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We show that an inclusion placed inside a dilute Stokesian suspension of microswimmers induces
power-law number-density modulations and flows. These take a different form depending on whether the
inclusion is held fixed by an external force—for example, an optical tweezer—or if it is free. When the
inclusion is held in place, the far-field fluid flow is a Stokeslet, while the microswimmer density decays as
1=r2þϵ, with r the distance from the inclusion and ϵ an anomalous exponent which depends on the
symmetry of the inclusion and varies continuously as a function of a dimensionless number characterizing
the relative amplitudes of the convective and diffusive effects. The angular dependence takes a nontrivial
form which depends on the same dimensionless number. When the inclusion is free to move, the far-field
fluid flow is a stresslet, and the microswimmer density decays as 1=r2 with a simple angular dependence.
These long-range modulations mediate long-range interactions between inclusions that we characterize.
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I. INTRODUCTION

Active matter encompasses systems whose individual
elements convert energy into directed motion on a micro-
scopic scale [1–9]. When the dissipative conversion of
energy is coupled to interactions between particles, a
wealth of phenomena which is not exhibited by systems
in the thermal equilibrium is observed. Similarly, when this
breaking of time-reversal symmetry is coupled to inter-
actions with external potentials, the resulting behavior is
very different than that of equilibrium systems. Importantly,
in equilibrium, when interactions are local, the Boltzmann
weight implies that the effect of a localized external
potential extends beyond its own support only out to a
scale of the order of the correlation length. In stark contrast,

in active systems with local conservation laws, steady-state
distributions are inherently nonlocal [9–13], which leads to
long-ranged influences of external potentials. A particu-
larly spectacular experimental manifestation is the response
of active systems to asymmetric potentials placed in the
middle of a chamber [14]. One finds that active particles
accumulate on one side of the system as a result of a
ratchetlike mechanism [15].
Much theoretical progress has been made in under-

standing the response of active matter to external potentials
in dry active systems. In dry systems, momentum is not
conserved, so that experimental realizations correspond, for
example, to particles moving on a substrate [16], vibrating
granular grains [17,18], and more. Significant attention has
been given to the particle density in confining potentials
[15,19–21] and in the vicinity of localized repulsive
potentials [22–24], showing the generic tendency for active
particles to accumulate close to walls and repulsive
boundaries. Arguably equally significant is the observation
that generic localized potentials (or inclusions) induce
a universal long-range modulation of the density field
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[25–27] which decays ∝ p · r=rd in d dimensions, with p a
vector characterizing the properties of the inclusion and r is
the distance from it. The behavior is a consequence of the
emergence of ratchet currents from the interplay between
the breaking of time-reversal symmetry and any asymmetry
of the inclusion. The result has far-reaching consequences
[13]. It implies that two inclusions placed in an active bath
experience long-range interactions [25,26,28] and explains
the sensitivity of the phase diagram of dry active systems
to bulk [29] and boundary [30] disorder. In particular,
quenched disorder generically leads to long-range corre-
lations [29] in any dilute active system. Moreover, motility-
induced phase separation [31–34] is destroyed by bulk
disorder in dimensions d < 4 and by boundary disorder in
dimensions d < 3.
Despite the relevance of dry active matter to experi-

ments, many realizations of active systems, biological or
synthetic, comprise particles that self-propel in a viscous
fluid. In such systems, termed “wet,” the conservation of
momentum is known to lead to very different behaviors
[1,35–39]. The dynamics of active particles in wet systems,
which in this context are often called microswimmers, in
the vicinity of walls and obstacles have been the subject of
intense scrutiny [40–43]. However, the response to a
localized inclusion has, to the best of our knowledge,
remained unexplored. In this work, we investigate the

long-range effect of a localized inclusion by considering a
dilute suspension of swimmers propelling in a three-
dimensional viscous fluid, as depicted in Fig. 1. The
presence of the ambient fluid mediates interactions between
the particles, which are long range due to momentum
conservation [44]. Direct, nonhydrodynamic, interactions
between the swimmers are neglected but are taken into
account between the swimmers and the obstacle as a short-
ranged force field. As we show, the coupling to fluid flow
can qualitatively alter the nature of the long-range effect
and in ways not revealed by mere power counting.
We identify three cases of interest, corresponding to

three different large-scale behaviors of the density field of
the swimmers, depending on whether the inclusion is
freely moving in the fluid or if it is held fixed by an
external force—for instance, by optical tweezers—and
depending on the internal symmetries of the inclusion.
Our results are largely independent of the intrinsic com-
plexity of the near-obstacle swimming motion. When the
obstacle is freely moving, driven by the interactions with
the swimming particles, hydrodynamic interactions have
little impact on the far-field behavior of the density field,
and the behavior of the dry case survives with modu-
lations of the density field decaying as 1=r2. However,
we predict a very different response when the obstacle is
held fixed by an external force. In this case, the decay

(a)

(c)(b)

FIG. 1. (a) is a sketch of the system under consideration: self-propelled particles swimming in a three-dimensional Newtonian viscous
fluid in the presence of a localized inclusion. The unit vector p̂ is defined in Eq. (8) and points in the direction of the average force that
must be exerted on the inclusion in order to maintain it fixed. (b) and (c) illustrate our key finding: A localized inclusion induces a long-
range modulation of the density field, whose exponent depends on the symmetries of the inclusion. For fixed polar axisymmetric
inclusions, we obtain δρðrÞ ∼ gkðθÞr−2−ϵk , while for those with no axis of symmetry, we get δρðrÞ ∼ g⊥ðθ;ϕÞr−2−ϵ⊥ , where gkðθÞ,
g⊥ðθ;ϕÞ, ϵk, and ϵ⊥ are given in Eqs. (9)–(12).
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exponent depends on the symmetries of the object and on a
Péclet number, called λ in the following, that compares the
relative amplitude of hydrodynamic to diffusive effects and
whose mathematical expression is given in Eq. (7). We find
that obstacles with a polarity that also defines an axis of
(possibly discrete) rotational symmetry induce density mod-
ulations decaying as 1=r2þϵk with ϵk > 0, while less sym-
metric obstacles induce density modulations decaying as
1=r2þϵ⊥ with ϵ⊥ < 0. Lastly, obstacles with no polarity
induce, as in the dry case, shorter-ranged density modula-
tions. Notably, we expect density modulations induced by
spherical obstacles to decay faster than a power law.
We begin in Sec. II by presenting a heuristic approach to

the effect of hydrodynamic interactions on the behavior of
the number-density field far away from a localized inclu-
sion. The range of results we obtain are stated at the end of
this section. This heuristics is supported by the use of a
microscopic model of squirmers that we present in Sec. III
and for which we derive, in a mean-field approximation, the
equation obeyed by the steady-state density profile of the
swimming particles. We solve this equation in the far field
in Sec. IV, using an asymptotic expansion of the second
kind [45,46]. We obtain the decay exponent and associated
angular dependence of the density field perturbatively in
the parameter λ. An alternative route to these results, based
on the renormalization group, is presented in Appendix C.
Finally, before concluding, we build in Sec. V on the
previous sections to derive the far-field interaction between
two inclusions in a bath of swimmers. Throughout, vectors
are denoted in bold p or in component notation pα, and p̂ is
the unit vector p̂ ¼ p=jpj.

II. HEURISTIC ARGUMENTS

Before turning to a systematic derivation, we start by
presenting the physical picture that underlies the results. It
is useful to first consider the dry case. In this case, the
localized asymmetric object, through a ratchet effect, acts
as a pump on the active particles. Since the active particles
diffuse on large scales, the steady-state density ρðrÞ is
controlled by the equation D∂α∂

αρðrÞ ¼ −∂αCαðrÞ. Here,
D is a diffusion constant, the boundary conditions are
ρðrÞ → ρ0 as r≡ jrj → ∞, and CαðrÞ is a current term
localized in the vicinity of the obstacle which accounts for
near-field effects. Taking r ¼ 0 as the position of the
obstacle, it is easy to check that the known far-field
behavior, described in the introduction, is captured by this
equation as long as cα ¼ R

drCαðrÞ is finite. The addition
of a three-dimensional viscous fluid, because of the long-
range nature of hydrodynamic interactions, then modifies
the diffusive behavior of the swimmers according to

D∂α∂
αρðrÞ − ∂αðv̄αðrÞρðrÞÞ ¼ −∂αCαðrÞ; ð1Þ

where v̄ðrÞ is an effective long-ranged convective flow
generated by the combined effect of the swimmers and the

object. In Sec. III, we show that Eq. (1) can be derived from
a mean-field microscopic model of swimmers. Note that if
the obstacle is moving, we assume that it does so on a
timescale that is slow enough that the density ρðrÞ can be
taken to be in a steady state.
While the microscopic derivation also makes the

form of the velocity field v̄ðrÞ explicit, it can be under-
stood intuitively using momentum conservation. Denote
by Fi

swim→fluid the force exerted on the fluid by the
swimmer labeled by i. Since its inertia is negligible,
and in the absence of nonhydrodynamic interactions
between swimmers, momentum conservation implies
that Fi

swim→fluid ¼ −Fi
swim→obs, where F

i
swim→obs is the force

exerted by swimmer i on the obstacle. By assumption, the
latter is nonzero only for particles in the vicinity of
the obstacle. Denote now by Ffluid→obs the force exerted
by the fluid on the obstacle. The total force exerted by the
combined effect of the swimmers and the obstacle on the
fluid, denoted by f, is therefore

f ¼ −
�
Ffluid→obs þ

X
i

Fi
swim→obs

�
: ð2Þ

In the far field, this induces a viscous flow, corresponding
to a force monopole localized at r ¼ 0 with amplitude f . It
follows that two distinct cases need to be distinguished,
depending on whether the obstacle is held fixed externally
or not.
If the obstacle is held fixed by an external force,

momentum is injected locally into the system, and
f ¼ Fext with Fext the force exerted by the external
observer. Accordingly, the effective flow in Eq. (1) behaves
as a Stokeslet on large scales, and we find

v̄αðrÞ ≃ 1

8πη
JαβðrÞFext; ð3Þ

where the overline denotes a steady-state average of Fext
which on symmetry grounds is nonzero for a polar obstacle.
Here,

JαβðrÞ ¼ δαβ

r
þ rαrβ

r3
ð4Þ

is the fundamental solution of the Stokes equation in the
presence of a force monopole. Note that the flow v̄ðrÞ
decreases as r−1 away from the obstacle. A second case of
interest is that of a free obstacle. Here, the total momentum
is conserved and f ¼ 0 so that the leading order far-field
effective flow is that of a force dipole:

v̄αðrÞ ≃ 1

8πη
∂γJαβðrÞQγβ; ð5Þ

with Qγβ the effective average dipole strength. In this case,
v̄ðrÞ decays as r−2.
As we now argue, the difference in the decay of the

velocity field between these two cases results in drastically
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different behaviors for the density field which, in general,
cannot be inferred using simple power counting. This can
be understood through the following asymptotic argu-
ments. Denote δρðrÞ≡ ρðrÞ − ρ0 such that δρðrÞ → 0 as
r → ∞. In the far field, we replace the localized current
CαðrÞ by cαδðrÞ and the velocity field by v̄αðrÞ ¼
Ar−χgαðr̂Þ, with gαðr̂Þ controlling the angular dependence.
Here, χ is treated as a variable, and we keep in mind that
χ ¼ 1 corresponds to an externally held obstacle and χ ¼ 2
to the freely moving one. The parameter A measures the
strength of the hydrodynamic term and can be read from
Eq. (3) for a fixed obstacle and Eq. (5) for a free obstacle.
Since the flow field is incompressible, we have

DΔδρ − Ar−χgðr̂Þ · ∇δρ ¼ −c · ∇δðrÞ: ð6Þ

Now, note that if χ > 1, the convection term decays faster at
infinity than the diffusive one, rendering the former
irrelevant on large length scales. However, both have the
same amplitude when χ ¼ 1, indicating that the convection
term is marginal in the renormalization group sense and
could modify the far-field decay of the density [47]. With
this in mind, we find the following behaviors for fixed and
free obstacles embedded in three-dimensional active sus-
pensions. The results are depicted in Fig. 2 in the three
cases of interest that we identify.

A. Fixed obstacle

We treat the hydrodynamic coupling using an intermediate
asymptotic expansion of the second kind [46] in Sec. IVand a
renormalization group analysis in Appendix C. We find that

0.75

0.50

0.25

0

0.25

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.2

0

0.2

0.4

(a) (b)

(c)

FIG. 2. Far-field density profile in a two-dimensional section ρðx; y ¼ 1; zÞ, up to a multiplicative constant, for the three different
cases: fixed inclusion with no axis of symmetry, fixed polar inclusion with an axis of symmetry, and freely moving inclusion. (a) Fixed
inclusion with no axis of symmetry. The vector p̂ giving the direction of the force monopole is taken along the z axis. The x axis is
defined such that the phase ϕ0 vanishes in spherical coordinates of axis ðx; y; zÞ. (b) Fixed polar inclusion with an axis of symmetry. The
vector p̂ giving the direction of the force monopole is taken along the z axis. In both (a) and (b), we use the second-order expansion in λ
in Eqs. (10)–(12) and plot the results taking λ ¼ 1. (c) Freely moving polar inclusion. The vector c̃α entering Eq. (13) is taken along
the z axis.
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the decay of the density field exhibits an anomalous exponent
and an angular dependencewhich depend on the dimension-
less parameter λ which quantifies the relative amplitude of
the diffusive and convective terms:

λ ¼ jFextj
8πηD

ð7Þ

and on the unit vector:

p̂ ¼ Fext

jFextj
; ð8Þ

which points along the force monopole. Note that local
injection of angular momentum leads to flow fields decaying
as r−2, which is why, following the reasoning below Eq. (6),
the large-scale behavior of the density field is insensitive to
the total external torque exerted on the obstacle, if any. A
striking feature is that the anomalous exponent and the
angular dependence also depend on the symmetry of the
obstacle. Our results are expressed as a perturbative expan-
sion in powers of λ, which is relevant for dilute suspensions
where λ is small [because the force in the numerator ofEq. (7)
scales as the density of active particles at low density].
For obstacles for which the vector p̂ defines an axis of

(possibly discrete) rotational symmetry, we obtain

δρðrÞ ∼ gkðθÞ
r2þϵk

with ϵk ¼
λ2

3
þOðλ4Þ; ð9Þ

where θ is the angle between r̂ and p̂. The density field,
therefore, decays faster than in the absence of hydro-
dynamic interactions. The angular dependence is given to
order of Oðλ2Þ by

gkðθÞ ¼ cos θ −
λ

4
ð3 − 5 cos2 θÞ þ 3

4
λ2 cos3 θ: ð10Þ

However, for obstacles with no axis of symmetry, the
density field also depends on the azimuthal angle ϕ of
spherical coordinates of axis p̂ and features a different
exponent:

δρðrÞ ∼ g⊥ðθ;ϕÞ
r2þϵ⊥ with ϵ⊥ ¼ −

λ2

12
þOðλ4Þ; ð11Þ

showing that the decay is slower than in the absence of
hydrodynamic interactions. To order of Oðλ2Þ, the angular
dependence is given by

g⊥ðθ;ϕÞ ¼ cosðϕþ ϕ0Þ sinðθÞ

×

�
1þ 5λ

4
cos θ þ 3

4
λ2 cos2 θ

�
; ð12Þ

where, for a given choice of reference axis for the azimuthal
angle, the phase ϕ0 depends on the precise shape of
the inclusion. Note that, even though λ is defined to be
positive, v̄αðrÞ=D ≃ λJαβðrÞp̂β is formally left invariant

under the joint transformation p̂ → −p̂ and λ → −λ, there-
fore explaining why corrections to the −2 exponent in
Eqs. (9)–(11) appear only to second order in powers of λ.

B. Free obstacles

As discussed after Eq. (6), the coupling to the fluid flow
in Eq. (1) is irrelevant at large scales. The density field,
thus, behaves as in a purely diffusive (dry) theory:

δρðrÞ ≃ 1

4πD
rα

r3
c̃α; ð13Þ

where c̃α depends on the near-field details of the system and
is generically nonzero for polar obstacles. The spatial decay
exponent −2 is universal, and the nonuniversal vector c̃α is
contractedwith a universal angular dependence.Note that for
an obstacle with no polarity, even if fixed, we have by
symmetryFext ¼ 0 and so λ ¼ 0. In this case, hydrodynamic
effects are, thus, irrelevant on large scales, similarly to the
case of freely moving obstacles with arbitrary shape.
Additionally, c̃ also vanishes by symmetry. We, therefore,
expect density modulations to be governed by the next-order
term in the multipole expansion of the diffusion equation
with a localized current at r ¼ 0, leading to δρðrÞ ∼ r−3 at
large distances. Also note that Eq. (13) strictly holds only if
the orientation of theobstacle is constrained duringmotion. If
its orientation rotates at a slow rate—either from fluctuations
or from a ratchet effect—weexpect the result inEq. (13) to be
screened beyond a length scale given by the typical distance
run by diffusion during the persistence time of the
orientation.
In the next sections, we derive the above results in a

systematic manner starting from a microscopic model of
spherical squirmers in the presence of a localized obstacle.

III. MICROSCOPIC MODEL

We consider a fluid which obeys the Stokes equation

ηΔvðrÞ − ∇PðrÞ ¼ 0 and ∇ · vðrÞ ¼ 0; ð14Þ

where vðrÞ and PðrÞ are the flow and pressure fields,
respectively, at position r. The fluid contains spherical
squirmers of radius a, labeled by i ¼ 1…N, with centers of
mass at xi. Each squirmer imposes, in a frame of reference
moving with it, a velocity field vs;iðr; uiÞ on its surface.
Here, ui is a unit vector characterizing the orientation of
the squirmer, and we assume that vs;iðr; uiÞ has a polar
asymmetry determined by ui. We assume that the swim-
mers are dilute enough so that they interact only through
hydrodynamics and that contact interactions between them
can be neglected. The fluid also contains an obstacle that
interacts with the swimmers both through hydrodynamics,
by imposing a no-slip boundary condition on its surface,
and directly through short-range external forces Fðxi − x0Þ
and torques with respect to their center Γðxi − x0; uiÞ, with
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x0 the center of mass of the obstacle. Denoting by ẋ0 and ω
(ẋi and ωi) the translation and angular velocity, respec-
tively, of the obstacle (swimmer i), the above implies the
boundary conditions on the surface of the obstacle, ∂Ω:

vðrÞj
∂Ω ¼ ẋ0 þ ω ∧ ðr − x0Þ; ð15Þ

and on the surface of each swimmer, ∂Ωi:

vðrÞj
∂Ωi

¼ ẋi þ ωi ∧ ðr − xiÞ þ vs;iðr; uiÞ: ð16Þ
The translation and angular velocities ẋi and ωi of the
swimmers are such that the total force and torque exerted
on each of them (by the fluid flow and the obstacle) vanish:

−
Z
∂Ωi

dSnμσμν þ Fνðxi − x0Þ ¼ 0 ð17Þ

and

−aϵαμν
Z
∂Ωi

dSnμnγσγν þ Γαðxi − x0;uiÞ ¼ 0; ð18Þ

where n is an outward-pointing normal vector to the surface
of the swimmers and σμνðrÞ ¼ ηð∂μvνðrÞ þ ∂νvμðrÞÞ −
PðrÞδμν is the stress tensor. We consider both the cases

where the obstacle is held fixed externally, in which case
ẋ ¼ 0 and ω ¼ 0, and the case where it is free to move. For
the latter, the force-free condition reads

−
Z
∂Ω

dSnμσμν −
X
i

Fν
i ðxi − x0Þ ¼ 0; ð19Þ

and we assume that the motion is adiabatic so that the
obstacle is much slower than the relaxation time of
the squirmers’ dynamics. In the remainder of this section,
we compute the average far-field fluid flow generated by
the swimmers’ suspension. We then use this average flow to
build a mean-field model for the swimmers’ dynamics,
from which we recover Eq. (1).

A. The average fluid flow

We start by computing the average fluid flow generated
by the suspension. To do so, we use the boundary-integral
representation of the Stokes equation (see Chap. 2 in
Ref. [48]) and express vðrÞ in terms of the velocity and
stress tensor at the boundary of the domain which is
composed of the surfaces of the obstacle and of the
swimmers. We obtain

8πηvαðrÞ ¼
Z
∂Ω

dSnρσρβðr0ÞJβαðr − r0Þ − η

Z
∂Ω

dSvβðr0ÞnγTβγαðr − r0Þ

þ
X
i

�Z
∂Ωi

dSnρσρβðr0ÞJβαðr − r0Þ − η

Z
∂Ωi

dSvβðr0ÞnγTβγαðr − r0Þ
�
; ð20Þ

where

TαβγðrÞ ¼ −6
rαrβrγ

r5
ð21Þ

generates the stress tensor corresponding to a Stokeslet
solution and where r0 denotes the integration variable of the
different surface integrals. While the velocity field vðrÞ is
prescribed at the different surfaces over which the integrals
are performed, the stress tensor σμν is not and, in principle,
needs to be solved for. Equation (20) is, thus, implicit. It is
nonetheless a useful starting point for determining the far-
field flow. To proceed, we use first the boundary conditions
of the Stokes equation. From Eq. (15), we note using
Gauss’s theorem thatZ

∂Ω
dSvβðr0ÞnγTβγαðr − r0Þ

¼
Z
∂Ω

dSnγTβγαðr − r0Þ
�
ẋβ0 þ ϵβνδω

νðr0δ − xδ0Þ
�

¼ −
Z
Ω
dr0∂γTβγαðr − r0Þ

�
ẋβ0 þ ϵβνδω

νðr0δ − xδ0Þ
�

þ
Z
Ω
dr0ϵβνδωνδδγTβγαðr − r0Þ ¼ 0; ð22Þ

where we take advantage of the fact that TβγαðrÞ is
symmetric [see Eq. (21)] and that ∂γTβγαðr − r0Þ ¼
δαβδðr − r0Þ, which is a consequence of momentum con-
servation in the Stokes equation. Because the point r lies
outside Ω, this leads to the result of Eq. (22). Similar
considerations also imply that

Z
∂Ωi

dSnγTβγαðr − r0Þvβðr0Þ

¼
Z
∂Ωi

dSnγTβγαðr − r0Þvβs;iðr0; uiÞ; ð23Þ

so that only the contribution from the surface velocity
survives. Using these, we obtain

8πηvαðrÞ ¼
Z
∂Ω

dSnρσρβ½fxi;uig�ðr0ÞJβαðr − r0Þ

þ
X
i

Z
∂Ωi

dSnρσρβ½fxi; uig�Jβαðr − r0Þ

−
X
i

η

Z
∂Ωi

dSnμTμναðr − r0Þvνs;iðr0; uiÞ; ð24Þ
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where the argument fxi; uig emphasizes that the stress
tensor σρβðr0Þ is a function of the positions and orientations
of all the swimmers.
We now evaluate the average flow v̄αðrÞ, where the

overline, as before, denotes an average over the many-body
distribution P½fxi; uig� of the swimmers’ positions and
orientations. As noted previously, the motion of the
obstacle is neglected. For simplicity, we thus consider
x0 ¼ 0 in the following. For any point r0 on the surface of
the obstacle, we denote accordingly σ̄ρβobsðr0Þ the average
stress tensor at that point. Next, for any unit vector n, we
introduce the average stress tensor on a swimmer’s surface,
at a location an with respect to its center:

σ̄ρβswimðx0; x0 þ anÞ≡ hσρβ½fxi; uig�ðx0 þ anÞix0 ; ð25Þ

where we denote by h� � �ix0 a many-body average condi-
tioned on the presence of a swimmer centered at x0, so that
x0 þ an lies on the surface of one of the swimmers. Lastly,
using the same notations, we introduce

v̄νsurfðx0; x0 þ anÞ≡ hvνs;jðx0 þ an; uÞi
x0 ; ð26Þ

the average surface velocity at x0 þ an on the surface of a
swimmer centered at x0. Using these definitions and
denoting by ρðxÞ ¼ hPi δðx − xiÞi the mean density of
swimmers, the average flow can, thus, be written as

8πηv̄αðrÞ ¼
Z
∂Ω

dSnρσ̄ρβobsðr0ÞJβαðr − r0Þ þ
Z

dx0ρðx0Þ
Z

dna2nρσ̄ρβswimðx0; x0 þ anÞJβαðr − x0 − anÞ

−
Z

dx0ρðx0Þ
Z

dna2ηnμTμναðr − x0 − anÞv̄νsurfðx0; x0 þ anÞ: ð27Þ

Equation (27) can now be used for a multipole expansion.
Since TμναðrÞ ∼ r−2 while JαβðrÞ ∼ r−1, we obtain to
leading order in the far field

v̄αðrÞ ≃ 1

8πη
JβαðrÞ

�Z
∂Ω

dSnρσ̄ρβobsðr0Þ

þ
Z

dx0ρðx0Þ
Z

dna2nρσ̄ρβswimðx0; x0 þ anÞ
�
: ð28Þ

By definition,
R
dna2nρσ̄ρβswimðx0; x0 þ anÞ is minus the

average force exerted by the fluid on a swimmer at position
x0 and is, therefore, equal, using the force-balance condition
in Eq. (17), to the force exerted by the obstacle on that
swimmer, that is,

R
dna2nρσ̄ρβswimðx0; x0 þ anÞ ¼ Fβðx0Þ.

We, therefore, get

v̄αðrÞ≃ 1

8πη
JβαðrÞ

�
−Fβ

fluid→obsþ
Z

dx0ρðx0ÞFβðx0Þ
�
; ð29Þ

where Ffluid→obs ≡ −
R
∂Ω dSnρσ̄ρβobsðr0Þ is the average force

exerted by the fluid on the obstacle. The term between
brackets thus reads, up to a minus sign, as the average for
exerted by the fluid on the obstacle plus the average force
exerted by the swimmers on the obstacle and is, there-
fore, equal to Fext, the average external force exerted on
the obstacle. This justifies Eq. (3). As expected from the
heuristic argument in Sec. II, a fixed obstacle embedded
in a suspension of swimmers generates a far-field fluid
flow that behaves as a Stokeslet. In addition, if the
obstacle is (adiabatically) moving under force-free con-
ditions, meaning that the total momentum of the system
is conserved, the effective force monopole Fext vanishes.
A higher-order multipole expansion then shows that vαðrÞ
behaves as the velocity field generated by a force dipole
which decays as r−2; see Eq. (5). The effective force
dipole is given by

Qβγ
eff ¼

Z
∂Ω

dSnρσ̄ρβobsðr0Þr0γ þ
Z

dx0ρðx0Þx0γFβðx0Þ þ
Z

dx0ρðx0Þ
Z

dna3nρnγσ̄ρβswimðx0; x0 þ anÞ

þ
Z

dx0ρðx0Þ
Z

dna2η

�
nγv̄βsurfðx0; x0 þ anÞ þ nβv̄γsurfðx0; x0 þ anÞ

�
: ð30Þ

B. Mean-field approximation

With the expression for the mean flow at hand, we can
now turn to derive the drift-diffusion equation (1). We
use a mean-field approximation, where we consider the
motion of a single swimmer in a steady inhomogeneous

background flow identified with the average flow vðxÞ
derived above. For that swimmer, the equations of motion
read

ẋ ¼ μFðxÞ þ v0uþ v̄ðxÞ ð31Þ
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together with

u̇ ¼
�
μrΓðx; uÞ þ

1

2
∇ ∧ v̄ðxÞ

�
∧ uþ noise; ð32Þ

where the noise is taken for simplicity to be of the run-and-
tumble type [49]. Here, μ ¼ 1=ð6πηaÞ is the mobility of a
sphere of radius a, and μr ¼ 1=ð8πηa3Þ is the corresponding
rotationalmobility.Also,v0 is the self-propulsion speedof an
isolated swimmer, which is given by

v0 ¼ −
1

4πa2

Z
dSvsðr; uÞ · u: ð33Þ

Henceforth, to ease the notations, we use ω̄ðxÞ≡
ð1=2Þ∇ ∧ v̄ðxÞ. These equations have been derived in
Ref. [50] in the absence of an external force F ¼ 0 and
torque Γ ¼ 0 and in the absence of a background flow
v̄ðxÞ ¼ 0. The results of Ref. [50] generalize to Eqs. (31) and
(32), as we show inAppendixA, for swimmersmuch smaller
than the scale of variation of v̄ðxÞ.
Our interest is in the steady-state density profile gen-

erated by the dynamics in Eqs. (31) and (32). Let ψðx; uÞ be
the steady-state distribution. It is a solution of

0 ¼ −∇x · ð½μFðxÞ þ v0uþ v̄ðxÞ�ψðx;uÞÞ

þ 1

τ

X
i

�Z
du0ψðx; u0Þ − ψðx; uÞ

�

− ∇u · ð½ðμrΓðx; uÞ þ ω̄ðxÞÞ ∧ u�ψðx; uÞÞ:

We introduce the density ρðxÞ ¼ R
duψðx; uÞ, polarity

mμðxÞ ¼ R
duuμψðx; uÞ, and nematic tensor QαβðxÞ ¼R

du½uαuβ − ðδαβ=3Þ�ψðx; uÞ. Upon integrating Eq. (34)
over u, we get

−∂α½μFαðxÞρðxÞ þ v0mαðxÞ þ v̄αðxÞρðxÞ� ¼ 0: ð34Þ
Multiplying Eq. (34) by uβ and integrating it again over u
yields

mβ

τ
¼ −

v0
3
∂βρ − ∂α½μFαmβ þ v0Qαβ þ v̄αðxÞmβðxÞ�

þ ϵβμν

�
μr

Z
duuνΓμðx; uÞψðx; uÞ þ ω̄μðxÞmνðxÞ

�
;

ð35Þ
which can be used in Eq. (34) to give

v20τ
3

∂α∂
αρðxÞ − ∂α½v̄αðxÞρðxÞ� ¼ ∂α

�
μFαðxÞρðxÞ þ v0τϵαμν

�
μr

Z
duuνΓμðx; uÞψðx; uÞ þ ω̄μðxÞmνðxÞ

��

− v0τ∂α∂β½μFαmβ þ v0Qαβ þ v̄αðxÞmβðxÞ�: ð36Þ

Therefore, we find that the equation satisfied by the density
field can be written as a drift-diffusion equation with
sources as in Eq. (1), where CαðxÞ ¼ Cα

1ðxÞ þ Cα
2ðxÞ with

Cα
1ðxÞ ¼ −μFαðxÞρðxÞ þ v0τμ∂β½FαðxÞmβðxÞ�

− v0τμrϵαμν

Z
duuνΓμðx; uÞψðx; uÞ ð37Þ

and

Cα
2ðxÞ ¼ −v0τϵαμνω̄μðxÞmνðxÞ

þ v0τ∂β½v0Qαβ þ v̄αðxÞmβðxÞ�: ð38Þ
It is clear that the integral of Cα

1ðxÞ is finite, since the force
and torque fields FðxÞ and Γðu; xÞ are short ranged. To
bridge the gap with Eq. (1) and the discussion in Sec. II, we
now argue that

cα2 ¼
Z

dxCα
2ðxÞ ð39Þ

is also finite. Since we cannot solve the whole hierarchy of
angular moments, we proceed by self-consistency assum-
ing that cα2 exists. As we discuss in Sec. II and is shown
in the following section, the density field decays faster

than x−1. The polarity mαðxÞ then decays faster than x−2,
since it is proportional to density gradients; see Eq. (35).
Accordingly, we expect that QαβðxÞ decays faster than
Oðx−3Þ. In fact, successive moments of the orientation
decay faster and faster, which can be shown in any
truncation of the hierarchy of angular moments. There-
fore, we expect that Cα

2ðxÞ decays faster than x−4 and is
indeed integrable, thereby closing the self-consistency
argument.

IV. FAR-FIELD DECAY OF THE DENSITY FIELD

In this section, we derive the far-field density decay
when the obstacle is held fixed. To do so, we use a
similarity solution, close to what is done, for example, for
the Barenblatt equation; see Chap. 10 in Ref. [45] and
Chap. 3 in Ref. [46]. Even though the Barenblatt equation
features a time dependence that ours does not, in both
cases, the large-scale behavior of the partial differential
equation under study is mapped, by choosing a suitable
ansatz, to an ordinary differential equation from which the
anomalous exponent is obtained by solving a nonlinear
eigenvalue problem. For completeness, the same results
are derived using a renormalization group procedure in
Appendix C. In the far field, we look for a solution of

ARNOULX DE PIREY, KAFRI, and RAMASWAMY PHYS. REV. X 14, 041034 (2024)

041034-8



DΔδρ − ∇ · ½v̄ðrÞδρ� ¼ −c · ∇δðrÞ; ð40Þ

where the convective flow, derived in Eq. (27), follows the
scale-free form given in Eq. (3) at large distances. We
work with spherical coordinates with polar angle θ such
that cos θ ¼ p̂ · r̂, where p̂, defined in Eq. (8), points along
the force monopole and with an azimuthal angle ϕ.
Dimensional analysis then shows that

δρðrÞ ¼ 1

r2
jcj
D

F
�
l
r
; θ;ϕ

�
; ð41Þ

where l is a microscopic length scale emerging from the
near-field behavior of the velocity field. We first decom-
pose F into Fourier modes:

F
�
l
r
; θ;ϕ

�
¼

Xþ∞

m¼−∞
eimϕfm

�
l
r
; θ

�
: ð42Þ

In the far field, with r much larger than any microscopic
length scale, we write each Fourier mode as a product
fmðl=r; θÞ ∝ gmðθÞr−ϵm , and we find using Eq. (6) that the
angular functions satisfy

1

sin θ
∂θðsin θ∂θgmÞ þ λ sin θ∂θgm þ gm

�
ð2þ ϵmÞð1þ ϵmÞ þ 2λð2þ ϵmÞ cos θ −

m2

sin2θ

�
¼ 0; ð43Þ

where λ is defined in Eq. (7). The exponent ϵm is then fixed
by requiring that Eq. (43) has a well-behaved solution at the
boundaries of the interval cos θ ¼ �1. For a freely moving
obstacle, meaning when λ ¼ 0, or, equivalently, in the
absence of hydrodynamic interactions, the set of possible
exponents ϵm are integers such that ϵm ≥ jmj − 1. Since the
source term in Eq. (40) is a derivative of a delta function,
the far-field decay of the density field is dominated by the
modes m ¼ 0 and m ¼ �1, with exponents ϵ0;�1 ¼ 0,
meaning δρðrÞ ∼ r−2. The solution ϵ0 ¼ −1 is indeed
ignored, as it corresponds to a delta function source. This
reproduces the well-known Eq. (13) for the solution of the
Laplace equation in the presence of a localized current.
When λ > 0 and small, the far-field decay of the density

field is also dominated by the modesm ¼ 0;�1. Indeed, as
is clear in the following, higher modes jmj ≥ 2 correspond
to decay exponents close to jmj − 1 ≥ 1 when λ is small
and, therefore, contribute only as subleading corrections in
the far-field compared to the modes m ¼ 0;�1.
To characterize these modes, it is naively tempting to

postulate ϵ0;�1 ¼ 0 and solve for gmðθÞ using a perturbation
theory in λ. However, solutions of this form inevitably
diverge at one of the end points cos θ ¼ �1, to order of
Oðλ2Þ, as we show in Appendix B. This signals the
presence of an anomalous exponent ϵm ≠ 0.
We now evaluate the exponents ϵm and the angular

functions gmðθÞ perturbatively in λ using ϵm ¼ λϵð1Þm þ
λ2ϵð2Þm þOðλ3Þ and gmðθÞ¼ gð0Þm ðθÞþλgð1Þm ðθÞþλ2gð2Þm ðθÞ þ
Oðλ3Þ. Requiring that gmðθÞ remains finite to second order
in λ at cos θ ¼ �1 yields the anomalous exponents

ϵ0 ¼
1

3
λ2 þOðλ4Þ;

ϵ�1 ¼ −
1

12
λ2 þOðλ4Þ ð44Þ

and the angular function to order of Oðλ2Þ:

g0ðθÞ ∝ cos θ −
λ

4
ð3 − 5 cos2 θÞ þ 3λ2 cos3 θ

4
;

g�1ðθÞ ∝ sin θ

�
1þ 5

4
λ cos θ þ 3

4
λ2 cos2 θ

�
: ð45Þ

The above equations can then be used to obtain the results
presented in Sec. II. For a generic polar obstacle, the far-
field density is governed by the slowest m ¼ �1 modes,
and we identify ϵ⊥ ≡ ϵ�1. We, thus, recover Eqs. (11) and
(12), where in Eq. (12) the dependence on the azimuthal
angle from Eq. (42) is included. In contrast, if the obstacle
possesses an axis of symmetry, whose direction p̂ must be
pointing along [51], the modes m ¼ �1 must vanish, and
the far-field decay is, thus, governed by the m ¼ 0 mode.
This holds whether the rotational symmetry is continuous
or discrete. Hence, we identify ϵk ≡ ϵ0 and get Eqs. (9) and
(10). It is, in principle, straightforward to extend this
procedure to arbitrary order in λ.

V. INTERACTIONS BETWEEN BODIES

Since an inclusion generates a long-range density modu-
lation and a long-range fluid flow in the system, it affects
the neighborhood of other inclusions. This leads to long-
range interactions, mediated by the swimmers and the
viscous fluid, that we explore in this section. Such long-
range mediated interactions are well-known between par-
ticles, passive or active, embedded in a viscous fluid
[44,52] and have been recently calculated for passive
inclusions in “dry” active systems [25]. In the case we
consider here, both the hydrodynamic field and the active
particles mediate the interactions.
In this section, we derive the long-range mediated

interactions that emerge between two inclusions immersed
in a three-dimensional suspension of self-propelling par-
ticles, in two simple cases. First, we describe the dynamics
(within an adiabatic approximation) of two inclusions that
are pinned at one point but free to rotate around this point.
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Second, we discuss the effective interactions between two
freely moving inclusions. We assume that the inclusions are
polar and, for simplicity, with an axis of symmetry. The
extension to other cases is straightforward even if tedious.

A. Two fixed polar obstacles

We consider two fixed inclusions, at position r1 and r2
and denoted in the following by 1 and 2. Asymptotically,
when the distance jr1 − r2j goes to infinity, each inclusion
has to be held in place by an average force, denoted F̄1 for
inclusion 1 and F̄2 for inclusion 2, in order to maintain their
position fixed. Note that, due to the axisymmetry of the
obstacles, there is no need to exert an average torque in
order to prevent them from rotating.
We now consider a case where these two obstacles are

pinned at points r1 and r2 but each free to rotate around that
pinning point. We assume that the pinning points lie on
the axis of symmetry of the corresponding inclusion. When
jr1 − r2j is large but finite, the presence of obstacle 1
induces a far-field fluid flow around obstacle 2, which
influences its orientation. We treat the dynamics within the
adiabatic approximation so that at each time the two
inclusions behave as fixed force monopoles, and we use
the conventions p̂2ðtÞ ¼ F̄2ðtÞ=jF̄2j, p̂1ðtÞ ¼ F̄1ðtÞ=jF̄1j,
and r̂21 ¼ ðr2 − r1Þ=jr2 − r1j. Neglecting fluctuations, the
dynamics of the orientation of the first inclusion reads

dp̂1
dt

¼ ω̄1ðp̂1; p̂2; r1; r2Þ ∧ p̂1; ð46Þ

where ω̄1ðp̂1; p̂2; r1; r2Þ is the average angular velocity of
obstacle 1 at orientation p̂1 in the presence of (the far-away)
obstacle 2 with fixed orientation p̂2. The impact resulting
from variations in swimmer density modulations (scaling as
∼jr2 − r1j−2þϵ) is minimal when compared to the fluid
flow (scaling as ∼jr2 − r1j−1), at least perturbatively in λ.
Therefore, to leading order in the distance jr1 − r2j, the
angular velocity can be expressed as a linear response to the
Stokeslet flow v2ðp̂2; r1; r2Þ generated by obstacle 2 at
point r1 in the absence of obstacle 1, as in Ref. [53]:

ω̄μ
1ðp̂1; p̂2; r1; r2Þ ¼ Mμν

1 ðp̂1Þvν2ðp̂2; r1; r2Þ: ð47Þ

Here, Mμν
1 ðp̂1Þ is the linear-response tensor of the average

angular velocity of obstacle 1 to a uniform background
flow. Note that the pinning of obstacle 1 breaks Galilean
invariance, therefore coupling the dynamics of p̂1ðtÞ to the
fluid flow v2ðp̂2; r1; r2Þ itself and not only to its gradients
(other instances in which Galilean invariance is explicitly
broken in active suspensions, therefore leading to possible
alignment with the local suspension velocity, include con-
fined suspensions and suspensions on substrates [54–56]).
By symmetry, the linear-response tensor must be antisym-
metric in the indices ðμ; νÞ and invariant under rotations
around p̂1. This yields

Mμν
1 ðp̂1Þ ¼ −γ1ϵμναp̂α

1; ð48Þ

with γ1 an object-dependent coefficient that depends on the
near-field properties of the active suspension in the vicinity
of obstacle 1. Note that γ1 > 0 implies that, in a steady
uniform background flow, p̂1 aligns with the flow, while it
antialigns with it if γ1 < 0. Therefore, one has

dp̂1
dt

¼ γ1jF̄2j
8πηjr1 − r2j

p̂1 ∧ ½ðp̂2 þ ðp̂2 · r̂12Þr̂12Þ ∧ p̂1�: ð49Þ

Accordingly, the dynamics of p̂2ðtÞ follows from

dp̂2
dt

¼ γ2jF̄1j
8πηjr1 − r2j

p̂2 ∧ ½ðp̂1 þ ðp̂1 · r̂12Þr̂12Þ ∧ p̂2�: ð50Þ

The lack of reciprocity in the interactions between the two
inclusions visible in Eqs. (49) and (50) is a trademark of
interactions mediated by active baths [25,26,57]. When
γ1 > 0 and γ2 > 0, the effective interactions drive align-
ment between the two directors in the direction separating
the two inclusions, meaning p1 ¼ p2 ¼ �r̂12 in the steady
state. Furthermore, when both γ1 < 0 and γ2 < 0, the
effective interactions lead to antialignment between the
two directors in the direction separating the two inclusions,
meaning p1 ¼ −p2 ¼ �r̂12. None of these equilibrium
points is stable when γ1γ2 < 0. In fact, numerical solu-
tions of the joint dynamics Eqs. (49) and (50) show that
interactions between two such freely rotating bodies
generically lead to complex trajectories of p̂1 and p̂2; see
Fig. 3. The dynamics are rich depending on the initial
conditions and their study, including the influence of noise

FIG. 3. Examples of complex trajectories induced by the
interactions between an aligning (γ1 > 0) and an antialigning
(γ2 < 0) freely rotating polar object embedded in a suspension of
microswimmers. The center of the first obstacle is located at the
origin, and that of obstacle 2 is on the x axis. The instantaneous
position of the two directors p̂1 and p̂2 at some time t > 0 is
depicted by two red arrows, while the solid blue lines represent
the past trajectories starting from a random initial condition at
t ¼ 0. For such generic initial conditions, the trajectory of each
director seem to densely cover a portion of the sphere at large
times. Here, γ1 ¼ −γ2.
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on the dynamics Eqs. (49) and (50) or in the presence of
more than two bodies, is left for future work.
Broadly speaking, the above phenomenology was

already identified in the dynamics of pinned inclusions
in suspensions of dry active particles [25,26], albeit with
slightly different dynamics. We stress, however, that
momentum conservation leads to much longer-ranged
effective interactions. In fact, the effective interactions in
Eqs. (49) and (50) decay as Oðjr1 − r2j−1Þ, whereas they
were shown to decay asOðjr1 − r2j−3Þ in three-dimensional
dry systems [25]. This difference could have striking
consequences on the behavior of ensembles of pinned
embedded inclusions.

B. Freely moving bodies

Next, consider the case of two freely moving obstacles.
Let u1 (u2) denote the average velocity of obstacle 1
(obstacle 2) when in isolation. Then, the far-field density
decay around obstacle 2 follows from Eq. (13) and reads

ρðrÞ ¼ ρ0 þ δρ2ðrÞ with δρ2ðrÞ ≃
1

4πD
ðr − r2Þ · c̃2
jr − r2j3

:

ð51Þ

The same result holds around obstacle 1 upon replacing
c̃2 by c̃1 and r2 by r1. For what follows, we introduce
v1ðρ0Þ and v2ðρ0Þ the average speed of obstacles 1 and 2,
respectively, which are scalar functions of the bulk
density ρ0.
There are two sources for the interaction between the

inclusions. First, there is a contribution from the fluid flow
created by one inclusion in the vicinity of the other. The
other one comes from the change in swimmers’ density in
the vicinity of one inclusion due to the presence of the
other. Both contributions scale in the same manner with the
distance between the inclusions.
We denote the changes in the average velocity of each

obstacle by u1 þ δu1 and u2 þ δu2 for obstacles 1 and 2,
respectively. To leading order in the far field, δu1 is given
by the sum of the two contributions discussed above. First,
due to the presence of object 2, the apparent bulk density of
swimmers around obstacle 1 is perturbed, going from ρ0 to
ρ0 þ δρ2ðr1Þ. This scalar perturbation modifies the speed of
obstacle 1 but not the propulsion direction. The second
contribution emerges from the coupling to the fluid flow
generated by object 2, which behaves as the one generated
by a force dipole Qαβ

2 at position r2. These two contribu-
tions scale as jr1 − r2j−2 and yield

δuα1 ¼
1

8πη
∂γJαβðr1 − r2ÞQγβ

2 þ ûα1v
0
1ðρ0Þδρ2ðr1Þ: ð52Þ

Because obstacle 2 is polar with an axis of symmetry,
we have c̃2 ¼ χ2û2 with χ2 a parameter which depends on

near-field properties of the suspension close to obstacle 2.
Furthermore, we have

Qγβ
2 ¼ κ2

�
ûγ2û

β
2 −

δγβ

3

�
; ð53Þ

with κ2 also depending on the near-field properties of the
suspension close to obstacle 2. Hence, to leading order, the
effective interactions between the two bodies take the form

δuα1 ¼ −
κ2rα21

8πηjr2 − r1j2
�
1 − 3ðr̂12 · û2Þ2

	

− χ2ûα1
v01ðρ0Þ
4πD

r̂21 · û2
jr1 − r2j2

ð54Þ

and correspondingly for the shift δu2 in the velocity of
object 2. The first term is a swimmer-swimmer interaction,
showing that passive bodies embedded in an active sus-
pension partly behave as swimming particles themselves.
The second term, however, does not correspond to a
swimmer-swimmer interaction but is akin to the far-field
interactions emerging between two passive bodies
embedded in a medium of dry self-propelled particles [25].

VI. CONCLUSION

In this paper, we studied the long-range effect of a
localized obstacle on a three-dimensional suspension of
active swimmers. First, we showed that hydrodynamic
interactions can lead to striking deviations from earlier
results obtained in the dry case when the obstacle is held
fixed by an external force so that there is a net average flux
of momentum injected into the system. In that case, the far-
field density modulations of the swimmers decay with an
exponent that depends continuouslyon the relative amplitude
of hydrodynamic and diffusive contributions. The exponent
also depends on the internal symmetry of the obstacle: A
polar obstacle with an axis of symmetry induces density
modulations that decay faster than in the absence of hydro-
dynamic interactions, while an obstacle with no axis of
symmetry induces modulations that decay slower than in the
dry case. In both cases, we have a perturbative prediction for
the exponent in terms of the independently measurable
quantities jF̄extj, η, and D. In particular, jF̄extj can be read
off from the leading far-field decay of the hydrodynamic
velocity. The case of a freely moving inclusion is closer to
earlier studies on the dry problem. There, hydrodynamic
interactions are irrelevant far away from the obstacle, and the
−2 exponent is recovered [25]. As argued in Sec. II, these
predictions emerge from a competition between diffusive
effects and convective transport due to the local injection of
momentum in the vicinity of the obstacle. We believe this
scenario is generic enough for our results to robustly extend
beyond the presently studied case of spherical squirmers and
be appraised in experiments on synthetic or biological
microswimmers. We stress that our predictions rely on the
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three-dimensional nature of the surrounding fluid flow. In
fact, in the vicinity of a container’s wall, acting as a
momentum sink, the flow field around a localizedmomentum
source decays faster (as ∼1=r2) when compared to three-
dimensional bulk fluids. In such a case, following the
dimensional analysis of Eq. (6), we therefore expect hydro-
dynamic interactions tobe irrelevant far away froma localized
obstacle, even if it is held fixed.Note, however, that we expect
effects similar to the ones described here if the motion of the
microswimmers is limited near the interface between two
immiscible viscous fluids or inside a two-dimensional fluid
layer in a three-dimensional viscous fluid.
In addition, we have also described the effective long-

range interactions, mediated by the active suspension,
between two far-away localized objects. If freely moving,
the effective interactions between the two objects lead
to a modification of their average propulsion velocity. This
modification decays as the distance between the two
objects squared and can be expressed as the sum of two
contributions. The first one is akin to the hydrodynamic
interactions existing between two force dipoles. The second
contribution has the same form as the effective interactions
mediated by a bath of dry self-propelled particles [25].
When their center of mass is held fixed, effective torques
emerge that decay as the inverse of the distance between the
two obstacles. Depending on the details, these can lead to
alignment, antialignment, or complex trajectories.
We believe this study opens the way for a quantitative

description of many phenomena, including the effect of
disorder on suspensions of microswimmers [13,29,30,58]
and the interactions of inclusions with confining walls [59].
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APPENDIX A: DYNAMICS OF
AN ISOLATED SWIMMER

The dynamics of an isolated squirmer, a spherical
particle that self-propels in a viscous fluid by imposing

a nonzero surface flow in its frame of reference, has been
derived in Ref. [50]. In this appendix, we extend their
derivation to the case where an external force and torque are
imposed on the squirmer. Because of the linearity of the
Stokes equation, the resulting velocity is the sum of the
self-propulsion of the isolated squirmer and of the trans-
lation velocity of a passive sphere of the same size driven
by the external force.
The squirmer motion is a combination of translation with

velocity ẋ and solid rotation with angular velocity ω. The
equation governing the fluid flow reads

ηΔv − ∇P ¼ 0 ðA1Þ
together with

∇ · v ¼ 0 ðA2Þ
and the boundary conditions

vj
∂ΩðrÞ ¼ ẋþ vsðr; uÞ þ aω ∧ n and vj∞ ¼ 0; ðA3Þ

with vsðr; uÞ the local surface velocity imposed by the
swimmer in its frame of reference and n is the local
outward-pointing normal to the squirmer’s surface ∂Ω.
We recall that vsðr; uÞ has a polarity, that is, a vectorial
asymmetry, determined by u. The translation velocity ẋ is
fixed by the force-balance condition

Z
∂Ω

dSnβσαβðr0Þ ¼ Fα; ðA4Þ

and the angular velocity ω is fixed by the torque-balance
condition

aϵραβ

Z
∂Ω

dSnαnμσμβ ¼ Γρ: ðA5Þ

In order to obtain ẋ and ω, we apply the Lorentz reciprocal
theorem. Let v̂ and σ̂ be the velocity flow and the stress
tensor, respectively, of another solution of the Stokes
equation which is regular over the domain R3=Ω. The
Lorentz reciprocal theorem then states that

Z
∂Ω

n · σ̂ · v ¼
Z
∂Ω

n · σ · v̂: ðA6Þ

First, in order to get the squirmer’s translation velocity,
we choose v̂; σ̂ to be the flow generated by a translation
at velocity U of the sphere Ω by an external force F̂. The
no-slip boundary condition then reads v̂j

∂Ω ¼ Û. We,
therefore, obtain

F̂ · ẋþ
Z
∂Ω

n · σ̂ · ðvs þ aω ∧ nÞ ¼ F · Û: ðA7Þ

For a sphere of radius a, it leads to
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ẋ ¼ 1

6πηa
F −

1

4πa2

Z
∂Ω

dSvsðr; uÞ; ðA8Þ

independently of the angular velocity ω, since n · σ̂ is
constant along the surface of the sphere. We then recover
Eq. (31), in the absence of a background flow, with the self-
propulsion speed

v0 ¼ −
1

4πa2

Z
∂Ω

dSvsðr; uÞ · u ðA9Þ

and the mobility μ ¼ 1=ð6πηaÞ. In order to obtain ω, we
apply the Lorentz reciprocal theorem by considering v̂; σ̂ to
be the flow generated by a solid rotation at angular velocity
ω̂ ofΩ. On ∂Ω, we have v̂ ¼ aω̂ ∧ n and n · σ̂ ¼ 3ηω̂ ∧ n;
see Ref. [50]. We, therefore, obtain

3ηϵαβγ

Z
∂Ω

dSnγðẋα þ vαs þ aϵαμνωμnνÞ

¼ aϵαβγ

Z
∂Ω

dSnρσραnγ; ðA10Þ

yielding

ω ¼ 1

8πηa3
Γ −

3

8πa3

Z
∂Ω

dSn ∧ vsðr; uÞ: ðA11Þ

The equation of motion for the director u then reads

u̇ ¼ ω ∧ u ¼ 1

8πηa3
Γ ∧ u; ðA12Þ

since the second term of Eq. (A11) points along u by
symmetry. We, therefore, recover the noiseless version of
Eq. (32), without the background flow, with the angular
mobility μr ¼ 1=ð8πηa3Þ. In the presence of a background
flow v̄, the equations of motion can be found by consid-
ering the same Stokes equation imposing that at large
distances the flow is equal to the background one,
v∞ðrÞ ¼ v̄ðrÞ. One can then obtain a formulation similar
to Eqs. (A1)–(A3), with a vanishing fluid flow at infinity,
by considering v̂ðrÞ ¼ vðrÞ − v∞ðrÞ. At the surface ∂Ω,
the corresponding boundary condition reads

v̂j
∂ΩðrÞ ¼ ẋþ vsðr; uÞ þ aω ∧ n − v̄ðrÞ: ðA13Þ

By denoting x the position of the swimmer, one can then
expand v̄ðrÞ around v̄ðxÞ to first order in the radius a.
Equations (31) and (32) in the main text then follow from
the application of the Lorentz reciprocal theorem as above.

APPENDIX B: SINGULARITY OF THE
ANGULAR DEPENDENCE WHEN ϵm = 0

In this appendix, we consider the mode m ¼ 0 as an
example. By incorrectly assuming that ϵ0 ¼ 0, one obtains
an equation for the angular dependence:

1

sin θ
∂θðsin θ∂θg0Þ þ λ sin θ∂θg0 þ g0½2þ 4λ cos θ� ¼ 0:

ðB1Þ
We now look for a perturbative solution in powers of

the coupling constant λ as g0ðθÞ ¼ gð0Þ0 ðθÞ þ λgð1Þ0 ðθÞ þ
λ2gð2Þ0 ðθÞ þ � � �. To leading order, we get

gð0Þ0 ðθÞ ¼ cð0Þ1 cos θ þ cð0Þ2

�
cos θ
2

log

�
1þ cos θ
1 − cos θ

�
− 1

�
;

ðB2Þ

with cð0Þ1 and cð0Þ2 two integration constants. We set cð0Þ2 ¼ 0

to prevent divergence at cos θ ¼ �1 and choose cð0Þ1 ¼
−1=4π to match known results for the Green function of the
diffusion operator. Accordingly, to first order, we obtain

gð1Þ0 ðθÞ ¼ −10cos2θ þ 3 cos θ logð1þcos θ
1−cos θÞ

32π
þ cð1Þ1 cos θ

þ cð1Þ2

�
cos θ
2

log

�
1þ cos θ
1 − cos θ

�
− 1

�
; ðB3Þ

with cð1Þ1 and cð1Þ2 two new integration constants. We then

set cð1Þ2 ¼ −3=16π for the solution to be well behaved as

cos θ ¼ �1. The integration constant cð1Þ1 is left undeter-
mined so that

gð1Þ0 ðθÞ ¼ 16πcð1Þ1 cos θ − 5 cos2 θ þ 3

16π
: ðB4Þ

Using this, we then evaluate gð2Þ0 ðθÞ to find

gð2Þ0 ðθÞ ¼ 60πcð1Þ1 cos2θ − 18πcð1Þ1 cos θ logð1þcos θ
1−cos θÞ − 9cos3θ þ 2 cos θ logð1 − cos2θÞ
48π

þ cð2Þ1 cos θ þ cð2Þ2

�
cos θ
2

log

�
1þ cos θ
1 − cos θ

�
− 1

�
; ðB5Þ

with cð2Þ1 and cð2Þ2 two new integration constants. Hence, removing the log-divergence at both cos θ ¼ 1 and cos θ ¼ −1
requires
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18πcð1Þ1 − 24πcð2Þ2 þ 2 ¼ 18πcð1Þ1 − 24πcð2Þ2 − 2 ¼ 0; ðB6Þ

which is impossible, so that no well-behaved solution can
be found. This signals the emergence of a correction of the
scaling dimension to order of Oðλ2Þ.

APPENDIX C: RENORMALIZATION GROUP
TREATMENT OF EQ. (40)

In this appendix, we apply a perturbative renormalization
group treatment to Eq. (40) to find the far-field decay of the
density field. By linearity, this amounts to finding KμðrÞ,
where

ΔKμðrÞ − λ∂αðvαlðrÞKμðrÞÞ ¼ −∂μδðrÞ ðC1Þ
and where vlðrÞ≡ v̄ðrÞ=ðλDÞ is such that

vαlðrÞ ≃ JαβðrÞp̂β; ðC2Þ
at large distances. For the sake of the renormalization group
argument, the velocity field vlðrÞ is explicitly built from a
microscopic length scale l as follows. First, we assume that
the velocity field vαlðrÞ can be expressed from a force
density qβlðrÞ, so that

vαlðrÞ ¼
Z

dr0Jαβðr − r0Þqβlðr0Þ; ðC3Þ

with Z
drqβlðrÞ ¼ p̂β: ðC4Þ

Then, we assume that the force density depends on a
microscopic length scale l through a scaling function qβ

according to

qβlðrÞ ¼
1

l3
qβ
�
r
l

�
: ðC5Þ

We now look for a perturbative solution of Eq. (C1) and
study its behavior in the asymptotic regime where
l=jrj ≪ 1. For any r finite, we obtain the solution up to
order of Oðλ2Þ as

KμðrÞ ¼ −
1

4π

Z
dr0

1

jr − r0j ð−∂
0
μδðr0Þ þ λ∂0αðvαlðr0ÞKμðr0ÞÞÞ

¼ −
1

4π

rμ

r3
þ λ

4π

Z
dr0vαlðr0ÞKμðr0Þ

rα − r0α

jr − r0j3

¼ −
1

4π

rμ

r3
−

1

4π

λ

4π

Z
dr0vαlðr0Þ

r0μ

r03
rα − r0α

jr − r0j3

−
1

4π

�
λ

4π

�
2
Z

dr0vαlðr0Þ
Z

dr00vβlðr00Þ
r00μ

r003

×
r0β − r00β

jr0 − r00j3
rα − r0α

jr − r0j3 þOðλ3Þ: ðC6Þ

In the following, we investigate the fate of this expansion in
the far-field regime and use a renormalization group
treatment to infer the anomalous scaling exponents.

1. First order

To first order in λ, we have

KμðrÞ ¼ −
1

4π

rμ

r3
−

1

4π

λ

4π

Z
dr0vαlðr0Þ

r0μ

r03
rα − r0α

jr − r0j3 þOðλ2Þ:

ðC7Þ

We define

Iμ1ðl; rÞ≡
Z

dr0vαlðr0Þ
r0μ

r03
rα − r0α

jr − r0j3

¼
Z

dr0
Z

dr00Jαβðr0 − r00Þ 1

l3
qβ
�
r00

l

�
r0μ

r03
rα − r0α

jr − r0j3 :

ðC8Þ

The latter can be brought to the scaling form of Eq. (41) by
using dimensionless integration variables r00 → lr00 and
r0 → rr0 and using JαβðκrÞ ¼ κ−1JαβðrÞ for any positive
number κ > 0:

Iμ1ðl; rÞ ¼
1

r2

Z
dr0

Z
dr00Jαβ

�
r0 −

l
r
r00
�
qβðr00Þ r

0μ

r03
r̂α − r0α

jr̂ − r0j3

¼ 1

r2
Îμ1

�
l
r
; r̂
�

ðC9Þ

with

Îμ1ðϵ; r̂Þ ¼
Z

dr0
Z

dr00Jαβðr0 − ϵr00Þqβðr00Þ r
0μ

r03
r̂α − r0α

jr̂ − r0j3 :

ðC10Þ

We now prove that the limit ϵ → 0 of the above integral
exists. This amounts to showing that there is no anomalous
scaling to first order in λ. To do so, we first split the integral
between a near-field and a far-field contribution:

Îμ1ðϵ; r̂Þ ¼ Jμ1ðϵ; r̂Þ þ Jμ2ðϵ; r̂Þ; ðC11Þ

with

Jμ1ðϵ; r̂Þ ¼
Z ffiffi

ϵ
p

0

dr0
Z

dr̂0
Z

dr00Jαβðr0 − ϵr00Þqβðr00Þr̂0μ

×
r̂α − r0α

jr̂ − r0j3 ðC12Þ

and
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Jμ2ðϵ; r̂Þ ¼
Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0
Z

dr00Jαβðr0 − ϵr00Þqβðr00Þr̂0μ

×
r̂α − r0α

jr̂ − r0j3 : ðC13Þ

We can now evaluate the far-field ϵ ≪ 1 behavior of
these integrals. Disregarding contributions vanishing when
ϵ → 0, we obtain for the first one

Jμ1ðϵ; r̂Þ ¼
Z

1=
ffiffi
ϵ

p

0

dr0
Z

dr̂0
Z

dr00Jαβðr0 − r00Þqβðr00Þr̂0μ

×
r̂α − ϵr0α

jr̂ − ϵr0j3 ≃ Ĵαμ1 r̂α; ðC14Þ

with the tensor

Ĵαμ1 ≡ lim
L→∞

Z
L

0

dr0
Z

dr̂0
Z

dr00Jαβðr0 − r00Þqβðr00Þr̂0μ:

ðC15Þ
We note that the above integral superficially seems loga-
rithmically divergent as L → ∞. Nonetheless, this diver-
gence is prevented, because the integral over the unit
vector r̂0 vanishes at large distances. The tensor Ĵαμ1 is a
nonuniversal correction, as it depends on the whole force
distribution qβðrÞ. To leading order in the far field, the
second integral becomes

Jμ2ðϵ; r̂Þ ≃ Ĵβμ2 ðr̂Þp̂β ðC16Þ

with the tensor

Ĵβμ2 ðr̂Þ ¼ lim
L→0

Z þ∞

L
dr0

Z
dr̂0Jαβðr0Þr̂0μ r̂

α − r0α

jr̂ − r0j3 : ðC17Þ

Therefore, to leading order in the far field and to order of
OðλÞ in the perturbation expansion, the solution reads

KμðrÞ ¼ −
1

4πr2
r̂μ −

1

4πr2
λ

4π

�
Ĵαμ1 r̂α þ Ĵαμ2 ðr̂Þp̂α

�
þOðλ2Þ

¼ −
1

4πr2

�
δαμ þ λ

4π
Ĵαμ1

��
r̂α þ λ

4π
Ĵβα2 ðr̂Þp̂β

�

þOðλ2Þ ðC18Þ
and takes the form of a nonuniversal (tensorial) amplitude
multiplied by a universal angular dependence. We now
evaluate Ĵβα2 ðr̂Þ. Using isotropy, we can decompose

Ĵβα2 ðr̂Þ ¼ A1δ
βα þ A2r̂β r̂α; ðC19Þ

with

A1 ¼
1

2
Ĵβα2 ðr̂Þðδβα − r̂βr̂αÞ ðC20Þ

and

A2 ¼ −
1

2
Ĵβα2 ðr̂Þðδβα − 3r̂βr̂αÞ: ðC21Þ

Then,

A1 ¼
1

2

Z þ∞

0

dr0
Z

dr̂0
ðδγβ þ r̂0γ r̂0βÞr̂0α

r0jr̂ − r̂0j3
× ðr̂γ − r0r̂0γÞðδβα − r̂βr̂αÞ

¼ 1

2

Z þ∞

0

dr0
Z

dr̂0
ðr̂γ − r0r̂0γÞr̂0α
r0jr̂ − r̂0j3

× ðδγα − r̂γ r̂α þ r̂0γ r̂0α − r̂αr̂0γðr̂ · r̂0ÞÞ

¼ 1

2

Z þ∞

0

dr0
Z

dr̂0
ðr̂ · r̂0Þ − ðr̂ · r̂0Þ3 − 2r0 þ 2r0ðr̂ · r̂0Þ2

r0jr̂ − r̂0j3

¼ π

Z þ∞

0

dr0
Z

−1

−1
dw

w − w3 − 2r0 þ 2r0w2

r0ð1þ r02 − 2r0wÞ3=2
¼ −3π: ðC22Þ

Furthermore,

A2 ¼ −
1

2

Z þ∞

0

dr0
Z

dr̂0
ðδγβ þ r̂0γ r̂0βÞr̂0α

r0jr̂− r̂0j3
× ðr̂γ − r0r̂0γÞðδβα − 3r̂βr̂αÞ

¼ −
1

2

Z þ∞

0

dr0
Z

dr̂0
ðr̂γ − r0r̂0γÞr̂0α
r0jr̂− r̂0j3

× ðδγα − 3r̂γ r̂α þ r̂0γ r̂0α − 3r̂αr̂0γðr̂ · r̂0ÞÞ

¼ 1

2

Z þ∞

0

dr0
Z

dr̂0
ðr̂ · r̂0Þ þ 3ðr̂ · r̂0Þ3 þ 2r0 − 6r0ðr̂ · r̂0Þ2

r0jr̂− r̂0j3

¼ π

Z þ∞

0

dr0
Z

−1

−1
dw

wþ 3w3 þ 2r0 − 6r0w2

r0ð1þ r02 − 2r0wÞ3=2
¼ 5π: ðC23Þ

Then, to first order in OðλÞ and to leading order in the far
field, we have

KμðrÞ ¼ −
1

4πr2

�
δαμ þ λ

4π
Ĵαμ1

�

×

�
r̂α −

3λ

4
p̂α þ 5λ

4
ðp̂ · r̂Þr̂α

�
þOðλ2Þ: ðC24Þ

2. Second order

To second order, we need to compute the following
integral:

Iμ2ðl; rÞ≡
Z

dr0vαlðr0Þ
Z

dr00vβlðr00Þ
r00μ

r003
r0β − r00β

jr0 − r00j3
rα − r0α

jr − r0j3 ;

ðC25Þ
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which enters Eq. (C6). Note that

Iμ2ðl; rÞ ¼
Z

dr0vαlðr0ÞIμ1ðl; r0Þ
rα − r0α

jr − r0j3

¼
Z

dr0vαlðr0Þ
1

r02
Îμ1

�
l
r0
; r̂0

�
rα − r0α

jr − r0j3 ; ðC26Þ

as it appears from the definitions of Iμ1ðl; r0Þ and Îμ1ðl=r0; r̂Þ
in Eqs. (C8) and (C9), respectively. This expression can
then be brought to the scaling form of Eq. (41) using the
same changes of variables as in Eq. (C9):

Iμ2ðl; rÞ ¼
Z

dr0vαlðr0Þ
1

r02
Îμ1

�
l
r0
; r̂0

�
rα − r0α

jr − r0j3

¼
Z

dr0
Z

dr00Jαβðr0 − lr00Þqβðr00Þ 1

r02
Îμ1

�
l
r0
; r̂0

�

×
rα − r0α

jr − r0j3

¼ 1

r2
Îμ2

�
l
r
; r̂

�
; ðC27Þ

with

Îμ2ðϵ; r̂Þ ¼
Z

dr0
Z

dr00Jαβðr0 − ϵr00Þqβðr00Þ 1

r02
Îμ1

�
ϵ

r0
; r̂0

�

×
r̂α − r0α

jr̂ − r0j3 : ðC28Þ

Again, we split the integral between a far-field and a near-
field contribution:

Îμ2ðϵ; r̂Þ ¼ Kμ
1ðϵ; r̂Þ þ Kμ

2ðϵ; r̂Þ; ðC29Þ

with

Kμ
1ðϵ; r̂Þ ¼

Z ffiffi
ϵ

p

0

dr0
Z

dr̂0
Z

dr00Jαβðr0 − ϵr00Þqβðr00Þ

× Îμ1

�
ϵ

r0
; r̂0

�
r̂α − r0α

jr̂ − r0j3 ðC30Þ

and

Kμ
2ðϵ; r̂Þ ¼

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0
Z

dr00Jαβðr0 − ϵr00Þqβðr00Þ

× Îμ1

�
ϵ

r0
; r̂0

�
r̂α − r0α

jr̂ − r0j3 : ðC31Þ

We now investigate the behavior of both contributions
when ϵ ≪ 1, neglecting vanishing corrections as ϵ → 0.
For the second integral Kμ

2ðϵ; r̂Þ, we have

Kμ
2ðϵ; r̂Þ ≃ p̂β

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0ÞÎμ1ð0; r̂0Þ
r̂α − r0α

jr̂ − r0j3

≃ p̂β

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ
h
Ĵγμ1 r̂0γ þ Ĵγμ2 ðr̂0Þpγ

i

×
r̂α − r0α

jr̂ − r0j3

≃ Ĵγμ1 Ĵβγ2 ðr̂Þp̂β þ p̂βp̂γ

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ

× Ĵγμ2 ðr̂0Þ r̂
α − r0α

jr̂ − r0j3 ; ðC32Þ

where we use the far-field expression of J2ðϵ; r̂Þ in
Eq. (C16) to get the first term on the right-hand side of
the last equality. Crucially, because JαβðrÞ ∼ r−1 and the
angular integral does not vanish at short distances, the
second term diverges logarithmically when ϵ → 0 and,
therefore, contributes to the renormalization of the anoma-
lous dimension to order of Oðλ2Þ. We now focus on these
diverging contributions which can be obtained by replacing
the integrand by its small r0 behavior and using any finite
number as an upper bound for the integral over r0, now
represented as

R ffiffi
ϵ

p dr0. As the logarithmically divergent part
is insensitive to the upper bound, we get

p̂βp̂γ

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0ÞĴγμ2 ðr̂0Þ r̂
α − r0α

jr̂ − r0j3 ∼ r̂αp̂βp̂γ

Z
ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0ÞĴγμ2 ðr̂0Þ

∼ r̂αp̂βp̂γ

Z
ffiffi
ϵ

p dr0
1

r0

Z
dr̂0ðδαβ þ r̂0αr̂0βÞð−3πδγμ þ 5πr̂0γ r̂0μÞ

∼ ln ϵ

�
10π2

3
p̂μðr̂ · p̂Þ − 2π2

3
r̂μ
�
: ðC33Þ

To get the far-field angular dependence up to order ofOðλ2Þ, it is further necessary to keep track of the terms inK2ðϵ; r̂Þ that
remain finite as ϵ → 0. To do so, we introduce

ARNOULX DE PIREY, KAFRI, and RAMASWAMY PHYS. REV. X 14, 041034 (2024)

041034-16



Qβγμðr̂Þ ¼
Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0ÞJγμ2 ðr̂0Þ r̂
α − r0α

jr̂ − r0j3

¼
Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ½−3πδγμ þ 5πr̂0γ r̂0μ� r̂
α − r0α

jr̂ − r0j3

¼ −3πδγμ
Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ r̂
α − r0α

jr̂ − r0j3 þ 5π

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ r̂
α − r0α

jr̂ − r0j3 r̂
0γ r̂0μ

¼ −3πδγμQβ
1ðr̂Þ þ 5πQβγμ

2 ðr̂Þ; ðC34Þ

with

Qβ
1ðr̂Þ ¼

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ r̂
α − r0α

jr̂ − r0j3 ðC35Þ

and

Qβγμ
2 ðr̂Þ ¼

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ r̂
α − r0α

jr̂ − r0j3 r̂
0γ r̂0μ: ðC36Þ

By symmetry, the vector Qβ
1ðr̂Þ points along r̂β, meaning

Qβ
1ðr̂Þ ¼ Q1r̂β with

Q1 ¼
Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαγðr0Þ r̂
α − r0α

jr̂ − r0j3 r̂
γ

¼ 2π

Z þ∞

ffiffi
ϵ

p dr0
Z

1

−1
dw

1 − 2r0wþ w2

r0ð1þ r02 − 2r0wÞ3=2

¼ −
8π

9
ð1þ 3 ln ϵÞ: ðC37Þ

The computation of Qβγμ
2 ðr̂Þ is more tedious. We note that

Qβγμ
2 ðr̂Þ is symmetric under exchange of the indices ðγ; μÞ.

This leads to the decomposition

Qβγμ
2 ðr̂Þ ¼ B1r̂βr̂γ r̂μ þ B2r̂βδγμ þ B3ðr̂γδβμ þ r̂μδβγÞ:

ðC38Þ

We now evaluate B1, B2, and B3 using the identities

Qβγμ
2 ðr̂Þr̂βr̂γ r̂μ ¼ B1 þ B2 þ 2B3;

Qβγμ
2 ðr̂Þr̂βδγμ ¼ B1 þ 3B2 þ 2B3;

Qβγμ
2 ðr̂Þr̂γδβμ ¼ B1 þ B2 þ 4B3; ðC39Þ

from which we obtain

B1 ¼
1

2
Qβγμ

2 ðr̂Þ½5r̂βr̂γ r̂μ − r̂βδγμ − 2r̂γδβμ�;

B2 ¼
1

2
Qβγμ

2 ðr̂Þ½−r̂βr̂γ r̂μ þ r̂βδγμ�;

B3 ¼
1

2
Qβγμ

2 ðr̂Þ½−r̂βr̂γ r̂μ þ r̂γδβμ�: ðC40Þ

Hence, we have

B1 ¼
1

2

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ r̂
α − r0α

jr̂ − r0j3 r̂
0γ r̂0μ½5r̂βr̂γ r̂μ − r̂βδγμ − 2r̂γδβμ�

¼ 1

2

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0
r̂β − r̂0βð2r0 − ðr̂ · r̂0ÞÞ

r0jr̂ − r0j3
�
5r̂βðr̂ · r̂0Þ2 − r̂β − 2r̂0βðr̂ · r̂0Þ

	

¼ π

Z þ∞

ffiffi
ϵ

p dr0
Z

1

−1
dw

−1 − 10w3r0 þ 5w4 þ 6wr0

r0ð1þ r02 − 2wr0Þ3=2

¼ 12π

5
: ðC41Þ

Similarly,

B2 ¼
1

2

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ r̂
α − r0α

jr̂ − r0j3 r̂
0γ r̂0μ½−r̂β r̂γ r̂μ þ r̂βδγμ�

¼ 1

2

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0
r̂β − r̂0βð2r0 − ðr̂ · r̂0ÞÞ

r0jr̂ − r0j3
�
−r̂βðr̂ · r̂0Þ2 þ r̂β
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¼ π

Z þ∞

ffiffi
ϵ

p dr0
Z

1

−1
dw

ð1 − w2Þð1 − wð2r0 − wÞÞ
r0ð1þ r02 − 2wr0Þ3=2

¼ −
π

5

�
12

5
þ 4 ln ϵ

�
: ðC42Þ

Finally, we have

B3 ¼
1

2

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0Þ r̂
α − r0α

jr̂ − r0j3 r̂
0γ r̂0μ½−r̂βr̂γ r̂μ þ r̂γδβμ�

¼ 1

2

Z þ∞

ffiffi
ϵ

p dr0
Z

dr̂0
r̂β − r̂0βð2r0 − ðr̂ · r̂0ÞÞ

r0jr̂ − r0j3
�
−r̂βðr̂ · r̂0Þ2 þ r̂0βðr̂ · r̂0Þ

	

¼ π

Z þ∞

ffiffi
ϵ

p dr0
Z

1

−1
dw

ð2r0 − wÞðw3 − wÞ
r0ð1þ r02 − 2wr0Þ3=2

¼ −
π

5

�
208

45
þ 2

3
ln ϵ

�
: ðC43Þ

This leads to the following expression for Kμ
2ðϵ; r̂Þ, where we keep all the terms that do not vanish as ϵ → 0:

Kμ
2ðϵ; r̂Þ ¼ p̂βĴγμ1 Ĵβγ2 ðr̂Þ þ p̂βp̂γQβγμðr̂Þ

¼ p̂βĴγμ1 Ĵβγ2 ðr̂Þ þ p̂βp̂γ½−3πr̂βδγμQ1 þ 5πðB1r̂βr̂γ r̂μ þ B2r̂βδγμ þ B3ðr̂γδβμ þ r̂μδβγÞÞ�

¼ p̂βĴγμ1 Ĵβγ2 ðr̂Þ þ π2
�
10

3
logðϵÞ − 196

45

�
p̂μðp̂ · r̂Þ þ 12π2r̂μðp̂ · r̂Þ2 − π2

�
208

45
þ 2

3
ln ϵ

�
r̂μ: ðC44Þ

Next, we expand Kμ
1ðϵ; r̂Þ, defined in Eq. (C30), when ϵ ≪ 1 and disregarding all the terms that vanish as ϵ → 0. First, we

obtain

Kμ
1ðϵ; r̂Þ ¼

Z ffiffi
ϵ

p

0

dr0
Z

dr̂0
Z

dr00Jαβðr0 − ϵr00Þqβðr00ÞÎμ1
�
ϵ

r0
; r̂0

�
r̂α − r0α

jr̂ − r0j3

¼
Z

1=
ffiffi
ϵ

p

0

dr0
Z

dr̂0
Z

dr00Jαβðr0 − r00Þqβðr00ÞÎμ1
�
1

r0
; r̂0

�
r̂α − ϵr0α

jr̂ − ϵr0j3

≃ r̂α
Z

1=
ffiffi
ϵ

p

0

dr0
Z

dr̂0
Z

dr00Jαβðr0 − r00Þqβðr00ÞÎμ1
�
1

r0
; r̂0

�
: ðC45Þ

This last integral splits into two contributions, a finite nonuniversal contribution, denoted K̂αμ
1 in the following, and a

universal logarithmically divergent contribution coming form the large distance behavior of the integral over r0. The latter
can be obtained by replacing the integrand in Eq. (C45) by its large r0 leading-order behavior [the integral over r00 then gives
p̂β following Eq. (C4)] and using the expression for Iμ1ð0; r̂0Þ derived in Eqs. (C14)–(C17). In doing so, the lower bound in
the r0 integral should be set to any strictly positive number, which we represent by

R
1=

ffiffi
ϵ

p
dr0. The logarithmically divergent

contribution as ϵ → 0 is indeed insensitive to this bound. We, therefore, obtain

p̂β

Z
1=

ffiffi
ϵ

p
dr0

Z
dr̂0Jαβðr0ÞÎμ1ð0; r̂0Þ ¼ p̂β

Z
1=

ffiffi
ϵ

p
dr0

Z
dr̂0Jαβðr0Þ

h
Ĵγμ1 r̂0γ þ Ĵγμ2 ðr̂0Þp̂γ

i

≃ p̂βp̂γ

Z
1=

ffiffi
ϵ

p
dr0

Z
dr̂0Jαβðr0ÞĴγμ2 ðr̂0Þ

≃ pβpγ

Z
ffiffi
ϵ

p dr0
Z

dr̂0Jαβðr0ÞĴγμ2 ðr̂0Þ: ðC46Þ

Note that the term proportional to Ĵγμ1 that appears in the first line in Eq. (C46) does not contribute to the singular part,
because the corresponding angular integral vanishes. Comparison with Eq. (C33) then shows that the singular part of
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Kμ
1ðϵ; r̂Þ and that of Kμ

2ðϵ; r̂Þ are identical. We, therefore, obtain in the far field

Î2ðϵ; r̂Þ ¼
�
K̂αμ

1 − δαμ
4

3
π2 ln ϵ − δαμ

208

45
π2
�
r̂α þ p̂βĴγμ1 Ĵβγ2 ðr̂Þ

þ π2
�
20

3
logðϵÞ − 196

45

�
p̂μðp̂ · r̂Þ þ 12π2r̂μðp̂ · r̂Þ2: ðC47Þ

Altogether, Eqs. (C24) and (C47) lead to the following expression for the expansion to second orderOðλ2Þ of the solution of
Eq. (C1), in the far field:

KμðrÞ ¼ −
1

4πr2
MαμðrÞ

�
r̂α −

λ

4
ð3p̂α − 5r̂αðp̂ · r̂ÞÞ þ 3

4
λ2r̂αðp̂ · r̂Þ2

�
þOðλ3Þ; ðC48Þ

with the tensor

MαμðrÞ ¼ δμα
�
1 −

λ2

12
ln ϵ −

13λ2

45

�
þ λ

4π
Ĵαμ1 þ

�
λ

4π

�
2

K̂αμ
1 þ λ2

�
5

12
logðϵÞ − 49

45

�
p̂αp̂μ: ðC49Þ

3. Renormalization group equations

The far-field density decay is governed by Eq. (40),
from which we get δρðrÞ ¼ cμKμðrÞ=D. In the fol-
lowing, we show that, as in the treatment in the main text,
we obtain two different anomalous dimensions depending
on whether the polar obstacle has an axis of symmetry
or not.

a. Polar obstacle with an axis of symmetry

If the obstacle has an axis of symmetry, the latter is
necessarily along p̂ so that cμ ¼ cp̂μ. Accordingly, by
symmetry, we obtain Ĵαμ1 p̂μ ¼ j1p̂α and K̂αμ

1 p̂μ ¼ k1p̂α,
where j1 and k1 are constants which depend on near-field
properties of the velocity field. We, therefore, get

cμMαμðrÞ ¼ cp̂α

�
1þ λ2

3
λ2 ln ϵ−

62

45
λ2 þ λ

4π
j1 þ

�
λ

4π

�
2

k1

�

¼ cp̂α

�
1−

62

45
λ2 þ λ

4π
j1 þ

�
λ

4π

�
2

k1

�

×

�
1þ λ2

3
ln ϵ

�
þOðλ3Þ; ðC50Þ

which leads to the following expression for the density
field:

δρðrÞ ∝ mkðrÞ
r2

�
cos θ −

λ

4
ð3 − 5cos2θÞ þ 3

4
λ2cos3θ

�

þOðλ3Þ; ðC51Þ

with the function mkðrÞ given by

mkðrÞ ¼ 1þ λ2

3
ln
l
r
: ðC52Þ

Note that Eq. (C51) reproduces the angular dependence of
Eq. (10). This perturbative expansion is the first step of a
renormalization group treatment done by introducing an
arbitrary length scale r0 and writing

mkðrÞ ¼ mkðr0Þ
�
1þ λ2

3
ln
r0

r

�
; ðC53Þ

which is valid up to order of Oðλ2Þ. The renormalization
group equation ∂r0mkðrÞ ¼ 0, therefore, becomes

∂r0mkðr0Þ þ
λ2

3r0
mkðr0Þ ¼ 0; ðC54Þ

since the term scaling as Oðλ2∂0rmkðr0ÞÞ can be neg-
lected to the considered order. Equation (C54) finally
leads to

δρðrÞ ∝ 1

r2þλ2=3
; ðC55Þ

which reproduces the result of Eq. (9).

b. Obstacle with no axis of symmetry

The situation is different when the obstacle does not
have an axis of symmetry. In that case, we decompose
c ¼ ckpþ c⊥ with p · c⊥ ¼ 0. We isolate the logarithmi-
cally diverging contributions and split the different terms
according to
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δρðrÞ ¼ −
ck

4πDr2

�
1þ λ2

3
ln
l
r

��
cos θ −

λ

4
ð3 − 5cos2θÞ þ 3

4
λ2cos3θ

�

−
1

4πDr2

�
1 −

λ2

12
ln
l
r

�
cα⊥

�
r̂α −

λ

4
ð3p̂α − 5r̂αðp̂ · r̂ÞÞ þ 3

4
λ2r̂αðp̂ · r̂Þ2

�

−
1

4πDr2
cμ
�
−
13λ2

45
δμα þ λ

4π
Ĵαμ1 þ

�
λ

4π

�
2

K̂αμ
1 −

49

45
λ2p̂αp̂μ

��
r̂α −

λ

4
ð3p̂α − 5r̂αðp̂ · r̂ÞÞ þ 3

4
λ2r̂αðp̂ · r̂Þ2

�
: ðC56Þ

Up to order of Oðλ2Þ, we, therefore, obtain

δρðrÞ ¼ −
ck

4πDr2

�
l
r

�
λ2=3

�
cos θ −

λ

4
ð3 − 5cos2θÞ þ 3

4
λ2cos3θ

�

−
1

4πDr2

�
l
r

�
−λ2=12

cα⊥
�
r̂α −

λ

4
ð3p̂α − 5r̂αðp̂ · r̂ÞÞ þ 3

4
λ2r̂αðp̂ · r̂Þ2

�

−
1

4πDr2
cμ
�
−
13λ2

45
δμα þ λ

4π
Ĵαμ1 þ

�
λ

4π

�
2

K̂αμ
1 −

49

45
λ2p̂αp̂μ

��
r̂α −

λ

4
ð3p̂α − 5r̂αðp̂ · r̂ÞÞ þ 3

4
λ2r̂αðp̂ · r̂Þ2

�
: ðC57Þ

Hence, the second line of the right-hand side dominates in the far field, and we obtain

δρðrÞ ∝ 1

r2−λ
2=12

cos ðϕþ ϕ0Þ sin θ
�
1þ 5

4
λ cos θ þ 3

4
λ2 cos2 θ

�
; ðC58Þ

which reproduces Eqs. (11) and (12) and where the phase
ϕ0 is such that r̂ · c⊥ ¼ jc⊥j sin θ cosðϕþ ϕ0Þ.
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