional performance analysis on several pre-trained
networks assessing factors such as training dataset size, network
depth and adaptability to various building materials.
1https://github.com/samy101/bd3-building-defects-detection-dataset

In summary, most existing datasets contain images of only two
classes: crack and no crack, as shown in Table 1. These datasets
were primarily collected from outdoor structures such as bridges,
pavements, and buildings. While a few studies have focused on
more detailed defect categories like corrosion, stains, and spalling,
prevalent in many structures and crucial for thorough building
inspections, the availability of comprehensive datasets with diverse
defects remains lacking. Our BD3 dataset addresses this gap.

3 The BD3: Building Defects Detection Dataset
3.1 Data collection and Annotation

Our data collection process began by visiting a diverse range of
buildings in Bangalore, India, and collecting their basic attributes
such as building type, materials, and age. We subsequently selected
20 buildings, with ages ranging from 10 to over 60 years, various
architectural styles and materials, including stone and brick struc-
tures. Next, we captured images of different defects and normal
conditions from both interior and exterior surfaces using a high-
resolution camera at different times during the day time. This ap-
proach ensured that the dataset reflects variations in environmental
exposure, lighting conditions, and weathering effects.

The raw dataset initially contained over 5,000 images with a res-
olution of 3024 x 4032 pixels in JPEG format. We carefully examined
each image and omitted the poor-quality images. After this cleaning
process, 3,965 images were left in our dataset. Next, we cropped
the images to ensure that each one contains a single defect with
clearly visible features and then downscaled all images to 512 x 512
pixels. We chose this moderate resolution because many computer
vision models typically require square images, and it helps optimize
both storage and computational resources needed for training and
inference. Next, with the help of building inspection personnel, we
annotated the collected samples into one of the six defect classes
or normal. The names of the defect classes were chosen in consul-
tation with the building inspection team, who recommended these
defects as prevalent in many buildings. The entire data collection
and annotation process took approximately 200 man-hours, and
the final version of the dataset occupies 115 MB of disk space.

Figure 1 shows sample images of the six defects from the BD3
dataset. The following list provides the defect names, number of
images, and descriptions:

• Algae (624): Existence of fungi that look like green, brown,
black patches or slime on the surface.

• Major crack (620): Crack with visible gap.
• Minor crack (580): Crack with no gap.
• Peeling (520): Loss of outer covering of paint.
• Spalling (500): Surface break with visible inner material.
• Stain (521): Visible man-made or natural colour marks.
• Normal (600): Clean wall, no clue of existence of above defect
classes.

3.2 Image Augmentation
Image Augmentation is one of the widely used techniques to

generate additional images with different variations to enhance
generalizability [11]. We applied different image augmentation
techniques to the original dataset of 3,965 images and created an
augmented version of BD3 dataset. Different variants of each raw
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Table 1: Comparison of existing building defect datasets.

Dataset No. of images
(original)

No. of images
(augmented)

No. of
classes

Image
Resolution Class names

Historical-crack18-19, Egypt [5] 40 3886 2 256 x 256 Crack, Non crack
SDNET 2018, Utah, USA [3] 230 56000 2 256 x 256 Crack, No crack
Masonry wall, Netherlands [2] 469 11491 2 224 x 224 Crack, No crack
Wall crack, Turkey [15] 500 40000 2 224 x 224 Crack, No crack
CSSC, China [21] 1232 - 2 130 x 130 Crack, Spalling
Building data-bank, China [12] 1250 60000 2 256 x 256 Crack, No crack
CODEBRIM, Germany [14] 1590 - 4 Varying Crack, Corrosion Stain, Spalling, Other
Japan [22] 2000 17000 5 64 x 64 Crack, Chalk, Joint, Surface, Other

UK [16] 2622 - 4 224x224 Mould, Stain, Paint, Deterioration, No
crack

BD3 dataset 3965 14000 7 512 x 512 Algae, Major crack, Minor crack,
Peeling, Stain, Spalling, Normal

Figure 2: Vision Transformer Backbone [4]

image were generated by randomly applying geometric transfor-
mations such as rotations, vertical flips, and horizontal flips as well
as color space adjustments to modify brightness, contrast, satura-
tion, and hue. We generated 2,000 samples of augmented images
for each of the seven classes resulting in a total of 14,000 samples.
The augmented version of the dataset enhances generalizability
by incorporating various variations of the original image samples,
thereby improving the performance and robustness of computer
vision models trained on this dataset.

4 Benchmarking
We evaluate BD3 using five contemporary and widely used

computer vision algorithms: Vision Transformers (ViT), VGG16,
ResNet18, AlexNet, and MobileNetV2. These algorithms represent
different architectural approaches and varying levels of complexity.
Our primary objective was to evaluate their performance on our
dataset, gain insights into their detection efficiency for each defect
class and identify any limitations.

4.1 Computer Vision Models
(1) Vision Transformers (ViTs) [4] have revolutionized com-

puter vision by leveraging the power of the transformer
architecture. They have demonstrated remarkable perfor-
mance on various recognition tasks surpassing traditional
convolutional neural networks (CNNs) in many applications.

The original ViT architecture as shown in Figure 2 consists of
a stack of 12 transformer layers. The input image is divided
into 16x16 patches resulting in a length of 196. Absolute
position embeddings are added and a classification token is
prepended. The transformer encoder is then applied to the
sequence and the final output is passed through a fully con-
nected layer to obtain the image classification predictions.

(2) VGG16 [19] has been widely adopted for various image
classification tasks due to its effectiveness and relatively
straightforward architecture. It consists of 16 layers includ-
ing 13 convolutions followed by max pooling and 3 fully
connected layers.

(3) ResNet18 [7] utilizes residual learning through skip con-
nections consists of 18 layers including convolutions layers,
batch normalization and ReLU activation functions.

(4) Alexnet [9] is one of the first architectures that used GPUs
for training and consists of 5 convolutional layers, 3 max
pooling layers, 2 normalization layers, 2 fully connected
layers, and 1 softmax layer.

(5) MobileNet-V2 [18] is a light-weight inverted residual struc-
ture consists of an initial convolution layer followed by a
series of inverted residual blocks, global average pooling and
a fully connected layers.

4.2 Experimental setup
We used the PyTorch framework to train all five computer vision

models. We employed transfer learning by initializing the weights
of the models based on ImageNet and added a custom fully con-
nected layer to classify the seven classes: six types of defects and
normal conditions. Separate defect classification models were de-
veloped using the original and augmented datasets, with a split
of 60% for training, 20% for validation, and 20% for testing. All
experiments were conducted on a server equipped with an NVIDIA
A6000 GPU and 48 GB of memory. After training, we evaluated
each model’s performance based on its predictions using standard
metrics, including precision, recall, F1-score, and the confusion
matrix.
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Table 2: Comparison of performance metrics (precision, recall, and F1-score) for five defect classification models. The ViT model achieved the
highest F1-scores of 0.9323 and 0.9879 on the original and augmented datasets, respectively.

Model Original dataset Augmented dataset
Precision Recall F1-score Precision Recall F1-score

ResNet18 0.8320 0.8308 0.8301 0.9915 0.9516 0.9711
VGG16 0.8409 0.8359 0.8363 0.9066 0.9057 0.9056
MobileNetV2 0.8479 0.8422 0.8419 0.8756 0.8750 0.8746
AlexNet 0.8842 0.8801 0.8803 0.9399 0.9389 0.9391
ViTpatch16 0.9342 0.9318 0.9323 0.9880 0.9879 0.9879

Table 3: Comparison of the ViT model’s performance across different defect types on the original and augmented datasets.

Class Original dataset Augmented dataset
Precision Recall F1-score Precision Recall F1-score

Algae 0.9915 0.9516 0.9711 1.0000 0.9975 0.9987
Major crack 0.8761 0.8534 0.8646 0.9794 0.9550 0.9670
Minor crack 0.8417 0.9435 0.8897 0.9612 0.9925 0.9766
Peeling 0.9595 0.9134 0.9359 0.9851 0.9925 0.9887
Spalling 0.9579 0.9100 0.9333 0.9875 0.9875 0.9324
Stain 0.9166 0.9519 0.9339 0.9950 0.9975 0.9962
Normal 1.0000 0.9916 0.9958 0.9974 0.9925 0.9949

ViT AlexNet MobileNetV2 VGG16 ResNet18

Models
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Figure 3: Comparison of model performance on the original dataset.
ViT achieved the highest F1-score of 0.9323.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 · Precision · Recall
Precision + Recall

(3)

where, True Positives (TP) refer to instances correctly predicted as
positive, False Positives (FP) are instances incorrectly predicted as
positive and False Negatives (FN) are instances incorrectly predicted
as negative.

4.3 Results
Table 2 and Figure 3 compare the performance of all five defect

classification models. The ViT model achieved the highest F1-scores
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Figure 4: Confusion matrix of predictions made by the ViT model
on the original dataset.

of 0.9323 and 0.9879 on the original and augmented datasets, re-
spectively. AlexNet followed with F1-scores of 0.8803 and 0.9391.
ResNet18 andMobileNetV2 had the lowest F1-scores among the five
models on the original and augmented datasets, respectively. No-
tably, all models showed improved performance on the augmented
dataset, as they could learn from a large number of images with
various feature variations.

Table 3 provides a detailed comparison of class-wise performance
of the ViTmodel on both the original and augmented datasets. From
this table, we observe that in the original dataset, the F1-score for
the normal class is the highest at 0.9958, followed by Algae at 0.9711,
while Major Crack has the lowest score at 0.8646. Whereas, in the
augmented dataset F1-score for Stain is the highest (0.9962), fol-
lowing Algae (0.9987), while Major Crack has the lowest (0.9670).
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Figure 4 shows the confusion matrix for class-wise predictions of
all 792 test samples from the original dataset. We observe that the
F1-scores for Minor and Major cracks are the lowest due to the simi-
larity between these two defect classes. Overall, these experimental
results provide valuable insights into the performance of various
defect classification models and the usability of the dataset.

5 Conclusions and Future works
Recently, many studies have proposed the development of com-

puter vision techniques to automate the current manual visual
inspection methods for built environments. However, the lack of
comprehensive datasets needed to train efficient and robust defect
classification models is one of the primary challenges in practically
implementing them. To address these limitations, we developed
BD3: Building Defects Detection Dataset, a comprehensive dataset
containing 3,965 high-quality annotated images of six common
defects and normal conditions collected from diverse building types
in Bangalore, India. We benchmarked our dataset using five state-
of-the-art image classification models and compared their perfor-
mance. Our experimental results show that the ViT models trained
on BD3 can be useful in classifying defects accurately and deployed
into drones or mobile robots to localize the defects, which is the
first step when conducting building inspection. It should be noted
that a holistic building inspection requires detailed analysis of each
defect, such as identifying the severity and depth. As future work,
we plan to extend this dataset by segmenting the location of faults
in each image and include additional context information, such as
wall type and materials, to enable automated segmentation tasks,
contributing to more precise building inspections.
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