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Abstract

The transition maps for a Sobolev G-bundle are not continuous in the
critical dimension and thus the usual notion of topology does not make
sense. In this work, we show that if such a bundle P is equipped with a
Sobolev connection A, then one can associate a topological isomorphism
class to the pair (P, A), which is invariant under Sobolev gauge changes
and coincides with the usual notions for regular bundles and connections.
This is based on a regularity result which says any bundle in the critical di-
mension in which a Sobolev connection is in Coulomb gauges are actually
C%? for any a < 1. We also show any such pair can be strongly approxi-
mated by smooth connections on smooth bundles. Finally, we prove that
for sequences (P”,A") with uniformly bounded n/2-Yang-Mills energy,
the topology stabilizes if the n/2 norm of the curvatures are equiinte-
grable. This implies a criterion to detect topological flatness in Sobolev
bundles in critical dimensions via n/2-Yang-Mills energy.
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1 Introduction

Throughout this article, we shall assume that n > 3, N > 1 are integers and
e k=1or2and 2 < p< oo is areal number,
e (G is a compact finite dimensional Lie group,

e M™ is a connected, closed n-dimensional smooth Riemannian manifold.
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Here closed means a compact manifold without boundary. We are concerned
with principal G-bundles over M™. The analysis for Yang-Mills functional and in
general, problems related to higher dimensional gauge theory, often requires one
to work with notions of Sobolev principal bundles and Sobolev connections on
them, where the connection forms and the transition maps, which define Cech
cocycles, are only W¥P. But since the transition maps need not be continuous
if kp < n, the notion of topological isomorphism classes of bundles no longer
make sense.

One of our goal in this article is to show that in the critical dimension
kp = n, one can however associate a unique topological isomorphism class to
a pair (P, A), where A is a connection on P such that A € L™ and dA € L*.
Our notion of a topological isomorphism class is assigned to the pair (P, A) and
not to P alone. This explicit dependence on the connection A is a new point
of view in which we are encoding topological information about the bundle in
the connection as well, so that analysis at the level of connections can still keep
track of topological information about the underlying bundles. We fully expect
this new point of view to be more useful than the usual topological notions in
critical and supercritical regime, since in this regime, the connections are not
constrained to respect the topology of the bundles and can ‘drag’ the bundles
along with them. The case of supercritical dimensions however requires other
tools, which will be treated in a forthcoming work [14].

The topological isomorphism class is nothing but the C°-equivalence class
of the corresponding Coulomb bundle, i.e. the bundle obtained from P by a
WP gauge change in which the connection A satisfies the Coulomb condition
d*A = 0. As we shall show, given the pair (P, A), any corresponding Coulomb
bundle has the same C°-equivalence class. The fact that such bundles are C°-
bundles has been proved by Riviere [I1]. We shall show a stronger result, that
these bundles are actually Holder continuous with any Hélder exponent o < 1.

This assignment of C°-equivalence class to a pair (P, A) is stable under W*»
gauge changes for kp = n and if the connection and the bundle are more regular,
this notion coincides with the usual notion of topological isomorphism class for
bundles and thus would be independent of the connection. The Hélder continu-
ity of the Coulomb bundles is already noticed by Shevchishin in [I3], although
it does not seem to be widely known. Much like our approach, Shevchishin is
also using this improved regularity to implicitly define a notion of topology for
bundles in the critical dimension. However, instead of assigning a topology to
the pair (P, A), he is assigning the topology to the bundle P alone, by implicitly
making a specific choice for the connection A. But two different U/*? connections
can give rise to two distinct Coulomb bundles which are not C° isomorphic ( see
Remark 271 ) and there is little geometric reason to prefer any one connection
over another.

As a by product, we prove that in the critical dimension, any Sobolev cocy-
cle can be approximated arbitrarily closely in the strong Sobolev topology by
smooth cocycles, up to passing to a refinement of the cover.

Theorem 1 (cocycle smoothing). Let {U,} be a good cover of M"™ and let
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{908}, ser be a collection of maps such that gas € Wk (U, NUg; G), with
kp = n, for every o, € I with Uy, NUg # 0, gaa = 1a for every o € I and
satisfies the cocycle conditions

9a8(2)98~(T) = gary(2) for a.e. x € Uy NUzNU, (1)

for every o, B,y € I with U, NUg N U, # 0. Then given any € > 0, there exists
a good refinement {Vj} o ; of {Ua}yer and smooth maps g; € C (V; NV;; G)
or all i,7 € J with V; N\ V; £ 0, satisfying g5, = 1g for every j € J and
J Ji

95;(@) g5, () = g ()~ for a.e. x € V;NV; NV,
whenever V; NV; NVi, # 0 and we have

Hgisj ~ 9o()e(3) ||kap(\/im\/j;G) se€ whenever Vi N V; # 0,

where ¢ : J — I is the refinement map.

This answers a question raised by Riviere in [12]. We deduce this theorem
from the more general Theorem [I7, which says roughly the following:

For kp = n, given a W*P principal G-bundle over M™ equipped with a U*P
connection, for any € > 0 we can find a smooth principal G-bundle over M™
equipped with a smooth connection so that the bundle is both WP equivalent and
e-close to the original bundle in W*P norm and the connection is also e-close
to the pullback of the original connection in U*P norm.

Similar results are proved in Isobe [6]. But our proof is different and follows
a more connection oriented approach, which also highlights the fact that the
topology of smooth bundles defined by the approximating smooth cocycles are
not necessarily uniquely determined by the original cocycles alone ( see Remark
). Also, since our analysis is based on Coulomb gauges, which always exist
by linear Hodge theory when G is Abelian, we prove in Theorem 23] that such
an approximation is possible even in supercritical dimensions for principal S'-
bundles. This result is also proved by Isobe in a different article [7]. But our
proof is not only different, but also considerably easier in the Abelian case.

The benefits of encoding topological information in the bundle-connection
pair bear fruits in the analysis of sequences of bundles with connections under
uniformly bounded Yang-Mills energy. In Theorem B2 which is the main result
of the article, we show that for a sequence of pairs (P”, A”) with uniformly
bounded n/2-Yang-Mills energy, the associated topological classes, which can a
priori be all different, stabilize for large enough v if the sequence of n/2 norm
of the curvatures is equiintegrable. For a sequence of connections on a fixed
WkP A C° bundle, this yields the following.

Theorem 2 (Stability of topology if curvatures does not concentrate). Let
kp =mn. Let P be a W*P N CY bundle over M™ and let {A"},~, be a sequence
of connections on P such that -



(1) A € L™, dAY € L>, d*AY € (1) for every v > 1,

(2) HFAVHL%(MR;AQT*MT@E!) is uniformly bounded,
(3) the sequence {|FAV|%} is equiintegrable in M™.
v>1

Then there exists a subsequence {A¥*} -, , a limiting W"?P N C° bundle P> =
({U{’O}iel , {gfj‘?}i)jEJ with [Plao = [P0 and a limit connection A> on
P such that for everyi e I,

Fyve = Fas weakly in L (Uioo; AT U @ g) .

This improves Theorem IV.2. in Riviere [I1], which needed A" to be strongly
convergent in W% and d*A” to be strongly convergent in the Lorentz space
L(5:D) Control of the full gradient of the connection, control of d*A” and the
strong convergences, are all somewhat unnatural and unsatisfactory require-
ments. In comparison, Theorem [2] does not need either strong convergences
and except for the information on the curvatures, not even an uniform bound
is needed either for d* A” or the full gradient, which settles the question raised
by Riviere in Remark IV. 2. in [II]. Theorem B2 implies Theorem BGl which
gives a criterion to detect topological flatness for W*P bundles equipped with
U*P connections via n/2 Yang-Mills energy of the connection for kp = n. As a
consequence, we deduce the following extension of the energy gap theorem to
non-smooth connections, which as far as we are aware, is new and might be of
interest in itself.

Theorem 3 (n/2-Yang-Mills energy gap). For any cover U of M™, there exists
a constant § > 0, depending only on U, M™ and G such that if P is a W*"NC°
bundle trivialized over U and A is a connection form on P such that A € L",

dAc L3, d*Ac L(%’l), then we must have Y M,, ;5 (A) > 0, unless P is flat.

When A is a smooth, this is the usual energy gap theorem.

The requirement of equiintegrability of the n/2-norm of the curvatures in
Theorem Bl which at first sight might seem strange, is actually a natural hy-
pothesis. In practice, if we know that the sequence of curvatures satisfy some
elliptic systems, for example, in cases of stationary Yang-Mills or Anti-Self-Dual
connections etc, then by the epsilon-regularity type results for elliptic systems in
critical dimensions, the curvatures does not concentrate in the so-called neck re-
gions and the equiintegrability hypothesis is satisfied on such regions and would
be satisfied on the whole domain if there are no bubbles. On the other hand, it
is known ( see Freed-Uhlenbeck [3], Taubes [20] ) that the topology can change
in the weak limit if one assumes only the uniform L% bound of the curvatures.

The rest of the article is organized as follows. In Section [2 we collect the
preliminary notions and notations that we would use. SectionBlwe are concerned
with proving the smooth approximation theorems. Section [ defines the notion
of the topological isomorphism class and discusses its properties and proves the
result concerning topology stabilization in the limit and its consequences.



2 Preliminaries

2.1 Smooth principal G bundles with connections

A smooth principal G-bundle ( or simply a G-bundle ) P over M™ is usually
denoted by the notation P 5 M™, where 7 : P — M" is a smooth map,
called the projection map, P is called the total space of the bundle, M™ is the
base space. One way to define a smooth principal G bundle P = M", is to
specify an open cover U = {Ua},c; of M", ie. M™ = |J U, and a collection
acl

of bundle trivialization maps {¢q},c; such that ¢o : Uy x G = 771 (Uy) is a
smooth diffeomorphism for every o € I and each of them preserves the fiber, i.e.
7 (b (z,9)) = x for every g € G for every x € U, and they are G-equivariant,
i.e. whenever U, N Ug is nonempty, there exist smooth maps, called transition
function gapg : Uo N Ug — G such that for every x € U, N Ug, we have

(65" 0 d5) (x,h) = (z, gap(z)h) for every h € G. (2)

From (@), it is clear that g, = 1¢, the identity element of G, for all a € I and
if Uo NUz N U, # 0, the transition functions satisfy the cocycle identity

9a(2)98~(2) = gar () for every x € U, NUg NU,. (3)

Bundles as transition function data We shall be using an equivalent way
( see e.g. [I5] ) of defining the bundle structure — by specifying the open cover U

along with the cocycles {gas}, ge;- P = ({Ua}ael , {gaﬁ}a.ﬁel) shall denote a

smooth or C? principal G bundle, if g, 3 are smooth or continuous, respectively.
We denote the space of smooth and C° principal G-bundles over M™ by the
notation Pg (M™) and Pg (M™) respectively.

Good covers and refinements A refinement of a cover {Ua},,; is another
cover {‘/}}jeJ with a refinement map ¢ : J — I such that for every j € J, we
have Vj CC Ug(j). If {Uat,e; and {Va}scj are two covers of the same base
space, then a common refinement is another cover {W;},_; with refinement

maps ¢ : J — I and q~5 . J — I such that for every j € J, we have W; CC
Usti) V5

Notation 4. We shall always assume the covers ( including refinements and
common refinements ) involved are finite and good cover in the Cech sense, or
simply a good cover, i.e. every nonempty finite intersection of the open sets in
the elements of the cover are diffeomorphic to the open unit Fuclidean ball. In
fact, we shall assume that the elements in the cover are small enough convex
geodesic balls such that their volume is comparable to Euclidean balls.

Connection, gauges and curvature A connection, or more precisely, a

connection form A on P is a collection {Aq},;, where A : Uy — AR ® g



satisfy the gluing relations
Ag = g;édgag + g;éAagag a.e. in U, NUg. (4)

They define a global g-valued 1-form A : M™ — A'T*M™ @ g, which is smooth
if A,s are. We denote the space of smooth connections on a P by the notation
A (P). A gauge p = {pa},e; is a collection of maps p, : Uy, — G. which
represents a change of trivialization for the bundle, given by

@GP (z, h) = dolx, pal(z)h) for all x € U, and for all h € G.

Then the new transition functions are given by hag = py'gasps in U, NUp for
all a, 8 € I. The local representatives of the connections form with respect to
the new trivialization {Af~} ., satisfy the gauge change identity

AP = p=Ldpo + pat Aapa a.e. inU,, forallael. (5)

The curvature or the curvature form associated to a connection form A is a
g-valued 2-form on M", denoted Fy : M"™ — A2T*M" ®g. Its local expressions,
(Fa)ger » denoted Fa, by a slight abuse of notations, are given by

Fa, =dA,+ Ao N A, :dAa—i—% [Aa, Ao inU,, forallael, (6)

where the wedge product denotes the wedge product of g-valued forms and the
bracket [-, -] is the Lie bracket of g, extended to g-valued forms the usual way.
The gauge change identity (@) implies

Fyea = p3 Fa, pa a.e. in Uy, forall o€l (7)

Similarly, the gluing relation () implies that we have Fp, = ggéFAa Jap in
Ua NUg, whenever U, NUg # (. This implies (F4),,.; defines a global g-valued
2-form on M™.
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Yang-Mills energy For any 1 < ¢ < oo, the ¢-Yang-Mills energy of a con-
nection A, denoted Y M, (A), is defined as

VM, () = [ IR,
where the norm |-| denotes the norm for g-valued differential forms. (@) implies
( see e.g. [21] ) that the norm |F4| is gauge invariant and thus the integrand in
Y M, is gauge invariant for any 1 < ¢ < oo.

2.2 Sobolev bundles and connections

Sobolev principal G bundles Now we define bundles where the transition
functions are Sobolev maps, not necessarily smooth or continuous. See Ap-
pendix [A] for more on G-valued Sobolev maps. In analogy with the case of
smooth bundles, we define



Definition 5 (W*? principal G-bundles). We call P a W*? principal G-bundle
over M™, denoted by P € Pé’p (M™), if P = ({Ua}ael,{gag}a ﬂel)’ where

Jap € WEP (UyNUg; G) for every o, B € I with Uy, NUg # 0, and for every
a,B,v € I such that Uy N Uz NU,, # 0, the transition maps satisfy gaa = la
for every a € I and the cocycle conditions

905(2)95, (@) = gar(x)  for ae. x € Uy NUs N T (8)

We also need the notion of Sobolev equivalence of Sobolev bundles, which is
just another name for being gauge related by Sobolev gauge changes.

Definition 6 (W*? equivalence). Two W*P principal G-bundles P and P

W’CJJ ~
over the same base space M"™ are W*P equivalent, denoted by P "~ P, if

there exists a common refinement {W;}, ; of the covers {Ua} e and {Va}scr
and maps o; € WhP (W,; G) for each j € J such that

hq;(i)&(j) = 0;19¢(i)¢(j)0j a.e. in W; N Wj, (9)

for each pair i,j € J with W; N W; # 0, where ¢ : J — I and(ﬁ:J—>I~arethe

are the respective

respective refinement maps and {gag},, ser and {h&f’} 3
’ a,pel

W’CJJ ~
transition maps. We shall write P~ , P to specify the equivalence map.

Smooth or C? equivalence is defined in analogous manner by requiring the
maps o; to be smooth or C” respectively. It is easy to check that they are
indeed equivalence relations in the corresponding category. If P is a C%-bundle,
we denote its equivalence class under CY-equivalence by [P] o .

Sobolev spaces of connections Now we define the Sobolev space U*P of
connection form on a W*? bundle P € Pg’p (M™).

Definition 7 (The U*P spaces of connections). We say the connection A =
{Aa}er is a UMP-connection on P if we have

A, eL? (Ua; AR @ g) and dA,, € L (UQ; AR ® g) for every a € 1.
ULP (P), the space of UVP-connection on P, is equipped with the norm
ol znss) = Mol armeee * 14415 g, nan
We say the connection A = {An},c; i5 a U?P-connection on P if we have
Ay e WH3 (UQ;AlR” ®g) for every a € 1.

The U*P norm of Ay is simply its W2 norm.



3 Strong Density in the critical dimension

3.1 Smooth Approximation in subcritical regime

We begin with the smooth approximation theorem for Sobolev bundles in the
subcritical regime kp > n. The validity of the result is well known to experts,
but a complete proof is difficult to find in the literature. For kp > n, WHP
bundles are C° bundles. Approximating C° bundles by C* ones are classical
and one can, in particular, use the heavy machinery of classifying spaces ( cf. [5]
). But since we need to keep control of the Sobolev norms, it is unclear whether
such an approach can be used in the Sobolev setting. On the other hand, one
can smooth continuous bundles ‘by hand’ ( see e.g. [8], also [9], [I5] ) and this
approach is more amenable to the modifications needed to work in the Sobolev
setting. Our proof here follows this road and adapt the arguments in [§] ( for
the infinite dimensional case ) to work in our finite dimensional but Sobolev
setting. As far as we are aware, this proof is new. But since this somewhat
digresses from the main goal of our article, it is relegated to the Appendix Bl

Theorem 8 (Smooth approximation in subcritical regime). Given any P €
Pé’p (M™) with kp > n and any € > 0, there is a smooth principal G-bundle

k,p
Pe € P (M™) such that P is e-close to P in W*P norm and P? " P hold.

Moreover, the C°-equivalence maps can be chosen to lie in the e-neighborhood
of the identity element of G in C° norm on each bundle chart.
More precisely, if P = ({Ua}a617{ga5}a,ﬁel)’ then there exists a good re-
finement {V;}._; of {Ua},e; such that there exists continuous maps o; €
WHP (V;; G) and smooth transition maps h;j € C>= (V; N'V;; G) for all i, j € J,
whenever the intersection is non-empty, satisfying

(i) hijhjr = hig,  for a.e. x € Vij, whenever Vi # 0,

(i1) hi; = g;1g¢(i)¢(j)aj for a.e. x € V;; whenever Vij # 0.

) ||hij - g¢(i)¢(j)||wkm(vij;c) < & whenever Vi, # 0, where ¢ : J — I is the
refinement map.

() |loj — 1G||L00(Vj;G) , ||daj|\W,€,1,p(Vj;Aan®g) < ¢ for every j € J.

Remark 9. Conclusion (i) simply expresses the fact that we indeed have a well-
defined bundle structure on P¢. Conclusion (ii) encodes the assertion that P®
is equivalent to P. Conclusion (i) is the precise meaning of P¢ being e-close
to P in W*P norm. The estimate in conclusion (iv) is essentially equivalent to
(iii), as was already essentially proved by Uhlenbeck in [22], Corollary 3.3.

3.2 Coulomb gauges and elliptic estimates

Notation 10. M (N) denote the space of N x N matrices and for U C R™ open
and bounded, the notation L(*?) (U;RN) foranyl < s <ooand any 1l <0 <



oo will denote the Lorentz space of maps {f :U — RV Hf”L(Sﬂ)(U;]RN) < oo} ,

which is a Banach space ( see [17] ) with a norm equivalent to the quasinorm

o dt

oy = [ o meas (o €U 111> 1 5

Now we start with the elliptic estimates. The following lemmas are crucial for
what we shall be doing in the rest of the article. They will be used to prove
regularity of bundles in which the connection is in the Coulomb gauge in the
critical dimension. Continuity of Coulomb bundles is first observed by Taubes
[19] for n = 4 and for any n > 4 by Riviere [I1]. Here we show such bundles are
C%< bundle for any o < 1. However, L? version of Lemma [[Z has been used
earlier in this context by Shevchishin in [I3] to prove Holder continuity of the
Coulomb bundles. But these results do not seem to be widely known.

Lemma 11. Let Q@ C R™ be a bounded, open and smooth subset and suppose
A€ L™ (UAR"@M(N)). If a € Wy (RN satisfies

Aa=A-Va+ F in (10)

with F' e L1 (Q RN) for some =5 < q <n, or respectively, F' € L(s:9) (Q RN)

for some % < s <n and 1 < 0 < oo, then there exists a small constant

e1 =¢1(n,N,q,Q) > 0, respectively, e1 = €1 (n, N, s,6,Q) > 0, such that if

”AHL”(Q;AlR”@fm(N)) S e

then o € W24 (Q;RN) . respectively o € W2 (5:9) (Q;RN) , and there exists a
constant Cq = Cq (n,N,q,Q) > 1, respectively Cq = Cq (n,N,s,0,Q) > 1
such that we have the estimate

||04||W2,q(sz;RN) < Cq ||F||LQ(Q;]RN) J (11)

respectively,

||04||W2,<s,0>(sz;RN) < Cq ||F||L<s,0>(sz;RN) : (12)

Furthermore, the smallness parameter €1 is scale invariant. More precisely, if
Q, ={rz:x € Q} is a rescaling of Q, then Q and Q. has the same ea.,..

Proof. The proof is a fixed point argument coupled with uniqueness. We only
prove the Lorentz case. With s and # as in the lemma, for any v € W2 (%) n
W, 2, let T(v) € W,'? be the solution of the equation A (T'(v)) = A.Vv + F.
Since by Peetre-Sobolev embedding ( see [10], [1§] ), W29 W (:0)
and L™ = L") by Holder inequality for Lorentz spaces the term A.Vo in the
right hand side is L) < [0 if g > o or LD s L9 otherwise.
Since f € L% by the usual L? estimate for the Laplacian, which extends by
interpolation to Lorentz spaces ( see [17] ), we conclude V2T (v) € L), Noting



that the L(*% norm of the Hessian is an equivalent norm on W?2(*% n W01’2,
we deduce T'(v) € W2 (59 along with the estimate

IT(v) = T(W)llw2c00 < Cq 1Al L llv = wllypzcoo

for any v,w € W29 Then we can choose ||A| ;. small enough such that T is
a contraction and conclude the existence of an unique fixed point vy € W29
by Banach fixed point theorem. Since both vy and « are Wol 2 solutions of @@
and we have the estimate

ll = vollyrz < Clla=woll o 2n, < ClAllLn fler = vollyrz s

we can choose ||A|| . small enough such that C'||A|| .. < 1, which forces a = vy.
Thus o € W2 (5:9) (Q;RN) and we get the estimate

lellwz.c0 < Cso (1Al n lallweo0 + 1 F L) -

But since Cs 9 ||A|| ;. < 1, setting Cq = (170(’1:#) proves the lemma except
s, n

the claim about scaling. Now if o, A, F' satisfies @) in Q,, then the rescaled
maps &(x) = arz), A(z) = rA(rz), F := r?F(rz) satisfies (I0) in Q. The
scale invariance follows from the equality of L™ norms of A and A. O

Lemma 12 (Elliptic estimate in critical setting). Let Q C R™ be a bounded, open
set and A € L™ (Q; A'R" @ M (N)) . Let f € LP (4 RY) for some n2_-i7-12 <p<n,

or respectively, f € L@9) (Q;RN) for some nz_fz <g<mnandl <60 < oo.

Then there exists a small constant ea., = €aq, (0, N,p,Q) > 0, respectively
EAc, = Enc, (N, N,q,0,Q) >0, such that if

”A”L"(Q;AlR"@Em(N)) < EAcys
then for any solution u € W12 (Q;RN) of
Au=A-Vu+f in €, (13)

we have u € WP (Q;RN), respectively u € W/l2’c(q’9) (Q;RN). Furthermore,

loc o

for any compact set K CC €, the exists a constant C = C(n,N,p,Q, K) > 1,
respectively C' = C(n,N,q,0,Q,K) > 1, such that we have the estimate

||u||W2~P(K;RN) <C (”uHWL?(Q;RN) + ||f||LP(Q;RN)) ) (14)

respectively,

el iz < C (Iulwrz@an) + 1 oo @zy ) - (15)

Moreover, the smallness parameter ea., s scale invariant. More precisely, if
Qp = {rz:x € Q} is a rescaling of Q, then 2 and Q, has the same ea,..
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Remark 13. Later on, to satisfy the smallness condition on the L™ norm of A,
we are going to shrink the balls. So the scale invariance conclusion is crucial.

Proof. We localize the problem and bootstrap. We prove only the Lorentz case.

To this end, we chose m = 1 if ¢ < % and otherwise we chose the smallest
integermEquchthat%;z) §m<%if92qor%;2) <m < g if

1 <6 < gq. For any K CC Q, we choose open sets {€;},,.,, such that

KcCcQnCcC...QCccQcc...Q cco.

Now we shall show that we can choose ||A]|. small enough such that for any
solution u € W12 (Q;RN) of [[3)), we have u € Whatinm (Qm;RN) . We show
only the case m > 2, the other case being easier. We prove this by induction
over [. We assume that u € Wl’% (QZ;RN) for some 1 <1 < m — 1 and prove
that we can choose [|Al| ;. small enough such that v € W st (Qug1; RY) .
Let ¢ € C2° (£2;) be a smooth cut-off function such that ¢ = 1 in a neighborhood
of Q1. Since u is a solution to ([3), ¢u € VVOl’2 (Ql; RN) solves

Au)=A-V(ou)+of +u(Ap—A-V)+2Ve-Vu  inQ.  (16)

We set @« = ¢u and F = ¢f + u(A¢p — A-V¢) 4+ 2V¢ - Vu and plan to use
lemma [[Il Note that by our choice of m, the integrability of F' is determined
2n
by the least regular terms, which are in L7»=2 (Ql;RN ) . Thus, using lemma
[ with ¢ = %, we obtain ¢u € W2nta (Ql;RN) and thus by Sobolev
embedding, ¢u € Wt (QZ;RN) . Since ¢ is identically 1 in a neighbor-
hood of 41, this proves the induction step. The same argument shows that
ue Whits (21;RY) , since u € W2 (Q;RY) and thus we can start the induc-
tion. This establishes that u € W3 (Qm; RY) if [|A| .. is small enough.
Once again we choose a smooth cut-off function ¢ € C°(€2,,) such that
¢ = 1 in a neighborhood of K. Once again, ¢u satisfies ([I0) in £2,,. But since
m > %;2) if 1 <6 < g, this time the integrability of F' is determined by the
first term ¢f, which is L(®?) (Qm;RN) . Thus applying Lemma [[T] once again,
we deduce that ¢u € W@ (Q,,; RY) and thus u € W@ () RV) if [| A ..
is small enough. We finally choose the smallness parameter to be the minimum
of the smallness parameters in the finitely many steps. Combining the estimates
in each step yields

el ey < € (lullwr gz + 171l pan @) -
This concludes the proof. The scale invariance can be shown as before. O

Lemma 14 (Coulomb gauges). Let r > 0 be a real number, xy € R™ and let
B.(z9) C R™ be the ball of radius r around xo. Then there exist constants
ECoulomb = Ecoulomb (G,TL) > 0 and CCoulomb = CCoulomb (G,TL) > 1 such that
for any A € UM (B, (z0)) with

||FA||L%(BT(O);A2T*BT(O)®Q) S ECoulomb,

11



there exists p € W™ (B,.(20); G) such that

d*A? =0 in By(x0),
LBBT(%) (xAP) =0  on dB,(xo)

and we have the estimates

VAl % (5, oy ncog) 14 Nin (B, @ornmnag)

S CCoulomb ||FAHL%(BT(I0);A2R"®Q)

and

Hdp”Ln(BT(zo);AlR”@g)
< Ca (Ceoutoms 1Fall 2 (5, (roynemrg) + 1AL, moynimnag )
where Cg > 1 4s an L™ bound for G.

Proof. The technique of the proof is by now completely standard and goes back
to Uhlenbeck [22]. We stated the theorem for a ball of radius r to emphasize
the scale invariance. Indeed, if A : B,.(0) — A'R" ® g is a connection, the
rescaled connection A(x) := rA(rz) is a connection on Bj(0) with curvature
Fji(z) = r*Fa(rz) and one can easily check the identities

4]
The translation invariance is of course obvious. The last estimate for the gauges

are usually not stated explicitly, but follows rather easily from the identity
dp = pAP — Ap. O

LB (0) 1Al 2nd 14l L2 (5, o)) = IFall 2 (5,0

Remark 15. We stated the result for U™ connections and for Buclidean balls.
If instead A € U*%, then similar arguments show that under the hypotheses of
the theorem, there exists p € WEP (B,.(20); G) such that d*AP = 0 in B,(zo),
LOB, (x0) (xAP) = 0 on OB, (z0) and AP € U*%= and we have the estimates
IVA?l L3 + 1A% n < Cooutoms | Fall 3
and
Hdewl% <Cg (CCoulomb HFA”L% + HAHng) .

Both results extend to small geodesic balls on closed Riemannian manifolds.

3.3 Regularity of Coulomb bundles

Now we prove that in the critical dimension, a bundle in which a Sobolev con-
nection is in the Coulomb gauge is actually a Holder continuous bundle.

12



Theorem 16 (Holder continuity of Coulomb bundles). Let kp = n. Let P
be a WP principal G-bundle and A € U*P (P) be connection on P which is
Coulomb, then P is a W29 N C%*-bundle for any 5 <q<nanda<1. More

precisely, if (P,A) = ({Ua}ael {908} o ger {Aa}ael) such that d*A, = 0 in
U, for every o € I, then there exists a good refinement {Vj}jeJ of {Ua}aer
with V; CC Ugjy for every j € J, where ¢ : J — I is the refinement map,
such that we have gy;)p(;) € W9 (V; N V5 G) for any % < q < n and thus also
CO« (Vi NV G) for any o < 1, for all i, j € J, whenever V; N'V; # (.

Proof. We choose a good refinement {V;},; of {Ua},e; in such a way that

there is an enlarged cover {VJ, }je which is also a refinement of {Ua},,; with

the same refinement map ¢ : J — I and we have

EACy,
||Aj||Ln(Vj’;A1Rn®g) < 4C (17)

for every j € J, where A; := Ay(;)|,, and we have
J

‘/jCC‘/j,CU¢(j) for every j € J, UVj:UU =M".
JjEJ acl

Now, setting hi; = ge(i)s(;) for every i, € J such that VZ-, N Vj/ # (), we have
the gluing relations,

Aj = hi_jldhij —i—hi_leihij for a.e z in V; ﬂle whenever V; ﬁV; # (. (18)
Rewriting ([I8), we have,
dh,ij = hijAj — A’Lh’lj for a.e z in ‘/1; whenever ‘/Z,J }é @

Also, since A is in Coulomb gauge, we have

A, =0=d"4;, iV,

17"

This implies,
— Ahg; = % [dhij A (xA4;)] + % [(xA4;) A dhij] inV,

ij*

This is of the same form as ([I3) with f = 0. Now, we have,

1
| AillLn < —enc, for any [ € J.

Thus, we can apply lemma [[2 with f = 0 and deduce that h;; € Wi’cp (V;/J, G)
and thus h;; € W24 (V;;; G), for any 5 < g < n. Sobolev embedding now proves
the Holder continuity of h;; in Vj;. This proves the result. |
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3.4 Smooth approximation theorems: critical dimension

Theorem 17 (Smooth approximation of Sobolev bundles with Sobolev con-
nection: critical case). Let kp = n. Given any P € Pé’p (M™), A € U*P (P)
and any € > 0, there is a smooth principal G-bundle P* € P (M™) with a
smooth connection A° € A (P?) such that P¢ is e-close to P in the WP

k,p
norm, P¢ sz P and A® is e-close to the pullback of A on P in U*P norm.

More precisely, if (P,A) = ({Ua}ael A9a8} o ger - {Aa}ael) , then there exists
a refinement {Vj}jeJ such that there exists smooth Lie-algebra valued 1-forms
A5 € C (Vi; A'R™ @ g) and smooth transition maps hi; € C* (V; NVj;G)
for all i,j € J, whenever the intersection is non-empty, satisfying

(i) hijhjr = hig,  for a.e. x € Vij, whenever Vi, # 0,

(ii) AS = h'dhij + hi;' Ashi;  for alli,j € J with Vi # 0,
(ii1) |[his = Gotrs(i)lwrn vy i) < € whenever Vigy #0,
(iv) For each j € J, there exists maps p; € W*P (V;; G) such that

hij = Pflg¢(i)¢(j)pj for a.e. x € Vj; whenever Vij # 0.

(v)

As — AP < e, for every j € J, where ¢ : J — I 1s the
J o(3) Z/lkvP(Vj;AlR”(@g) - f vJ ¢

refinement map.

Remark 18. (i) simply means that the cocycle data ({Vj}jeJ , {hij}ije,]) de-

fines a smooth bundle P* € P (M™). Conclusion (ii) is the requirement that
the local representatives A5 actually defines a global connection form A® on the
bundle P<. Conclusion (iii) and (iv), respectively, expresses the fact that P and

. . ) wkp
P¢ are e-close in the W*P norm and are W*P-equivalent, i.e P® ~, P. Con-

clusion (v) means that on P¢, the connection A% is e-close in the U*P norm to
the pullback connection (p)* A = AP, obtained by pulling back the connection A
from P to P¢, by the bundle equivalence map p.

Remark 19. One can also show the estimates
HAES - A¢(J’)Huk,p(Vj;A1Rn®g) <e, foreveryjeJ

But these local estimates are somewhat meaningless since the collection of local
g-valued 1-forms Ay = V; — A'R" ® g, j € J, does not in general define a
connection form on the bundle P¢. In other words, they are not in general the
local expressions for a global g-valued 1-form on M™ in the bundle co-ordinates
of P¢. The local representatives for the global form A: M™ — A'T*M™ ® g in
the bundle coordinates of P¢ are precisely the forms Agj(j) :V; = A'R"®g,j € J.

14



Proof. We prove only the case £k = 1. The case k = 2 adds no essential new
difficulties. We fix a representation P = ({Ua}ael , {ga,@}aﬁel) of our Whn
principal G-bundle and also assume that the connection form A € U™ (P) is

given by the local representatives {An},c;, i.e. we have

Aq € L" (Uas A'R" @ g) and dA, € L? (Uag; A’R™ ® g) (20)
and the gluing relations
Ag = ggédga,@ + g;éAaga@ a.e. in Uy, NUg (21)

holds whenever U, NUg # 0. We divide the proof into several steps.

Step 1: Putting the connection in local Coulomb gauges We choose a
refinement {V;},_ ; by small geodesic balls with the refinement map ¢ such that
for every j € J, we have

1,11 .2 17 n2mn g < i { Ecoféomb’ 64g§ozrlomb, 64CCouElomng }  (22)
140 o (v sn1m ) < @7 (23)

where A; == A¢(j)|vj” and for every 4,5 € J with V;; # 0,
19966 || vz, n18m 0 » (906000 : (24)

Ln(V‘ij;G) < 64_08

By lemma [I4], applied to the small geodesic balls V;, for each j € J, there exist
maps pj : V; — G such that d* A7 = 0 in Vj, ¢5y. (xA}’) = 0 on 9V}, and we
have the estimates ( all norms on Vj),

19450 5+ 142 ] < Coomtoms 15,5 29
L3 +1A40L.) . (26)

HdijLn < CG (CCoulomb HFAj

Step 2: Gluing local Coulomb gauges Now we wish to show that the data
({Vj}jeJ , {hij}ije,l) = P5_..,. . defines a W*% bundle for some & < ¢ < n,

which is e-close to P in the W™ norm and on which the pullback of the original
connection A defines a W2 connection in the Coulomb gauge, where

hij = p;lg¢(i)¢(j)pj . V;/J -G for every i,j € J with V;IJ 75 (Z) (27)

It is easy to check that h;; are W™ cocycles, proving Py € Pé’" (M™).

Clearly, A? is a W% connection on P5........ which is Coulomb. Thus W?4

regularity of P3 . follows by Theorem Simple computation yields

dhij — dggye) = dp; ' Gewye()Pi + Py ewetndpi + (it — 16) dga(el) P
+ dgei)e() (pj — 1a)
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Hence, using ([26]) and our choice in ([22) and 23) and (24)),
[dhij = dgoye |l L < C& (C& ldpill o + ldpil o + 4[| dgsiro | 1) <
We also have, by (24)),

— 9
1755 = g6@o [l = 107" = 16) 963 + 9010t (05 = 1) 1 < -

Combing, we obtain the estimate

3

Hh — 9e(i)e le (Vi G) = 5 whenever V;; # 0. (28)
Note that [28]) together with 24]) implies
||dhij||L”(Vi]‘;A1R”®g) <e for every i, j € J with V;; # 0. (29)

Step 3: Approximation of connection We pick an exponent 5 < ¢ < n.
By step 2, we can assume, without loss of generality, that we started with
a WH% connection A in the Coulomb gauge on a W29 N C%bundle P =

({Ua}ael {Ges}, 561) and in view of [22), () and (2J), we have,

g
||VA ||L2 Ua;RP X7 @) + ||Aa||L"(Ua;A1R"®g) S m for every o € Ia (30)

dgasll (v, ,nimngg <€ forevery a, 5 € I with Uap # 0. (31)

By Theorem[§] there exists a smooth bundle P¢ = ({Vj}jeJ {95 }i jEJ) which
is W21 equivalent to and e-close to P in W27 norm. More precisely, there exists
a refinement {Vj},_; of {Ua},c;, with refinement map ¢ : J — I, such that

there exists continuous maps o; € W27 (V;; G) and smooth transition maps
g5; € C(V;NV};G) for all i,j € J, whenever the intersection is non-empty,
satisfying

(i) 9595k = 95k for a.e. & € Vj, whenever Vi, # 0,
(ii) 95 = Uflg¢(i)¢(j)0j for a.e. x € V;; whenever V;; # (.

(iii) Hgisj - 9¢(i)¢(j)||wzwq(vij;c) < 640G whenever Vi; # 0,

(iv) and, for every j € J, the estimates

€

los — LGl oorv.en < ——= and
i = Lellieie) < e

€
||d0'] ||W1,q(Vj;A1R"®B) = m
(32)
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We note that (iv) and (BI]) together implies the estimate

|1dg5;]

Ln(VigsARr@g) = € for every i,j € J with Vi; # 0. (33)

Observe that the pullback of A on P¢ is a W2 connection on P°. Indeed,
denoting the local representatives of the pullback by

Aj = AT =07 doj + 07 " Ay(jy0; in V; for each j € J,  (34)
we infer A; is W13 since Ay is Wh2 and o; is W24 for some ¢ > %. Next
we show that there is a smooth connection form B = {B,},_; on P° which is

e-close to the pullback of our original connection A on P¢ in the U™ norm.
Note that approximating /ij by smooth forms is easy, but the real point, similar
in spirit to Remark[I9] is to ensure that the approximating forms B; satisfy the
gluing relations

Bj = (gfj)_1 dg;; + (gfj)_l Big;; in V;; whenever V;; #0.  (35)

We divide the proof into two substeps.

Step 3a: Construction of approximating forms We choose a partition of
unity {t;},. ; subordinate to the cover {Vj},.; such that we have the bounds

Cpart

—_— for every j,1 € J with Vj; # 0. (36)
meas (Vj;)™

ldpull oo (1g,) <
where Cpqre > 1 is a fixed constant. By density, we can find, for each j € J,
As € C> (V;; A'R" @ g) such that

€
n S ’
Wb (VAR @) T 64 (Cpa'rtNJ)2 Ce

i =

where N; = #.J denote the cardinality of the finite index set J. We define

Bye= Y (o) oty + (o) A 9
Vit

Note that the possibility j = [ is not excluded. Clearly, B; is smooth for each
J € J. By a straight forward computation using the identity dgj; — dgj;95; =

95;dg;;, obtained by differentiating the cocycle condition gj; = g 95;, we deduce

9B — Bigsy = (i + 1) dgs; + > tdg;.
leld,
1#i,3,
Viji #0

Since {1 }j is a partition of unity, this proves prove (B5]).
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n
L2

Step 3b: Approximation bounds It only remains to estimate HdBj

j . Observe that since 4 is a connection on the bundle P2, from
Ln
the gluing relations and by properties of a partition of unity, we can write
= Z P (Aj‘vﬂ) = Z P {(gfj) dgi; + (9i;) Algls_j:| - (39)
leJ

leJ
Vi #0 Vi #0

Subtracting [39) from (B8]), we can estimate ‘ . Next, we compute

Lo
C_ dfl‘
= > [avin (o) 7" (A7 = A g5y +wnd (o) ™" Afor, — (7)™ Auiy) |-
leJ
Vii#0

The second term is easy to estimate. For the first, we have, for fixed [, j € J,

@ Cp .

abn (o5) " (A = A) g g, S o ca A=A,

H v A (g5;) (A 1) 95 2 (Vi) meas(Vlj)% G || 1 Py,
Holder 9 ~ ~ D €
< CpartCG H‘Al‘S - Al‘ <

L™ (Vi) 64N3
Summing over | € J with Vj; # () and setting B = A®, the proof is complete. [
The following result is a consequence, which immediately implies Theorem [I1

Theorem 20 (Smooth approximation of Sobolev bundles: critical case). Let
kp = n. Given any P € Pg’p (M™) and any 0 < & < 1, there is a smooth
principal G-bundle P¢ € P (M™) which is e-close to P in the WEP norm

k,p
such that P° '~ P. More precisely, if P = ({Ua}ael A9as}, ﬂel) , then there
jes of {Uataer such that there exists smooth

transition maps hi; € C* (V; NV G) for all i, j € J, whenever the intersection
s mon-empty, satisfying

exists a good refinement {V;}

(i) hijhji = hi  for a.e. x € Vij, whenever Viji, # 0,

(i) th 9o(i)p Hwkp (Vis:G) < & whenever Vi, # 0, where ¢ : J — I is the
refinement map

(iii) For each j € J, there exists maps p; € W*P (V;; G) such that

hij = Pi9¢(i)¢(j)/’;1 for a.e. x € V;; whenever Vij # 0.

Proof. Once again we shall prove the case k = 1. The result will be an immediate
corollary of theorem [IT as soon as we show the following claim.
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Claim 21. Every Wb bundle admits a U™ connection.
Pick a partition of unity {1}, subordinate to the cover {Uy},.; and define

A, = Z 1/;ﬁg[;;dgﬁa for each o € 1. (40)

Bel,B#a,
UaﬂU;-};f@

Now clearly A, € L™ and we also have dA, € LZ, since

Holder

2 2
s = Celldgsolly

’ g = H—géidgﬁa A 950980

Hd (g;idgﬁa) L2

By a straight forward computation, we can verify the gluing condition
Ag = gojﬁldgag + g;éAagaﬁ a.e. in U, NUg
holds for every a, 8 € I whenever U, N Ug # (). This completes the proof. O

Remark 22. Note that the smooth bundles P, given by Theorem [I7 also sat-
isfies the conclusions of Theorem for any given UP connection on P. In-
deed, we are deducing Theorem [20 from Theorem [I7] by showing the existence
of one such connection. It is not hard to show that given a fixed connec-
tion A € U*P (P), the topological isomorphism class of the smooth bundles
Pe, constructed in Theorem [I7 would be independent of € for ¢ > 0 small
enough ( see section[]] ). So, given a pair (P,A), the approximating smooth
bundles can be chosen to have a fized topological isomorphism class. However,
if A,B € U"P (P) are two different UP connection on P, there is no reason
for the approzimating smooth bundles given by Theorem [ for the pair (P, A)
and (P, B) to be C°-equivalent. In general, they are not. In particular, this
implies that given a bundle P € ’Pé’p (M™), it might be possible to construct
two different sequence of smooth bundles { P}, ., and {P5} ., both of which
approzimates P in the sense of Theorem[20, but [P], # [Ps], , for every e > 0.

3.5 Circle bundles in arbitrary dimension

The results improve substantially if the G is Abelian, since in this case finding
a Coulomb gauge is much easier.

Theorem 23. Given any P € Pg’lp (M™) A € U*?(P) and any ¢ > 0,
there is a smooth principal S*-bundle P* € P (M™) with a smooth con-
nection A € A> (P¢) such that P¢ is e-close to P in the W*P norm, A¢

k,p

is € close to A in UFP norm and P° "'~ P. More precisely, if (P,A) =

<{Ua}ael A{9a8}, Bl {Aa}ael) , then there exists a good refinement {‘/}}jeJ
such that there exists smooth iR-valued 1-forms B; € C* (V;; A'R" @ iR) and
smooth transition maps h;; € C* (Vi N Vj;Sl) for all i,j € J, whenever the
intersection is non-empty, satisfying

19



(i) hijhji = hi  for a.e. x € Vij, whenever Viji, # 0,
(i) B; = h;jldhij + hi’leihij for all i,j € J with Vi; # 0,

) Hhii _g¢(i)¢(ﬂ')Hwk,p(vij;Sl) < ¢ whenever Vij, # 0, where ¢ : J — I is
the refinement map.

(iv) For each j € J, there exists maps p; € W*P (V;; S1) such that

hij = p;lg¢(i)¢(j)pj for a.e. x € Vj; whenever Vij # 0.

(v) HBj - AZJG)‘ <eg, for every j € J.

Uk-p(V;;A1R™ @iR)

Proof. We follow the same approach as in the proof of theorem [7l The ef-
fectiveness of the approach via local Coulomb gauges makes the proof of this
result quite easy. Firstly, since S* is Abelian, local Coulomb gauges always exist
without the need for any smallness condition on the norm of the curvature. We

choose a good refinement {Vj},.; of {Ua},c; in such a way that there is an
enlarged cover {VJ,} which is also a refinement of {Uy},c; with the same
JjeJ

refinement map ¢ : J — I. More precisely, this means we have

‘/jCC‘/j,CU¢(j) for every j € J, UVj:UU =M".
jedJ agl
Now existence of local Coulomb gauges p; on Vj/ boils down to finding a real-

valued function ; € W7 (V;) solving the following inhomogeneous Neumann
problem for the Laplacian

Ay = —id" Ag(y) iV,

81/) . ox /

5, = "oy (*Ag()  on V.

Clearly, if 1/; solves the Neumann problem above, then p; = e'™i is the desired
Coulomb gauge. But since d* Ay(;) = * [d (*Ad,(j)ﬂ , Stokes theorem implies the
compatibility condition

- L*/*A»:—/d*A».
/c”)vj’ ov; ( ¢(J)) v (4)

Thus existence and estimates follow from standard elliptic theory. Gluing the
local Coulomb gauges can be done exactly as before and thus we can construct

gauges hi; = p; 'g4()e(j)p; such that ({Vj}jeJ , {hij}i,jeJ) is a principal S'-
bundle of class WP over M™ and the gluing relations for the connection are
satisfied in Vl; But since S! is Abelian, the gluing relations are

h;jldhij =A% — A in Vllj whenever Vl; # 0. (41)
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But hy; : Vl; — Stis a WP map and thus, by results in [1] ( also [2] ), there
exists a ‘lift’ n;; € WhP (VZ,) such that h;; = €. Substituting in @II), we

obtain
dnij =i (A;)j — AY) in ‘/;;;‘ whenever Vi; 0.
Using the fact that both d*Afj and d* A" are zero, we deduce
Anyj =d*dp; =0  inV;; whenever V;; # 0.

Thus, n;; is harmonic in Vl; By standard interior regularity for harmonic func-
tions, 7;; is actually smooth in V;; and consequently, so is h;;. Thus, we have
smoothed the bundle in one step. Now we can follow step 3 of the proof of the-
orem [I7] and approximate the connection by smooth ones. The only difference
is that the corresponding estimates are far simpler due to the fact that S' is
Abelian. This completes the proof. O

4 Topology of bundles in the critical dimension

4.1 Coulomb bundles and gauge transformations

We have already shown in Theorem [I6 that Coulomb bundles are C° bundles.
Now we show their C°-equivalence class is stable under W*? gauge transforma-
tions for kp = n.

Proposition 24. Let kp = n. Let P* € Pé’p (M™) and A; € U*P (Pi) such

k,p
that A' is Coulomb on P?, for i = 1,2, and (Pl,Al) - . (PQ,AQ). Then Py
and P, are C°-equivalent.

Proof. The proof is very similar to how we proved the continuity of Coulomb
bundles, so we provide only a brief sketch. Since the connections are gauge
related, we have
do; =0A? — Alo in Uy,
for every i € I. Since A', A% are both Coulomb, we have,
—Ao; = * [doi A (*AZQ)} + % [(*All) A dai} in U,

for every i € I. But once again this is exactly of the form of eq (I3) with f = 0.
Thus, by passing to a refinement of the cover such that L™ norms of A} and
A? are suitably small, using lemma we deduce the continuity of o; in the
interior. The proof is concluded by slightly shrinking the domains. O

From this we deduce the uniqueness of Coulomb bundles for a connection.

Proposition 25 (Uniqueness of Coulomb bundles). Let kp = n. Given a
pair (P, A), where P € ’Pg’p (M™) and A € UMP (P) there exists a C°-bundle

Pa,...... , unique up to C%-equivalence, such that P
is a Wh% connection on P§ which is Coulomb.

coulomb

k,p

W o P and c*A

coulomb
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Proof. Given any £ > 0, the bundle P§ € PO (M™) constructed in step 1
and 2 of the proof of theorem [[7is one such bundle, so we only have to prove the
uniqueness claim. But if P, P» be any two such bundles, then they are gauge-
related to P by W*P gauges 01,09 respectively. Then the pairs (P, 07 A),
and (Py, 03 A) are themselves gauge related by o; ' o g5. Thus Proposition
concludes the proof. O

4.2 Definition of the topology

Definition 26. (Topology for bundles with connection) Let kp = n. Then
to each pair (P, A), where P € 'Pé’p (M™) and A € U*P (P), we can associate
a topological isomorphism class, denoted by [Pa]yr., by

[PA]Wka = [PAcoulomb]CO :

Remark 27. Note that the topological isomorphism class is associated to a
pair (P,A) and not to the bundle alone. However, the U™ connection we
constructed in the proof of Theorem [20 is in some sense ‘canonical’, i.e. it is
constructed out of a partition of unity for the cover and the bundle transition
maps only. So one can chose to always use this connection and thereby associate
a topological isomorphism class to the bundle P alone. This is what seems to be
what Shevchishin has done implicitly in [13]. However, in our opinion, such an
assignment is undesirable for two reasons. Firstly, it once again decouples the
topological information of the bundle from the connection and thus defeats the
purpose of tying the topology of the bundles to the analysis of connections and
curvatures under Yang-Mills energy. The second reason is that from the point of
view of geometry, philosophically there is no canonical choice for a connection
on a principal bundle.

The topological isomorphism class we defined is stable under W*P-gauge
transformations. Since by the transitivity of W*? gauge relations, the associ-
ated Coulomb bundles are gauge related, this follows from Proposition 241

Proposition 28 (Stability of topology under gauge transformation). if kp = n,

Pic ’Pg’p (M™) and A* € U*? (P?) for i =1,2, and (P, A") Wzkypg (P2, 42).

then [lel]wk,p = [Px?l?}wk,p .

4.3 Compatibility for regular bundles and connections

As we remarked before, the topological isomorphism class is associated to the
pair (P, A) and not a property of P alone. This is in sharp contrast to the
case of Sobolev bundles in the subcritical regime kp > n, where the transition
functions of the bundle alone, being continuous, are sufficient to determine the
topology of the bundle. Here, on the other hand, we encode the topological
information about the bundle in the connection. Indeed, if P € ’Pg’p (M™) be
a WHP bundle over M™ and A, B € U*P (P) are two different U*P connection
on P with kp = n, then in general [Paly ., # [PBlyk.» - Also, even if P is
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a smooth bundle, then in general [P]oo # [Pa,, .1 ]co for A € U (P) with
kp = n. However, we should justifiably demand that for a smooth connection on
a smooth bundle, the notion of topology defined here should coincide with the
usual notion. Now we are going to show that this is indeed the case. In fact, we
shall show that the only relevant factor here is the regularity of the connection.

Theorem 29. Let kp =n. Let P € Pé’p (M™)NPL (M™) and let A € U*P (P).
Then Pa.,,,..., and P are CY-equivalent as soon as d*A € (81),

Remark 30. In particular, [Paly ., = [P)co, for any smooth connections A
on a W*P N C% bundle P with kp = n.

Proof. We have the following equations for the Coulomb gauges for A.

AP = p;tdpi 4+ p; P Aipi in U,

for every i € I, {d* (AP =0 in U;.

From this we can deduce the equation

—Ap; = x[dp; N (xAP)] 4+ [(xA;) Adpi] — (d*A;) pi in U;, for every i € I.

The last term on the right is L(%’l). By shrinking the domains to ensure
smallness of the L™ norms, Lemma concludes the proof by the Peetre-
Sobolev embedding w2(51) < WLen) combined with the Stein [16] em-
bedding W (1) s 0, O

Theorem 31. Let kp =n. Let P € Pg’p (M™) and let A, B € U*P (P). Then
Pacpsions and Ppg, . are C%-equivalent as soon as d*A,d*B € r(5:1),

Proof. We shall denote by p and o, the Coulomb gauges for A and B respectively.
Since Pag,uioms a0d Ppe, ..., are gauge related to P by p and o respectively,
Pacouoms 18 gauge related to Pg,, ..., by the gauges u = o~ 1p. By passing to
a common refinement if necessary, we can assume that there exists a fixed cover
{Ui};c; of M™ such that for each i € I, we have,

AP = ptdpi + p; P Api in U,
and

Bgi = U;ldUi + U;lBiUi in U;,

d*(BJ") =0 in U;.

Arguing exactly as in Theorem 29 we see that up to shrinking the domains,
both ¢ and p are continuous and hence so is w. O
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4.4 Topology in the limit without curvature concentration

As we have already seen, the notion of the topology we defined depends heavily
on the regularity of the connection. In particular, given a fixed W*? bundle
P over M"™ and a sequence of U*P connections {A"} -, C U"P (P), the as-
sociated topological isomorphism classes [Pav]y«.p can all be different when
kp = n. However, this can not happen if we have some information regarding
the curvatures of the connections. This is the content of the following theorem.

Theorem 32. Let kp =n. Let {P"} -, C 'Pé”p (M™) be such that there exists

a common refinement {Wo}, ., for the associated covers. Let AY € UMP (P)

for all v > 1 such that ||FAV||L%(Mn_A2T*Mn®g) is uniformly bounded and the

sequence {|FAV|%} is equiintegrable in M™, i.e. for every e > 0, there exists
v>1

a § >0 such that for any measurable subset E C M™ with |E| < 6, we have
/ |FAV|% <e for every v > 1. (42)
E

Then there exists a subsequence {A"*} -, and an integer so such that for every
$1,82 > 8o, we have

e

A”SI}W’C,P - [Pysz

A”S2]Wk,p :
Moreover, there is a bundle P> = ({Uioo}iej , {gfj’}ijg) € Pé’p NP (M™)
and a limit connection A € UMP (P>) such that

ili% [PZ’S/S]Wk,p = [Pflom]wkp .

Furthermore, for every i € I,

(AL wtom); — A° weakly in Whe (UP AT U ® ),

Fpvs = Fas weakly in L*? (Uioo; AT U> @ g)

and for every i,j € I with U N U # 0,
97 = iy strongly in W20 C° (Un Ur; G),
Jor some 5 < q < mn, where g;’js are the transition maps for PAUCS —
Remark 33. By Dunford-Pettis theorem, the hypothesis on curvatures are of
course equivalent to the sequence {|FAV |%} being weakly precompact in L.
v>1

Remark 34. (i) Note that even if P* = P for allv > 1, where P € Pé’p (M™)N
P& (M™), still [P>] 50 may not be the same as [P]qo . Since it is perfectly possi-
ble that [P] o # [PAéouzomJ oo for infinitely many v > 1. Thus in this generality,
the only conclusion that we can reasonably expect is that up to a subsequence,

[PAquﬂmb]co stabilizes to one isomorphism class and the limit is also in the
same class. This is exactly what the theorem claims.
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(i) On the other hand, by Theorem [29, if in addition, d*AY € (51 for
every v > 1, then we deduce that [PAéouszco = [P]qo for every v > 1. Then
the stabilization conclusion is trivial and the real content of the theorem is that
[POO]co = [P]co~

Remark 35. Note that the condition about the existence of a common trivializa-
tion is actually an important subtle point. For an arbitrary sequence of bundles
{P"} <, over M™, for any x € M", for each v > 1, we can find U} C M",
a neighborhood of x such that P¥ is trivialized over UY. But if diam (U%) — 0
as v — 0o, there is no neighborhood of x in M™ over which all the bundles are
trivialized simultaneously. It is not clear if this can be ruled out in general, so
the condition is simply an explicit assumption to rule this situation out.

Proof. By equiintegrability, we can find a cover {V;*°},.; of M", which is re-
finement for the cover {W,},.; and we have, for all v > 1,

. EAc, )
| Fav ”L%(VfO;MT*VfO@g) < min {Ecouzomb, 74000207@} foralli e I. (43)

Thus, {V;*°},; is a common fixed cover for the Coulomb bundles P, . for

- by g;;, we have the
Coulomb condition and the gluing relations for the Coulomb bundles,

dg;jj = gzyg (Aéoulomb)j - (Aéoulomb)i g;jj in ‘/;OO N ‘/;OO (44)
0 (Al gtomms); = 0 in V;° (45)

Coulomb

every v > 1. Denoting the transition functions of P,

for every 4,5 € I with V> NV> # () and for every i € I respectively. Also, we
have the estimate

||( éoulomb)i”Wl’%(Vioo;AzT*Vioot@g) S CCoulomb ||FAVHL%(V;°°;A2T*V;°°®Q) (46)

every i € I. Combining (@) and {f) and recalling that G is compact, we
deduce,

19955 . (v v sy

< O (IFa 8 (vesnorevimeng)  1Fa 2 (veonsrvieesg))

Since G is compact, this implies || g;’JH is uniformly bounded.

W (VeenUse:aQ)
Thus, there exists a subsequence which converges weakly in W1, Using (@8]
and extracting a further subsequence, we can assume that

95 = 955 weakly in W1 (Vi n Vs G), (47)

(A% ), = A weakly in W32 (VZ—OO; ANTVZ @ 9) J (48)

Coulomb

as s — 0 for every ¢, j. By compactness of the Sobolev embedding, up to the
extraction of a further subsequence which we do not relabel, [7)) implies

g7 — g;;  strongly in LY for every g < oo (49)
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and since the maps gfj satisfy the cocycle conditions, passing to the limit we
deduce that the maps g7 satisfy the cocycle conditions as well and thus they
define a Wb bundle P>°. Using compactness of the Sobolev embedding again,
up to the extraction of a further subsequence which we do not relabel, (@S]
implies

(A utoms); — AT strongly in L” for every 1 <r <n (50)
for every ¢ and thus, we have
g;/JS (Aésoulomb)j - (Az‘soulomb)i g;/JS - gfjoA;)O - A;)og%o in L*

for every s < m. Combining with (#4)) and (@), this implies that the gluing
relations

dgiy = 957 AT — A g;5 in V= Nnvye (51)

holds in the sense of distributions and pointwise a.e. for every i,j with V,* N
V2 # 0. Thus the local representatives { A%}, patch together to yield a global
connection form A% on P*°. Note that by (B0)), we also have

(4%

Coulomb

)i NMAG sutoms); — Ai” N AT strongly in L2 for every 2 <7 <n

for every i. Since @8)) implies that (A&, ,10ms )i N AGouioms); 18 uniformly bounded
in Lz, by uniqueness of weak limits, we deduce

(Aésoulomb)i A (Aésoulomb)i - A;)o A AZOO Weakly in Lz.
Combining this with (Ag]), we obtain
Fpre = Fax  weakly in L?.

By {@3) and {S), we deduce that A is Coulomb and thus, up to shrinking the
domains which we do not rename, by Theorem [[6 we can assume that g75 are

W2P in V2o N Ve for every § < p <n and every 4,j with V> N V> # (). Now

loc

from (BI) and @), we deduce that the equation

d (g;IJS - gfjo) = (glyjs - g;)JO) (Azfoulomb)j - (Aésoulomb)i (glyjs - gfjo)

+ g;?]o [(Agsoulomb)j - A;)O:| - [(Aésoulomb)i - A;)o} gi]o (52)

holds in V;>** N'V> whenever the intersection is non-empty. Since A uioms and
A are both Coulomb, we deduce the equation

— Au¥s = % |:du;j]s A * (Agsoulomb)j} T [* (AVS

17 Coulomb

+* |:ng°]° A x [(Aésoulomb)j - A_(]DO:H
+ox [* [(Aésoulomb)i - A;)o} A dgi]o] (53)

); A dui;]
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in V;**NV;>® whenever the intersection is non-empty, where uw = gw — gw Now
we choose exponents 5 < p <mnand1<r <nsuchthat + < 142 p < 2. Note
that since p > % 1mphes 5 > such a choice of r is p0551ble Now by shghtly

shrinking the open sets Vioo, we can find open sets U®, UZ-OO such that {U;’O}
i€l

is still a cover for M™ and for each i € I, we have, Ux cc UP cc Ve
Now considering the equation (53) in U >N U°°, whenever the intersection is

non-empty and recalling that g5¥ is W7 in Ufo N UOo using Lemma[I2] by our
choice in ([@3)), we deduce the estimate

H“ W2a(TenTe;6 < ¢ Hu W, 2(1§°°mU°°)
+O||d gU ||L" p([j'oor-][:]oo) ||( Coulomb A'?OHLT([Z'IOO)
+ c ||d ng ||L" D (UoomUoo H Coulomb) A;)o‘ LT([}]OO) ) (54)
where n > ¢ = npﬁif;fp) > 5. Now (B0) implies that the last two terms on

the right hand side of the estimate above converges to zero as s — o0o. The first
term also converges to zero by ([@9),([E0) and (52). Thus, by Sobolev embedding,
we obtain
||gll/f - g?;HCO(Ufoﬂﬁjm;G) —0ass— o0
for each i,j € I with U N U;-’O # (). By Corollary 3.3 in [22], we deduce the
existence of a smaller cover {U7°},.; and gauge changes o; € W4 (U*;G)
satisfying
g%‘»’:oi_lg:;‘)oj in U NUSS,

whenever the intersection is non-empty, for some integer so large enough. This
proves the result. |

As an immediate consequence, we obtain Theorem

Proof. ( of Theorem [2] ) In light of the discussions in Remark B4 (ii), this is
just a restatement of Theorem [32]in this case. |

We now prove that §-Yang-Mills energy can detect topological flatness in a
WP principal G-bundle equipped with a U*? connection for kp = n.

Theorem 36 (flatness criterion). Let kp = n. For any cover U of M™, there
exists a constant § > 0, depending only on U, M"™ and G such that if P is a
WkP bundle trivialized over U and A is a U*P connection on P, then either

Y M, 5 (A) > 6, or [Palyn. = [P cos Where PO is a flat bundle.
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Proof. Since for kp = n, every WF? bundle is also a W™ bundle and every
URP connection is also a U™ connection, it is enough to prove for k = 1. If the
result is false, there for every v > 1, there exists a W™ bundle PV trivialized
over U with a U™ connection A¥ € U™ (P¥) such that [P4.]y1. # [P°] o
for any flat bundle P° and Fa» — 0 in L3 . Since the strong convergence of the
curvatures in L2 implies the equiintegrability, applying Theorem B2 we deduce
that [Py ]y = [PR&]yin, for s large enough. But it is easy to see that
by the strong convergence of the curvatures in L? to zero, we have dg;s =0
in U N U, for every i,j € I with U NUX # (). This means P> is a flat
bundle. This contradiction proves the theorem. |

Combining Theorem [BG] with Theorem 29, we immediately obtain Theorem

Appendix A (G-valued Sobolev maps

Without loss of generality, we can always assume that the compact finite dimen-
sional Lie group G is endowed with a bi-invariant metric and is smoothly embed-
ded isometrically in RN for some, possibly quite large, integer Ny > 1. By com-
pactness of G, there exists a constant Cg > 0 such that G CC Be,, (0) € RMo.

Definition 37. Let U C R" be open. The space W*P? (U; G) is defined as
Whe(U;G) == {f € WF? (U;RN) : f(z) € G for ae. z €U}

The compactness of G implies that W*? (U;G) c L* (U;R"°) with the
bounds ”fHLOO(U;]RNO) < COg for any f € WFP (U;G). By the Gagliardo-

Nirenberg inequality, it follows that W*? (U; G) is an infinite dimensional topo-
logical group with respect to the topology in inherits as a topological subspace
of the Banach space WP (U; RNU). Note that W*P (U; G) is not even a linear
space, so there is no question of a norm. It inherits only a topology from the
norm topology of W#» (U; RNO) .

On the other hand, since the Lie algebra of G, i.e. g is a linear space and
consequently so is AFR™ ® g for any 0 < k < n, the space of g-valued k-forms
of class W*P is defined by requiring each scalar component of the maps to be
WP functions in the usual sense. The standard properties of Sobolev functions,
including smooth approximation by mollification, carry over immediately to
this setting by arguing componentwise. The stark contrast between the two
settings is due to the fact that in general a map g € W*P? (U;G) need not have
a WFP ‘ift’ to the Lie algebra. More precisely, there need not exist a map
u € WkP (U; g) with the property that g = exp (u), where exp : g — G is the
exponential map of G. However, g = T1,G and there exists a small enough C°-
neighborhood of the identity element 15 € G in G such the exponential map is
a local smooth diffeomorphism onto that neighborhood. We shall use this fact
crucially and repeatedly, so we fix some notations.

Notation 38. Let G be a compact finite dimensional Lie group and Og C G
be a neighborhood of the identity in G which is contained in the domain of
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the inverse of the exponential map, i.e. 1g € Og C Dom(exp~t), such that
exp~ 1 (Og) C g is a convex set containing the origin, i.e. 0 € exp~! (Og) C g
18 convex.

Now we prove a few lemmas for kp > n, which are W*P-analogues of classical
results about G-valued continuous maps. All subsets of R™ are always assumed
to be at least Lipschitz sets.

Lemma 39. Let dy > 0 be a real number and kp > n. Let U C R™ be open,
bounded, convexr and let A, B C U be two closed convex subsets such that B CC
A and dist (B; 0A) > do. Then given any continuous map F € WP (A; Og),
there exists a continuous map F € W*P (U; Og) such that F = F on a neigh-
borhood of B and F = 1¢ on a neighborhood of U \ int (A). Moreover, there
exists a constant Cy = C1 (do,n, k,p, G) > 1, nonincreasing with dy, such that
we have the estimate

Hexp_l (F) HWk,p(A;g) =G ||exp_l (F)Hwk’p(A?g) '

Proof. Since B and U \ int (A) are disjoint, one can construct a smooth map
¥ : U = [0,1] such that 1) = 0 in a neighborhood of U \ int (A) and ¢ =1 in a
neighborhood of B. Then we set

Fy(z) == exp (Y(z) exp™" [F(z)]) for all x € A.

Clearly, Fy, takes values in Og by convexity of exp~! (Og) . But since Fy, = 1¢
near the boundary of A, the map

~ Fﬂl (I) if x € A,
F(z):= . .
1c ifxeU\int(4),
is continuous and satisfies all our requirements. By the smoothness of 1 and the
exponential map, the Sobolev bounds follow from straight forward computation

and obvious estimates. The only dependence of the constant C on dy is via the
L norms of the derivatives of ¢ and hence is nonincreasing. O

As a consequence, we deduce

Lemma 40 (Extension). Let dg > 0 be a real number and kp > n. Let U, V,W C
R™ be convex open sets such that W CC V cC U, dist (W;9V),dist (V;0U) >
do and U is bounded. Then there exists a constant 6 = da(n, G) > 0 such that
for any two maps f € WEP (U;G) and g € C* (V;G) satisfying the bound

Hfilg - 1GHWk,p(V;G) < 507

we can find a map fewhr (U; G) such that f = g in a neighborhood of W and
f = [ in a neighborhood of U\ 'V in U. Moreover, there exists a constant Cy =
Cy (do,n, k,p,G) > 1, nonincreasing with do, such that we have the estimate

”eXp_l ( 1f) HWk 2 (Vig < Co Hexp_l (f_lg)HW’“’P(V;B) '
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Proof. We use the previous lemma by choosing B=W, A=V and F = f~lg.
Clearly, there is a smallness parameter 0 as claimed such that the bound forces
f~1g to take values in a neighborhood Og C G which satisfies the assumptions
of Lemma Now we set

f(:b) = f(:v)l:"(x) for all x € U,

where F is the extension of F' = f~1¢ given by Lemmal[3d The estimate follows
by simple computations and obvious estimates. O

Lemma 41 (Relative smooth approximation). Let kp > n. Let U, V,W C R"
be convex open sets such that W CC V. CC U and U is bounded. Then there
exists a constant 6g = 6g(n,G) > 0 such that if f € WEP (U;G) satisfies

osc(f; V) < g,
then for every € > 0, there exists a smooth map f¢ € C* (W;G) such that
-1
Hf /= IGHWW(W;G) se

Moreover, if A C U is a closed subset ( possibly empty ) such that f is smooth
in a neighborhood of ANW , then f€ can be chosen to ensure f€ = f in ANW.

Proof. If f takes values in a finite dimensional vector space, the lemma is com-
pletely classical ( see e.g. Theorem 2.5 in [4] ) without requiring any smallness
condition on the oscillations of f. So we just need to choose dg small enough
such that (f)i1 f C Og, for some constant element f € G, where Og C G is
as in Lemma Then we can write

f(z) = fexpu(z) forallz e V

for some continuous map u € W¥P (V;g). Note that since f is smooth in a
neighborhood of A NW, which we can assume to be contained inside V' and we
have

u(z) = exp™! {(f)fl f(a:)} for all z € V,

we infer that w is smooth in a neighborhood of A N W. Since g is a finite
dimensional vector space, we can find a sequence {u} C C'° (W; g) such that

e Whp in W 0 d € _
u® — u inWase— an u’AﬂW_u’AmW'
Choosing £ > 0 small enough and reducing § if necessary, we can ensure that the
image of u® is contained in exp~! (Og) as well. Now f¢(x) := fexp[u®(z)] is
the desired map, which satisfies the estimate if we choose ¢ suitably small. [
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Appendix B Smooth Approximation in subcrit-
ical regime

Now we prove the smooth approximation theorem for W*? bundles for kp > n.

Proof. ( of Theorem [8 ) We prove only the case k& = 1. The case k = 2 is
similar. Also, we only show the existence of an approximating smooth cocycle
hij. The existence of the maps o; follows, as already proved for k = 2 by
Uhlenbeck in [22], Corollary 3.3, but the argument works for £ =1 as well.

During the course of this proof, we will freely reduce € > 0 finitely many times
in order to make it suitably small. Also, we set g > 0 to be the smaller of the
two smallness parameters d¢ given by Lemma 40l and Lemma Il All opens sets
we are going to chose below are always assumed to be at least Lipschitz, convex
and bounded without further comment. Now the rest of the proof involves two
nested induction arguments.

Step 1: Outer induction:: We begin by choosing N? open sets Virhi<ire<n

N
such that we have M" = VZ-N and for each 1 < ¢ < N we have the inclusions
i=1

VN ccVNtcc...ccV/T cc Vi cC...cC V] CC Vi CC Uy,

together with the smallness conditions

ose (g Vi ) < 29, (55)

Here and henceforth g;; stands for gg;)s(;), where ¢ is the refinement map.
Now, once we have chosen our sets {V;"},_, ..y, there exists a number dy > 0
such that we have o

dist (V/H50V7) > (N+1)*'dy forall 1 <7 <N.
Let C2(dp) > 1 be the constant given by Lemma [0 for this dy > 0. Now we set
Co := 100" [CexpC:Ca(d)] ",
where Cg > 11is an L* bound for G and Cexpp, > 1is a C? bound for the smooth

maps exp and exp~! for G.

Step la: Hypotheses for outer induction:: For each 1 < r < N, we
want to inductively construct a collection of smooth maps {gfj}l <ij<r such

that gfj VN er — @ is smooth, ¢¥ = 14 for all 1 < i < r and satisfies

T

(H1) the cocycle condition
9595 = gi,  forallz e VNV NV, forall 1 <i,j,k<r, (H})

(H2) and the estimate

N2

L e N
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Setting g1, = 1¢ in V!, the hypotheses are met for r = 1. So we assume that we
have already constructed such a family for all 1 < r < rgforsome 1 <rg < N—1
and show that we can construct such a family for r = ro + 1.

Step 1b: Induction step for outer induction:: Given such a family of

smooth maps {g;f’}KijQ where g;? : V° NV — Gforall1 <i,j <o
=4,J=T0

that satisfies (HJ)) and (HZ) for r = ro, we can define the maps g/?*" : V;°"' 0

ero+1 — G as the restriction

ro+l ._ 7o
Gij = Yig

ro+1 ro+1°
‘/i 0 m‘/j 0
Also, we obviously set g(rﬁ(:rll)(ro 41 = lain V[()O:ll. Thus, it only remains to

construct smooth maps giT(OrJngrl) : V[OH N ‘/7;0:11 — G for the values 1 < i < ry,

such that they satisfy, for all 1 <1 < j < rg, the identity
T T -1
gj?rt}i—l)(x) = [giijrl(xﬂ gi(orJg-li—l)(w)7 (56)

for all z € Vot 0 V;”H NV, along with the estimates

for all 1 <4 < rg. This will be done by another induction.

ro+1 _TN7212
< (2C) To? £, (57)

Gi(ro+1) — Jilro+1) H

ro+1 ro+1,
wrrnCo (Vo N ofha)

Step 2: Inner induction:: To do this, we first chose (o + 1)* open sets
{Wil}lq I<rot1 such that for each 1 <7 < rg + 1 we have the inclusions

vttt ccw ot cc...ccw/ cawl cc...ccW! cc v
and forall 1 <i<rg+ 1,1 <[ < rg, we have,

dist (W) 0W}) , dist (Vo oWyt dist (W, 0V;°) > do.

Step 2a: Hypotheses for inner induction:: Let 1 <y < rg—1 and suppose

we have constructed maps hli‘zmﬂ) e C> (Wllo N ngH;G) forall 1 <i <l

satisfying
—1
W (W) =g mWEAWEAWEL ()

for all 1 <i,j <y, together with the estimates

|

hlo

2
oty = e < (2C0) 00T & for all 1< i < I,

WhrnCo (Wonw)0, 1iG)

(59)
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Now we construct maps hé((’:gl_kl) c Wt n W,{gﬂ — Giforall<i<lp+1

satisfying

Aty (Wil)) =g Wi awh T AW (6)
for all 1 <i,j <lg+ 1, together with the estimates
’ h
for all 1 <i <ly+ 1. Note that by virtue of (B3l), we can use Lemma (1] with

A = 0 to construct a smooth map h%(roﬂ) € C= (W} N WL _1;G) such that
we have

2
lo+1 < (2(]0)*@0“7% g, (61)

i(ro+1) — Ji(ro+1)

HW’W’QCO (wiertnwothie)

1 _ TNQ
th(TOH) B gl(r°+1)HWk,mco(W_1mW1 15G) < (2Cp) oD e,
k2 ’I"U ’

This implies that (B8) and (B9) are satisfied for lj = 1 and we can start the
induction.

Step 2b: Induction step for inner induction:: As before, by restrict-
ing already constructed maps, it only remains to construct one smooth map

hl((l):-i-ll)(ro-',-n e C>® (Wll:ill N Wiﬂﬁ»@ such that
—1
fo+1 = |g" l : lo+1 lo+1 lo41
ho 1) (ro+1) = [gi(olo-i-l)} Pilro+1) in W nwpelnwer o (62)

for all 1 <17 <ly and we have the estimate

1 ___ N%2
[ttty = S0 | < (2Go) Toivtoiv e,

whrnco (W0 nw, 01 16)

(63)
We define fy aymn - U (Wl nwie, WL, ) = G by setting
]
7 ” Y : l lo+1 l
h(l0+1)(ro+1) = [gi(olo_,_l)} hi((Jr[ﬁ.l) m Wio N VVl(;) N Wr3+1

forall 1 < i <ly. Note that gir(“lﬁl) and hif(’TOH) are already defined in V™ ﬁV}Eﬁrl

and Wil0 N Wig 41 respectively, by the induction hypotheses. By li forr =g
and (B8)), the definitions agree in quadruple intersections and thus Ro+1)(ro+1)
U (Wilo N Wll(;’H N W,{g_H) — @ is actually smooth. By using (G9),
1<i<lp

for r = r¢ and noting that o + 1 < rg, one can estimate the norm

71 7
"g(lo+1)(T0+1)h(l°+1)(”)+1) IGHWk,p U (W.l“mwlo AW )'G .
peizig lo+1 ro+1)7
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Now, choosing € > 0 suitably small, this norm can be made smaller than d.
Pick an open set X satisfying
nwk

lo+1 lo+1 lo+1 l l
U (W le;HmWTgH) ccxce | (Wiole;H m+1)-

1<i<lg 1<i<lg

By Lemma [0, we find a map B(l0+1)(m+1) € Wkr (Vl’;‘jrl NV s

ho+1)(ro+1) = fz(l0+1)(m+1) in a neighborhood of X and we have

G) such that

—1 —1 7
HGXP (g(lo+1)(T0+1)h(loJrl)(erl)) HW’C’P (VTO AT )

lo+1"Wrg4138

< Hexp_1 (gfl h
~ (lo+1)(ro+1) "o+ 1) (ro+1) onwlo A '
Wk.p 1§EJ§lo (Wiom 1o+11 r8+1);g

Combining this estimate with (B5]) and choosing € smaller if necessary, we can
force that osc (iL(ZOJrl)(ToJrl); VVllg’Jrl N er8+1) < . Hence by Lemma HI] there

exists hl(‘l’:fl)(mH) e 0™ (V[/llg’ill N ergii, G) satisfying (62)) and (G3). O
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