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Persistent currents (PCs) in mesoscopic rings have been a subject of intense investigation since
their proposal by Buttiker, Landauer, and Imry in 1983. In this paper, we explore the behavior of
PC in spin-orbit coupled rings under the influence of a Zeeman field, contrasting it with traditional
PC observed in rings threaded by magnetic flux. Our study reveals that the emergence of PC in our
setup crucially depends on nonzero values of spin-orbit coupling and the Zeeman field. Through the-
oretical analysis and numerical calculations, we uncover several intriguing phenomena. Specifically,
in ballistic rings, we observe an inverse proportionality between PC and system size, with PC being
zero at half filling for even numbers of sites. Additionally, the introduction of on-site disorder leads
to the suppression of PC, with exponential decay observed for large disorder strengths and quadratic
decay for smaller disorder strengths. Notably, disorder can enhance PC in individual samples, albeit
with a configuration-averaged PC of zero. Furthermore, we find that the standard deviation of PC
increases with disorder strength, reaching a maximum before decreasing to zero at high disorder
strengths. Our findings shed light on the intricate interplay between spin-orbit coupling, Zeeman
fields, and disorder in mesoscopic quantum systems, offering new avenues for theoretical exploration
and experimental verification.

I. INTRODUCTION

In 1983, Buttiker, Landauer, and Imry introduced the
concept of undecaying current in non-superconducting
metallic rings threaded by a magnetic flux1. This per-
sistent current (PC) phenomenon manifests when the
temperature is sufficiently low (< 1K) and the ring size
is small2 (< 1µm). In this realm, the energy levels of
closed systems become discrete3, and interference effects
become pivotal when the system size is comparable to or
less than the phase coherence length3, Lϕ. These PCs
exhibit periodic behavior with respect to magnetic flux,
with a period equal to the flux quantum3 ϕ0 = h/e. Re-
markably, even static disorder fails to obliterate them1.
For weak disorder, the PC (I) varies quadratically with
the disorder strength (w), while for strong disorder, it de-
cays exponentially with the ring size3. Also, with number
of channels, PC increases and in realistic multichannel
rings, the PC was predicted to be observable4. An ex-
planation for the experimentally observed PC in normal
metals concerning magnetic impurities and attractive in-
teractions was provided by H. Bary-Soroker et al. in
20085.

The theoretical exploration of PCs has been extensive
for more than two decades. However, its experimental
detection poses significant challenges due to the minute
signal produced and its high sensitivity to the environ-
ment. The first experimental observation of PC dates
back to nearly three decades ago, employing SQUID
techniques6–8. However, discrepancies with theoretical
predictions were noted. Subsequent measurements uti-
lizing micromechanical detectors overcame these limita-
tions, providing enhanced sensitivity and reduced back
action9. Moreover, these experimental results aligned
well with theoretical expectations, enabling more com-
prehensive investigations into PC dynamics across single

rings and ring arrays concerning size, temperature, and
magnetic field orientation.

While Hall effect, a transverse voltage arising in re-
sponse to a longitudinal current in a two-dimensional
metal under a normal magnetic field, is well known, pla-
nar Hall effect occurs in samples with spin-orbit coupling
under the influence of an in-plane magnetic field10–15.
The Hall effect is due to Lorentz force on electrons
whereas the planar Hall is due to a combination of Zee-
man field and spin-orbit coupling16,17. In Datta-Das spin
transistors, transverse current is generated (in systems
with periodic boundary conditions in transverse direc-
tion) due to spin-polarized electron injection into a spin-
orbit coupled central region, instead of an in-plane Zee-
man field18. An implication of this work is the persistence
of nonzero transverse conductivity even when the junc-
tion is cut off, attributable to the combined influence of
injected spin-polarized electrons and spin-orbit coupling
in the central region. Zero longitudinal current suggests
that the system is in equilibrium. A nonzero transverse
current in an equilibrium setup prompts the query: “does
a PC flow in an isolated spin-orbit coupled ring under the
influence of a Zeeman field?”.

In Sec. II, we perform calculation of PC with no dis-
order in the system and check its behavior with electron
filling, (α, b), and the size of the ring. In Sec. III, we
discuss the effects of the disorder on PC and how it varies
with the strength of the disorder for experimentally rele-
vant values of (α, b). These values are computed from the
estimated data of InAs nanowires19. We find that at half-
filling PC is exactly zero in the ballistic case, but with
the disorder, we can have a nonzero PC for a fixed disor-
der configuration, though the configuration averaged PC
is zero.
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II. BALLISTIC RING

The system can be described as a lattice model by the
following Hamiltonian

H =

N∑
n=1

[
− t(c†n+1cn + h.c) +

α

2
(ic†n+1σzcn + h.c.)

+ bc†nσθ,ϕcn

]
(1)

where cn =
[
cn,↑ cn,↓

]
T , cn,σ annihilates an electron of

spin σ at site n. The first term in the Hamiltonian rep-
resents a tight binding term with t being the hopping
strength, the second term corresponds to spin-orbit cou-
pling with α as coupling strength, and the last term con-
tains the Zeeman field with b being the Zeeman energy.
Here, σθ,ϕ = cos θσz + sin θ(cosϕσx + sinϕσy), with σj
and j = x, y, z being the Pauli spin matrices. N is the
number of sites in the ring. The coordinates (θ, ϕ) de-
termine the direction of the Zeeman field applied. Also,
N +1 ≡ 1 and the system is periodic. So, momentum ℏk
is a good quantum number and the wave number k takes
values (2πj/N) for j = 0, 1, 2, .., N − 1.
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FIG. 1. (a) PC versus number of electrons on a ring with N =
60. (b) Energy versus wave number for the states (orange
open circles). For quarter filling, filled states are shown with
blue dot. Other parameters: α = 0.1t, b = 0.1t, θ = 0.

The Hamiltonian in momentum space can be written
as Hk = −2t cos kσ0+α sin kσz + bσz, when θ = 0. Here,
we have taken the lattice spacing to be 1. At non-zero
values of b, time-reversal symmetry is broken, and for
nonzero values of α, parity is broken. When both b and
α are nonzero, time revrsal and parity are both broken
which results in a net current in the ring which is a PC.
In fact, a nonzero component of the Zeeman field along
ẑ results in a PC in the spin-orbit coupled ring. We shall
work with θ = 0 in this paper, which means the Zeeman
field is in the ẑ-direction.
The current carried by an individual electron between

the sites n− 1 and n is given by

J
(m)
n,n−1 =

1

iℏ

[
− t(ψ(m)†

n ψ
(m)
n−1 − c.c.)

+
iα

2
(ψ(m)†

n σzψ
(m)
n−1 + c.c.)

]
(2)

where ψ
(m)
n =

[
ψ
(m)
n,↑ ψ

(m)
n,↓

]
T is an eigenfunction at site

n. The index m runs over different eigenstates arranged

in ascending order of energy. If Ne electrons are filled,
the total current is given by

J =

Ne∑
m=1

J
(m)
n,n−1 (3)

Choosing α = 0.1t, b = 0.1t, θ = 0 and N = 60,
we diagonalize the Hamiltonian and plot the PC in the
ring versus the number of electrons in Fig. 1(a) and the
eigenenergies versus wave number k in Fig. 1(b).
We find that for even number of electrons, the total

current is close to zero. This can be explained using
Fig. 1(b). With an even number of electrons, for every
right-moving electron, there is a left-moving electron with
almost equal magnitude of the velocity, thus cancelling
the currents pairwise. This is not true when the number
of electrons is odd. The last electron filled has no partner,
and it contributes significantly to the PC.
For α = b = 0 in a ring with even number of sites, each

single particle state is 4-fold degenerate since it can be la-
belled by (±k,±σ). Further, the velocities of the +k and
−k states are exactly equal and opposite. Thus, in this
case, there is no current when the number of electrons
is a multiple of 4 (i.e. Ne mod 4 = 0) since the ground
state is non-degenerate and +k and −k for each spin is
filled. When Ne mod 4 = 1 or 3, the ground state has a
degeneracy of 4 (assuming that the simultaneous eigen-
states of the Hamiltonian and momentum operator are
filled). Two of those states will have a non-zero current
in one direction while the other two will have a current
in the other direction. So, in these two cases there will
be a PC. When Ne mod 4 = 2, the ground state is 6 fold
degenerate. Two of these states will carry a current, but
in opposite directions and of twice the magnitude of the
current in Ne mod 4 = 1 or 3 cases. And the remaining
4 will carry no current. So, even in the simplest case of
α = b = 0, there is an effect of the number of electrons,
except that it is not an odd-even effect but a mod 4
effect and the current can be identically zero. Now, for
α ̸= 0 but b = 0, each single particle state is 2-fold degen-
erate since (k, σ) and (−k,−σ) are degenerate and they
also have exactly equal and opposite velocities. This time
there will be an odd even effect with the even filling case
giving an identically zero current. For the case α ̸= 0
and b ̸= 0, the single particle states are non-degenerate
and so, in principle, there is a non-zero current for every
filling. And the (k, σ) and (−k,−σ) states do not have
exactly equal and opposite velocities. In fact, the differ-
ence is just 2α cos k/ℏ. If b is sufficiently small, like in
the case considered here, for even filling the current is
very close to zero while for odd filling it is not.
For even N we find that the PCs with Ne electrons

filled and 2N−Ne electrons filled are equal in magnitude
and opposite in sign. This feature can be explained by the
following argument. The dispersion for the Hamiltonian
in eq. 1 is E = −2t cos k ± (α sin k + b). Let us denote
dispersions for the two bands by E±. Under k → π − k,
E−(k) → −E+(k). This means that ifm-th electron from
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FIG. 2. (a)Density plot of the PC (in units of et/ℏ) versus Zeeman field and the spin-orbit coupling strength. Eigenstates and
the filled eigenstates for: (b) α = 0.5t, b = 0.8t (c) α = 0.5t, b = 1.2t

band bottom in band σ (σ = ±) has wavenumber k, the
m-th electron from the top of the band (enumerated in
descending order) has wavenumber π−k. The velocity of
electrons in the two bands are v± = 2t sin k ± α cos k/ℏ.
This implies that v−(k) = v+(π−k) which is the same as
saying the currents carried by the m-th electron from the
bottom of the bands is the same as the current carried
by the m-th electron from the top of the band. The fully
filled bands do not carry any current. So, at filling 2N −
Ne, the topmost Ne electrons are missing which carry
the same current as the bottom most Ne electrons. This
makes the currents at fillings Ne and 2N − Ne equal in
magnitude and opposite in sign. Hence, for even N , the
current at half-filling is zero. Further, the allowed values
of k are 2πn/N , where n = 0, 1, 2, .., N − 1. For even
N , k is allowed in addition to π − k. But this argument
breaks down for odd N since π − k is not allowed when
k is allowed. The current at half filling need not be zero
for odd N .

We plot the PC as a function of α and b in Fig. 2(a)
for θ = 0 and quarter filling. We can see from Fig. 2(a)
that for a fixed value of α current shows one behavior, in
which it oscillates between negative and positive values
as we change b from zero to a critical value bc. But
above bc, the current becomes constant as we change b.
These two behaviors can be explained as follows. For low
values of b, states from both the spin up and spin down
bands are occupied, and this can be seen from Fig. 2(b).
So, electrons from both bands contribute to the current.
But for large b, the two bands in dispersion relation are
completely separated as shown in Fig 2(c). So, if we
further increase b, the occupied states will not change,
and the bands are separated more than before. This does
not change the current.

In Fig. 3(a) we have plotted PC as a function of the
number of lattice sites for the quarter filling case with
parameters α = b = 0.1t and θ = ϕ = 0. We can see
that for a large value of N , PC oscillates around zero
with a decaying envelope. The envelope is fitted with a
linear fit in the log-log plot (see Fig. 3(b)). The fit has
a slope of −1. So, the envelope decays as 1/N . This
can be understood from the fact that PC has a dominant
contribution from the single electron filled at last. The
current is quadratic in ψ and ψ at a site is proportional
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FIG. 3. (a) PC versus the size of the ring at fixed filling
(Ne = [N/2]). α = b = 0.1t. (b) The top envelope is plotted
in the log-log scale and fitted with a linear fit. It can be seen
that J oscillates as N increases with an envelope that decays
as 1/N .

to 1/
√
N making the current go as 1/N .
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FIG. 4. Effect of disorder. (a) PC for different disorder con-
figurations for α = 2.35 × 10−3t, b = 1.15 × 10−4t, w = b,
N = 90, Ne = 45. Standard deviation (s.d.) is shown in the
inset text. (b) Configuration averaged PC versus (b, α) for
w = 0.5t, N = 60, Ne = 30. The disorder configurations are
the same for each value of (b, α). Compare (b) with Fig. 2 (a).

III. DISORDERED RING

The Hamiltonian for spin-orbit coupled ring under the
influence of a Zeeman field with disorder in the on-site
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FIG. 5. (a) Configuration averaged PC versus disorder strength w, (b) PC is fitted with a quadratic fit for weak w, (c) PC
is plotted in log scale and fitted with a linear fit for strong w. All figures are at fixed filling (Ne = [N/2]) for N = 90,
α = 2.35× 10−3t, b = 1.15× 10−4t.

potential is given by

H =

N∑
n=1

[
− t(c†n+1cn + h.c) +

α

2
(ic†n+1σzcn + h.c.)

+bc†nσθ,ϕcn

]
+

N∑
n=1

[
ϵnc

†
ncn

]
(4)

where ϵn is the disorder at site n with ϵn chosen ran-
domly in the range [−w,w] (where w is the strength of
the disorder). The expressions for the current carried by
a single electron and the total current are the same as
eq. 2 and eq. 3.
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FIG. 6. (a) Configuration averaged PC versus the size of the
ring at fixed filling (Ne = [N/2]) for w = 0.5t, α = 2.35 ×
10−3t, b = 1.15 × 10−4t. (b) The top envelope is fitted in a
log scale with a linear fit.

We plot the numerically evaluated PC for different dis-
order configurations in Fig. 4(a) for α = 2.35 × 10−3t,
b = 1.15 × 10−4t, w = b, N = 90, Ne = 45. We find
that the standard deviation (SD) is 1.32 × 10−7. The
above (α, b) values are experimentally relevant for InAs
nanowires19. Here SD is much less compared to the mean
-0.0155. When the number of electrons is even, both the
mean and SD of the PC are practically zero for the above
choice of parameters. This is because, the energy states
for ±k are almost degenerate (in absence of disorder)
due to the small values of b, α and the currents carried
by these states cancel in pairs. Adding disorder to such a
Hamiltonian does not alter PC much. For other choices
of parameters both the mean and SD of the PC may not
be zero for even number of electrons. For example, if

α = b = 0.1t, Nc = 2000 (Nc is the number of different
disorder configurations) and w = b are chosen for even
Ne, the mean and the standard deviation of the PC are
1.16× 10−4 and 3.04× 10−5 respectively. In Fig. 4(b) we
plotted PC versus (b, α) for w = 0.5t, N = 60, Ne = 30,
Nc = 1000. Here for each value of (b, α) PC is averaged
over the same set of one thousand disordered configura-
tions. By comparing Fig. 4(b) with Fig. 2(a), we can see
the value of PC decreases due to disorder and the transi-
tion from negative to positive value of PC is not as sharp
as in the ballistic case.

We have plotted the configuration averaged PC ver-
sus strength of disorder with SD shown as error bars in
Fig. 5(a) for N = 90, Ne = [N/2], α = 2.35 × 10−3t,
b = 1.15 × 10−4t, Nc = 1000. We can see that the PC
goes to zero along with the standard deviation as w in-
creases. We have plotted the configuration averaged PC
on a log-scale in Fig. 5(b) along with a linear fit for the
range w = 0.6t to w = t. For strong w the PC varies
exponentially with w. But for weak w, the scenario is
different. In Fig. 5(c) we can see the PC is fitted with a
quadratic fit for weak w. So, PC varies as w2 for weak
w.

In Fig. 6(a) we plotted configuration averaged PC ver-
sus the size of the ring for w = 0.5t, α = 2.35 × 10−3t,
b = 1.15×10−4t, Nc = 1000 and Ne = [N/2]. We can see
from Fig. 6(a) that the magnitude of oscillation goes to
zero as N increases. Here the value of the PC is low as
compared to the ballistic case (see Fig. 3(a)). In Fig. 3(b)
we saw that the envelope of the PC varies as 1/N , but
here it is not like that. We have plotted the envelope of
Fig. 6(a) in log-scale in Fig. 6(b) and fitted with a linear
fit. So, for strong w, the PC varies exponentially with
N . But for weak w, the PC varies exponentially only for
large N .

We have seen the behavior of the PC with electron
filling in the ballistic case (see in Fig. 1(a)). Now it is
interesting to know the behavior of PC versus filling for
the disordered case. In Fig. 7(a) we have plotted the
configuration averaged PC of the ring versus the num-
ber of electrons for N = 60, w = t, α = b = 0.1t and
Nc = 10000. Here PC is averaged over ten thousand dis-
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FIG. 7. (a) Configuration averaged PC versus number of elec-
trons.(b) Inverse participation ratio (IPR) of the last electron
versus the number of electrons. In all figures: N = 60, w = t,
α = b = 0.1t,Nc = 10000.

ordered configurations. We can see from Fig. 7(a) that
for low filling the PC is zero, but for moderate filling we
have a significant PC value. This can be explained us-
ing Fig. 7(b). In Fig. 7(b) we have plotted the inverse
participation ratio (IPR) of the last electron versus the
number of electrons for the same set of parameters. Here
IPR is averaged over Nc = 10000 disordered configura-
tions. We can see from Fig. 7(b), for low filling IPR is
high compared to moderate filling. That means the last
electron is strictly localized in the low-filling case com-
pared to moderate filling. So the current is suppressed
due to the localization which leads to zero current in the
low filling case.
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FIG. 8. Configuration averaged PC versus the strength of
disorder at fixed filling (Ne = [N ]) for N = 90, α = b = 0.1t,
θ = 0.

In the ballistic case, we saw that for even N at half-
filling, the PC is zero. However, with the disorder, the
configuration averaged PC is zero at half filling for even
N , while the standard deviation increases with w, at-
tains a maximum, and goes to zero for very strong w.
We can see this from Fig. 8 where configuration aver-
aged PC is plotted versus w for α = b = 0.1t, θ = 0,
N = 90, Ne = [N ] and Nc = 1000. Here we can see
for w = 0 both the configuration averaged PC and stan-
dard deviation are zero. As w increases the configuration
averaged PC remains zero, while the standard deviation
increases with w, reaches a maximum, and then starts
decreasing with a further increase in w. For very strong
w, the standard deviation also goes to zero. In experi-

ments for a given sample, the disordered configuration is
fixed, and depending on the strength of the disorder the
PC of the sample may not be zero at half-filling. But it
lies anywhere between the negative to the positive value
of SD as shown in the error bar in Fig. 8. Though PC is
zero in the ballistic case at half-filling, the disorder helps
in getting a nonzero PC.

IV. DISCUSSION

Spin-orbit interaction leads to an equilibrium spin cur-
rent in a quantum ring20. This spin current can be con-
verted to persistent charge current by introducing mag-
netization to the ring21. This conversion is a result of
broken time-reversal symmetry, which makes the unequal
flow of currents carried by the spin-up and spin-down
components of the spin current, results in a net persis-
tent charge current in the system. Our work is same in
spirit as that of ref.21. While ref.21 studies PC in ballistic
rings, our work includes the effect of disorder.

V. SUMMARY AND CONCLUSION

Our work focusses on PC in spin-orbit coupled rings
under the influence of Zeeman field in contrast with PC
in rings threaded by a magnetic flux. PC in our setup
requires nonzero values of spin-orbit coupling and Zee-
man field. Our investigation reveals that PC in a bal-
listic ring is inversely proportional to the system size.
For even number of sites, PC is zero at half filling. The
dependence of PC on (b, α) exhibits two distinct behav-
iors for large and small b. Below a critical value of b,
PC oscillates with b for a fixed α and above the critical
value of b PC remains constant. On-site disorder leads
to suppression of PC typically. PC decays with disorder
exponentially for large strength of disorder and quadrat-
ically for small disorder. PC decays exponentially with
system size for large system sizes. The critical system size
above which PC decays exponentially with system size is
smaller for strong disorder and large for weak disorder.
Interestingly, for even number of sites, PC is zero at half
filling for the ballistic ring, but disorder can enhance PC
in a single sample, though the configuration averaged PC
is zero. The standard deviation of PC increases with dis-
order strength, reaches a maximum, and then decreases
to zero at large strength of disorder. These findings not
only contribute to a deeper understanding of mesoscopic
quantum transport phenomena but also have practical
implications for the development of quantum devices and
technologies.
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1 M. Büttiker, Y. Imry, and R. Landauer, “Josephson be-
havior in small normal one-dimensional rings,” Physics
Letters A 96, 365–367 (1983).

2 H. Bouchiat, “New clues in the mystery of persistent cur-
rents,” Physics 1, 7 (2008).

3 H. F. Cheung, Y. Gefen, E. K. Riedel, and W. H. Shih,
“Persistent currents in small one-dimensional metal rings,”
Phys. Rev. B 37, 6050–6062 (1988).

4 E. K. Riedel, H.-F. Cheung, and Y. Gefen, “Persistent cur-
rents in mesoscopic normal metal rings,” Physica Scripta
1989, 357 (1989).

5 H. Bary-Soroker, O. Entin-Wohlman, and Y. Imry, “Ef-
fect of pair breaking on mesoscopic persistent currents well
above the superconducting transition temperature,” Phys.
Rev. Lett. 101, 057001 (2008).
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