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Information scrambling in quantum walks: Discrete-time formulation of Krylov complexity
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We study information scrambling (a spread of initially localized quantum information into the system’s many
degree of freedom) in discrete-time quantum walks. We consider out-of-time-ordered correlators (OTOC) and
K complexity as a probe of information scrambling. The OTOC for local spin operators in all directions has a
light-cone structure which is “shell-like.” As the wavefront passes, the OTOC approaches to zero in the long-time
limit, showing no signature of scrambling. The introduction of spatial or temporal disorder changes the shape of
the light-cone akin to localization of wavefuction. We formulate the K complexity in system with discrete-time
evolution, and show that it grows linearly in discrete-time quantum walk. The presence of disorder modifies this
growth to sublinear. Our study present interesting case to explore many-body phenomenon in a discrete-time
quantum walk using scrambling.
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I. INTRODUCTION

Quantum scrambling [1,2] is the process where interac-
tions within a quantum system spread local information across
its many degrees of freedom. It’s a fundamental process
behind how isolated quantum systems reach thermal equi-
librium [3–5], and it’s closely linked to quantum chaos [6],
the black-hole information problem [7–9], and how disor-
der affects collective spins in many-body systems [10,11].
The concept of scrambling also lays the groundwork for de-
veloping algorithms in quantum benchmarking and machine
learning, which can make the exploration of Hilbert spaces
more efficient [12–16].

There remain ambiguity is describing the process of quan-
tum scrambling. One method to probe it involves using an
out-of-time-ordered correlator [1,17]. For systems that exhibit
a semi-classical limit or have a large number of local de-
grees of freedom, this correlator shows exponential growth,
which can be used to identify a quantum counterpart to
the Lyapunov exponent (LE), thus linking it to classical
chaos [18]. Another approach involves studying the evolu-
tion dynamics of operators in Krylov space. Here, operator
growth is measured by the “K-complexity,” indicating the ex-
tent of delocalization of initial local operators evolving under
Heisenberg evolution under the system Hamiltonian [19–21].
It is speculated that this K-complexity grows exponentially
in most generic nonintegrable systems [19]. This exponen-
tial growth in K-complexity can be used to extract LE,
establishing a connection with out-of-time-ordered correla-
tors [6]. Recent studies have explored K-complexity in various
systems such as Ising models [22–24], Sachdev-Ye-Kitaev

*Contact author: hsahu@perimeterinstitute.ca

(SYK) models [25–27], quantum field theories [28–33], the
many-body localization system [34,35], and open quantum
systems [36–40].

Experimentally tunable toy models serve as valuable
tools for investigating different phenomena from theoretical
physics. One such tool, which we will pursue in this work,
is the quantum walk (a quantum version of the classical ran-
dom walk [41,42]). Specifically, we examine discrete-time
quantum walks, which were previously employed to simu-
late controlled dynamics in quantum systems [43–45] and to
construct quantum algorithms [42]. These quantum walks are
implemented experimentally using both lattice-based quan-
tum systems and circuit-based quantum processors [46–48].
The adaptability of quantum walks, allowing for the ex-
perimental modeling of various phenomena like topological
effects [45,49], therefore, also positions them as a promising
platform for studying scrambling.

In this article, we study the out-of-time-ordered correlator
(OTOC) and K-complexity for different operators in the ex-
actly solvable one-dimensional discrete-time quantum walk.
Our study of OTOC for different spin operators shows a uni-
versal “shell-like” structure so as the wavefront passes, the
OTOC goes to zero in the long-time limit, in other words,
the operator has no support on the site, implying the ab-
sence of scrambling (see Fig. 1). However, we show that
K-complexity grows linearly in time, akin to the approximate
orthonorgonality of operator at each time step. We further
study the effect of disorder which generally results in the
slowdown of information scrambling. In both spatial and tem-
poral disorder, the shape of the light-cone deforms, showing
no scrambling beyond localization length. The K-complexity
growth transititions from linear to sublinear, showing sat-
uration at late times, thus reflecting the localization of
the operator.
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FIG. 1. Schematic showing the “shell-like” structure of OTOC
in which, as the wavefront passes the operator site l , the OTOC
approaches to zero in the long-time limit. The horizonal line shows
different time slices increasing in an upward direction. We note that
the site where OTOC is nonzero at initial time, goes to zero at late
time, implying that the operator has no support on site.

II. QUANTIFYING SCRAMBLING

A. Out-of-time-ordered correlators

OTOCs provide a means to quantify the evolution of op-
erators. Let’s consider two local operators, W and V , within
a one-dimensional spin chain. The idea is to probe the spread
of W (t ) = eiHtWe−iHt using another operator V , typically a
simple spin operator positioned at a distance l from W evolv-
ing under system Hamiltonian H . To do this, we consider the
expectation value of the squared commutator

C(l, t ) = 〈[W (t ),V ]†[W (t ),V ]〉. (1)

Initially, this quantity is zero for widely separated operators,
but it deviates significantly from zero once W (t ) extends to the
location of V . In the special scenario where W and V are Her-
mitian and unitary, the squared commutator can be expressed
as C(t ) = 2 − 2 Re [〈W (t )VW (t )V 〉], with 〈W (t )VW (t )V 〉 =
F (t ) representing the OTOC. The growing interest in OTOCs
has spurred numerous experimental proposals and experi-
ments aimed at measuring them [50–55].

The OTOC serves as a tool to investigate characteristics of
chaos such as operator growth and the butterfly effect. In the
case of local interactions, the growth C(l, t ) is conjectured to
obey [10,56–58]

C(l, t ) ∼ exp

[
− λp

(l − vBt )1+p

t p
+ a log t

]
. (2)

Here, vB denotes the butterfly velocity, p represents the
wavefront broadening coefficient, and a encapsulates the log-
arithmic growth observed in the many-body localized (MBL)
phase under disorder.

B. Krylov complexity

1. Continuous-time evolution

In a closed system, the evolution of any operator O0 un-
der a time-independent Hamiltonian H is described by the

Heisenberg equation of motion

O(t ) = eitHO0e−itH = eiLt O0 =
∞∑

n=0

(it )n

n!
LnO0, (3)

where L is the Hermitian Liouvillian superoperator given by
L = [H, • ]. Therefore, the operator O(t ) can be written as
a span of the nested commutators with the initial operator,
i.e., {LnO0}∞n=0. An orthonormal basis {|On)}K−1

n=0 can be con-
structed from this nested span of commutators by choosing
a certain scalar product (·|·) on operator space using a form
of Gram-Schmidt orthogonalization known as the Lanczos
algorithm. The dimension of Krylov space K obeys a bound
K � D2 − D + 1, where D is the dimension of the state
Hilbert space [21]. In the Krylov basis {|On)}, the Liouvil-
lian takes the tridiagonal form L|On) = bn+1|On+1) + bn|On),
where bn are known as the Lanczos coefficients that are tied
to chaotic nature of the system at hand [23]. We can write
the expansion of the operator O(t ) in terms of the constructed
Krylov basis as

O(t ) =
K−1∑
n=0

inφn(t )|On). (4)

The amplitudes φn(t ) evolve according to the recursion
relation φ̇n(t ) = bn−1φn−1(t ) − bnφn+1(t ) with the initial con-
ditions φn(0) = δn,0. The recursion relation suggests that the
Lanczos coefficients bn are hopping amplitudes for the initial
operator O0 localized at the initial site to explore the Krylov
chain. With time, the operator gains support away from the
origin in the Krylov chain reflects the growth of complexity
as higher Krylov basis vectors are required in operator expan-
sion. To quantify this, one defines the average position of the
operator in the Krylov chain, called the Krylov complexity, as

K (t ) = [O(t )|K|O(t )] =
K−1∑
n=0

n|φn(t )|2, (5)

where K = ∑K−1
n=0 n|On)(On| is the position operator in the

Krylov chain. For our purpose, we will use the infinite-
temperature inner product, also known as/the Frobenius inner
product

(A|B) = 1

D
Tr[A†B], ‖A‖ =

√
(A|A) . (6)

2. Discrete-time evolution

To formulate the K-complexity for a system with discrete-
time evolution such that On = U †

n On−1Un = Un[On], where
n = 1, 2, . . . ,Un is the unitary operator which describes the
evolution of the system at time step t = nT with step size T ,
and Un is the unitary superoperator given by Un = U †

n • Un.
We define the Krylov basis by choosing |O0) = O0 and then
recursively orthogonalizing each On with all the |On) for i<n.
This choice of basis (represented by O) maximizes the cost
function defined as [59]

KB(t ) =
∑

i

ζi|(Ot |Bi )|2, (7)

with respect to an arbitrary choice of orthonormal set B =
{|Bi ) : i = 0, 1, 2, . . .}. The coefficients ζi (referred to as the
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“weight function”) are positive, increasing the sequence of
real numbers. The optimal choice of the basis follows from the
induction method. We fix the initial state as the first state of the
Krylov basis O0 = |O0). Assume the first N vectors of certain
basis B are the same as the Krylov basis, i.e., |Bi〉 = |Oi〉 for
i = 0, 1, . . . , N − 1. By assumption

On =
N−1∑
j=0

(Kj |On)|Oj ) n � N − 1 .

Therefore, the cost associated with the two bases are the same
for n � N − 1. The next state |ON 〉 into a part belonging to the
Krylov subspace |Oi〉, for i � N − 1, and a part perpendicular
to it, i.e.,

ON = p⊥|ON ) + p‖|O‖), |O‖〉 =
N−1∑
i=0

ai|Oi ),

where |ON ) is the next element of the Krylov basis by defini-
tion. A basis different from the Krylov one would necessarily
not include |ON 〉. Therefore, the cost at discrete time N would
be larger since we would have to express |KN 〉 in the new
basis, which would require at least two vectors. Since the
contribution to the cost from the part |O‖〉 is the same in both
bases, the cost must increase when we divide |ON 〉 into several
contributions since ζn is a strictly increasing function of n.
Therefore, the Krylov basis minimizes the cost function for
all times.

At any time t = nT , we can expand the state Ot in the
Krylov basis as

On =
D2∑
i=0

φi,n|Oi ) , (8)

where the expansion coefficient φi,t = (Oi|On). We define
the K-complexity of the state as the average position of the
distribution on the ordered Krylov basis

K (t ) =
D2∑
i=0

i|φi,n|2 . (9)

Since the evolution operator itself is used as a generator of the
Krylov basis, we can bound the maximum possible growth of
the K-complexity. For any system evolving unitarily in discrete
time, the K-complexity can grow, at most, linearly with time
t . To prove this, we consider maximizing the complexity at
anytime t with respect to the expansion coefficients, i.e.,

max
{|φi,n|}

K (t ) = max
{|φi,n|}

∑
i

i|φi,n|2, (10)

with constraint
∑

i |φi,n|2 = 1. From the orthonormalization
construction, it follows that the expansion coefficients φi,n =
0 ∀ i > n. Therefore, it follows that the complexity can, at
most, grow linearly with time t corresponding to the case
where φi,n = δi,n. In terms of the operator, it means that
(On′ |On) ∀ n′ < n, which corresponds to the maximally er-
godic regime universal in chaotic systems [60].

In the case where the evolution operator is time inde-
pendent, we can define a quasi-Hamiltonian Hq such that
U = e−iHqT . In this case, the unitary operator U takes the

upper Hessenberg form in the Krylov basis [60], given by

(Oi|U |Oj ) =
⎧⎨
⎩

0 if j > i + 1,

bj if j = i + 1,

a jci/c j if j < i + 1,

(11)

with a0 = c0. The quasi-Hamiltonian Hq can itself be used
in the continuous-time setting to define complexity using the
notion discussed in Sec. II B 1. To investigate the relation be-
tween the complexities, we consider the following expansion:

eiLqT =
∞∑

k=0

(iT )k

k!
Lk

q ≈
Kc∑

k=0

(iT )k

k!
Lk

q, (12)

where Lq is the Liouvillian superoperator associated with the
Hamiltonian Hq. The Taylor series is truncated at order Kc,
which depends on the operator Lq, step size T , and error
tolerance [61]. From Eq. (12), it follows that the operator at
first time step O1 will be a linear combination of operators
{Lk

qO0 | k = 0, 1, . . . , Kc}. In other words, the first Krylov
basis vector

|O1) =
Kc∑

k=0

ψk,1

∣∣O(q)
k

)
, (13)

where the set O(q) = {|O(q)
k ) | k = 0, 1, . . .} corresponds to the

Krylov basis associated with the Liouvillian Lq. In general,
we will assume that there exists a cutoff value K (i)

c such that

|Oi ) =
K (i)

c∑
k=0

ψk,i

∣∣O(q)
k

)
, (14)

On =
n∑

i=0

φi,n|Oi ) =
K (n)

c∑
k=0

φ
(q)
k,n

∣∣O(q)
k

)
. (15)

Therefore, the K-complexity associated with the Liovillian Lq

(refer to as the quasi-K-complexity) given by

K (q)(t ) =
K (n)

c∑
k=0

k
∣∣φ(q)

k,n

∣∣2 =
K (n)

c∑
k=0

k

∣∣∣∣∣
n∑

i=0

φi,nψk,i

∣∣∣∣∣
2

�
K (n)

c∑
k=0

k
n∑

i=0

|φi,n|2|ψk,i|2

=
n∑

i=0

⎛
⎝K (n)

c∑
k=0

k|ψk,i|2
⎞
⎠|φi,n|2. (16)

Therefore, the quasi-K-complexity K (q)(t ) is similar to that
of the unitary operator with a modified weight factor ζi.
The suitable choice of weight factor to recover the quasi-K-
complexity is nontrivial and depends on the growth of wave
functions φ

(q)
k,n. Let us consider the case where the wave func-

tion grows exponentially |φ(q)
k,t |2 ∼ e−k/ξ (t ), where ξ (t ) is the

delocalization length that grows exponentially in time ξ (t ) ∼
e2αt for αt � 1, corresponding to the exponential growth
(maximum possible growth) of the quasi-K-complexity [19]
K (q)(t ) ∼ e2αt . To retain this growth, one possible choice of
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weight function is ζi = e2αi along with the maximal growth of
wave function φi,n = δi,n.

We will now consider the limiting case where step size
T → 0 to recover the continuous limit. In this case, eiLqT ≈
I + iTLq, up to the correction of order O(T 2), therefore,
the Krylov basis generated by unitary operator U and quasi-
Liouvillian Lq matches exactly to each other. However, it
should be noted that the two complexities will eventually start
to differ at large time step as the errors start to accumulate and
grow large.

III. DISCRETE-TIME QUANTUM WALKS

The discrete-time quantum walk on a line is defined on
a Hilbert space H = Hc ⊗ Hp where Hc is the coin Hilbert
space and Hp is the position Hilbert space. For a walk in one
dimension, Hc is spanned by the basis set |↑〉 and |↓〉 repre-
senting the internal degree of the walker and Hp is spanned
by the basis state of the position |x〉 where x ∈ Z on which the
walker evolves. At any time t , the state can be represented by

|	(t )〉 = |↑〉 ⊗ |	↑(t )〉 + |↓〉 ⊗ |	↓(t )〉 =
∑

x

[
ψ

↑
x,t

ψ
↓
x,t

]
.

(17)
Each step of the discrete-time quantum walk is defined by a
unitary quantum coin operation C on the internal degrees of
freedom of the walker followed by a conditional position shift
operation S which acts on the configuration of the walker and
position space. Therefore, the state at time (t + 1) will be

|	(t + 1)〉 = S(C ⊗ I )|	(t )〉 = W |	(t )〉. (18)

The general form of coin operator C, given by

C = C(ξ, θ, ϕ, δ) = eiξ e−iθσx e−iϕσy e−iδσz , (19)

where ξ is the global phase angle; 2θ, 2ϕ, 2δ are the an-
gles of rotation along the x, y, and z axes, respectively, with
θ, ϕ, δ ∈ [0, 2π ]; and σμ is the μth component of the Pauli
spin matrices {σx, σy, σz}, which are generators of the SU(2)
group. The position shift operator S is of the form

S = |↓〉〈↓| ⊗ T+ + |↑〉〈↑| ⊗ T−, T± =
∑
x∈Z

|x ± 1〉〈x|,

(20)

which are translation operators. In this work, we will consider
the specific choice of coin operator

C(θ ) =
[

cos θ sin θ

− sin θ cos θ

]
, (21)

corresponding to parameters (0, θ, 0, 3π/2) which previously
was studied in the context of the Dirac dynamic [62]. In
momentum basis, the unitary operator can be diagonalized
to obtain the dispersion relation in the space-time continuum
limit [63]

ω(k, θ ) = ±
√

k2 cos θ + 2(1 − cos θ ). (22)

Therefore, the group velocity vg(k, θ ) given by

vg(k, θ ) ≡ dω(k, θ )

dk
= ± k cos θ√

k2 cos θ + 2(1 − cos θ )
.

(23)

It’s important to note that the group velocity is maximum
(equals 1) at θ = 0 for all k which corresponds to the identity
as coin operator. The coin parameter θ controls the variance
σ 2 of the probability distribution in the position space, and this
distribution spreads quadratically faster (σ 2 ≈ [1 − t2 sin θ ])
in position space when compared to the classical random
walk [64].

Disordered discrete-time quantum walk

There are a number of ways to induce disorder in the
discrete-time quantum walk that usually lead to localization of
the wave function [65–70]. Here, we will consider two choices
of disorder: spatial and temporal disorder. The spatial disorder
in the quantum walk is defined by introducing a position-
dependent coin operator C(θx ) with θx ∈ θ0 + {−W/2,W/2}
where 0 � W � π defines the disorder strength and θ0 is
the mean value. Therefore, the evolution of the state is
described by

|	(t + 1)〉 = S
⊕

x

C(θx )|	(t )〉 . (24)

In a similar analogy, the temporal disorder in the quantum
walk is defined by introducing a time-dependent coin operator
C(θt ) with θt ∈ θ0 + {−W/2,W/2}. The evolution of the state
is given by

|	(t + 1)〉 = S[C(θt ) ⊗ I]|	(t )〉 . (25)

While the temporal disorder in a quantum walk leads to a
weak localization, the spatial disorder is known to induce
Anderson localization [67]. Although, in both cases,

lim
t→∞

〈
vSD/TD

g

〉 → 0. (26)

The mean group velocity drops to zero faster for a walk
with spatial disorder, resulting in strong localization com-
pared to temporal disorder which leads to weak localization.
The localization length is usually a function of the coin pa-
rameter θ given as ζ = [ln cos θ ]−1. Both of these disorders
were studied extensively in enhancing the entanglement and
non-Markovianity generated between the internal and external
degrees of freedom [70,71].

IV. RESULTS

A. Out-of-time-ordered correlator

We will be interested in the quantities

Cμν (l, t ) ≡ 1
2

〈∣∣[W μ

l (t ),V ν
0

]∣∣2〉
= 1

2

〈[
W μ

l (t ),V ν
0

]†[
W μ

l (t ),V ν
0

]〉
, (27)

where μ, ν ∈ {x, y, z}, and the operators W μ

l and V ν
0 are local

operators defined as σμ ⊗ |l〉〈l| and σ ν ⊗ |0〉〈0|, respectively.
We consider the function Cμν (l, t ) in Eq. (27) for the

discrete-time quantum walk in one dimension and coin an-
gle θ for varying distance l between the initial operators.
Figure 2 shows the numerical results for Cμν (l, t ) at various
time slices. We can identify the velocity of the wave-
front as vB = maxk dεk/dk = maxk vg(k, θ ). It follows
that the light cone grows linearly with maximum velocity
vB = 1 corresponding to θ = 0. In continuous systems, the
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FIG. 2. The function Cμν (l, t ) for the discrete-time quantum walk; the system size is L = 100; the coin-angle θ = π/4. We show data as
the matrix plot as a function of l and time t (the maximum is set to 0.25 in all cases for better visibility and comparison). The light cone
can be readily identified and corresponds to the maximal quasiparticle group velocity vB = maxk dεk/dk. In the time-like region, Cμν (l, t )
approaches zero in the long-time limit, indicating the absence of “scrambling.” The dotted lines shows the light cone corresponding to case
vB = 1 corresponding to the case θ = 0.

long-range interaction can result in superlinear growth of the
light cone [1]. Therefore, in principle, the long-range connec-
tivity in discrete-time evolution can also result in superlinear
growth of the light cone. In the present case, the OTOC
function is “shell-like.” That is, inside the time-like region, in
the long-time limit, Cμν (l, t ) → 0, indicating no scrambling
of operator W μ

l (t ), the vanishing of the Cμν OTOC in the
long-time limit suggests that the expansion of W μ

l (t ) in terms
of Pauli strings does not contain many Pauli matrices “in
the middle” of the strings. The feature common to integrable
quantum systems [72]. Additionally, in the case of a quantum
walk, we find that the function Cμν oscillates between a finite
value and zero, which stems from the form of the shift opera-
tor and the choice of initial operators.

In integrable systems such as quantum spin systems [72],
one can analytically find the squared commutator to exactly
describe the nature of the wavefront and decay. In addition,
although, quantum walk is also an integrable model, it turns

out to be particularly hard to find out the exact form of squared
commutator. This is because the initial operators are local
in position space, and the inverse Fourier transform becomes
hard due to the complexity of functions. However, in the case
of the Hadamard quantum walk (θ = π/4), we can use the
known asymptotic results of the wave function to vaguely
argue the nature of decay and the wavefront [73]. To this
end, the asymptotics for the wave function can be described in
three regions using α = l/t . The wave function is essentially
uniformly spread over the interval between ∓1/

√
2 = ∓vB

where its gross behavior is like 1/
√

t . Outside this interval,
the wave function dies out much faster than any inverse poly-
nomial in t . At the “wavefront” (±vB), there are two peaks
of width O(t1/3), where the wave function goes as t−1/3. If
we approximately translate these wave-function behaviors to
operator W μ

l (t ), we conclude that the squared commutator
decays as ∼1/t2 in the long-time limit and goes to as t−4/3

at the wavefront.
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FIG. 3. The function Cxx (l, t ) for the discrete-time quantum walk in presence of spatial (top) and temporal (bottom) disorder; the system
size is L = 100; the disorder strength W . The disorder average is taken over 500 realizations.

The disorder (both spatial and temporal) in a system causes
a slowdown in information propagation (see Fig. 3). In par-
ticular, the spatial disorder results in Anderson localization
should be distinguished from the MBL phase. The latter
is known as a noninteracting phenomenon. As the disorder
strength increases, the shape of the light cone changes from
ballistic to confined up to localization length for time t →
∞, showing no information propagation beyond localization
length. As shown in Fig. 3, the spatial disorder leads to more
rapid localization compared to temporal disorder as we in-
crease disorder strength.

To characterize the localization, we consider the inverse
participation ratio (IPR) defined as [74]

IPR(t ) =
∑

x

|〈x|	(t )〉|4 =
∑

x

p2
x(t ), (28)

where px(t ) is the probability of the walker being at position x
and time t . The IPR quantifies the number of basis states that
effectively contribute to the system’s time evolution. Figure 4
shows the IPR calculated in the presence of spatial and tempo-
ral disorder for varying disorder strength W . In the presence
of disorder, the IPR saturates to a finite value which increases
with disorder strength. The saturation value is larger in the
case of spatial compared to temporal disorder, showing that
localization is strong in the presence of spatial disorder.

B. K-complexity

Considering the formulation of the K-complexity pre-
sented in Sec. II B for discrete-time evolution, we can show
that the discrete-time quantum walk exhibit linear growth.
We will consider the initial operator to be of the form
O0 = σμ ⊗ |0〉〈0|. At any time t , the operator is given by (we
will fix the step size T to unity)

Ot = (U †)tO0U
t , (29)

where the evolution operator U = S(C ⊗ I ). We will show
that the set of operators {O0,O1,O2, . . .} form a orthogo-
nal basis i.e., (Oi|O j ) = δi j . First, we note that operators
{Pi j ≡ |i〉〈 j| : i, j ∈ Z} form an orthogonal basis in position
Hilbert space Hp. Next, consider the operator O1 = U †O0U,

O1 = (C† ⊗ I · S†)O0(S · C ⊗ I )

= C†
↓σμC↓ ⊗ |−1〉〈−1| + C†

↓σμC↑ ⊗ |−1〉〈1|
+ C†

↑σμC↓ ⊗ |1〉〈−1| + C†
↑σμC↑ ⊗ |1〉〈1|,

where C↑ = |↑〉〈↑|C and C↓ = |↓〉〈↓|C to unclutter the no-
tation and we use T †

+ = T−. More generally, the evolution
of operator |l〉〈l| contains the linear combination of terms
|l ± 1〉〈l ± 1| that are orthonormal to each other. In what

0 10 20 30 40 50
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FIG. 4. Inverse participation ratio calculated for spatial (left) and temporal (right) disorder with varying disorder strength W . The disorder
average is taken over 500 realizations.
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follows, it will prove important to represent the operators as

O0 = O1 = , (30)

where the blue dot represents the presence of the term Pi j =
|i〉〈 j| and the multiple presence of blue dot represents the
linear combination of these terms in operator expansion. The
inner product between operators Oi and O j depends on the
expansion term corresponding to where the dot color matches.
The inner product between the operators in Eq. (30) is zero,
i.e., the operators are orthonormal to each other since there are
no common blue dots. At t = 2, 3, the operators are given by

O2 = O3 = , (31)

which shows (O2|O1) = 0 and (O3|O2) = (O3|O0) = 0. In
general, it follows that (Ot |Ot+1) = 0. If we define a matrix A
such that Anm = (On|Om), it is such that it’s odd off-diagonal
terms are zero. We now prove that even off-diagonal terms are
equal to each other. To show this consider

At,t−2 ≡ (Ot |Ot−2) ∝ Tr(O†
t Ot−2)

= Tr(U †O†
t−1UOt−2)

= Tr(O†
t−1Ot−3) ≡ At−1,t−3,

as required. In summary, we can write

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 A0,2 0 A0,4 · · ·
0 1 0 A0,2 0 . . .

A0,2 0 1 0 A0,2
. . .

0 A0,2 0 1 0 . . .
...

. . .
. . .

. . .
. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎦

. (32)

Therefore, the Krylov basis vector |On) is given by

|An) = |On) −
∑
i<n

(Oi|On)|Oi ) → |On) = |An)

‖An‖ ,

|A0) = |O0),

|A1) = |O1),

|A2) = |O2) − A02|O0) → ‖A2‖ = 1 − |A02|2,
|A3) = |O3) − A02|O1) → ‖A3‖ = 1 − |A02|2.

As the dispersion in discrete-time quantum walk grows lin-
early [63], the operator support on a particular site decays over
time. Hence, the overlap between the initial operator O0 and
operator at any subsequent time O2t also decays over time.
In other words, A0,2t ≈ 0, and therefore, (On|Om) ≈ δnm. It
follows that φn,t = (On|Ot ) ≈ δn,t , hence the K-complexity
given by

K (t ) =
∑

n

n|φn(t )|2 ∼ t, (33)

therefore, grows linearly. In Fig. 5, the numerical analysis is
presented for the K-complexity of the discrete-time quantum
walk. The norm of operator |An) saturates at a constant value
close to 1 showing that at late time, the operators |On) are
approximately orthogonal to each other. Therefore, the K-
complexity obeys a linear growth.

As we see in Sec. IV A, the introduction of disorder leads to
the slowdown in information propagation. The K-complexity
shows the similar localized behavior as the OTOC in which
it deviates from linear growth to suppress the power law
∼t1/δ with δ > 1. In this case, the amplitude A0,2n goes to
zero for large n due to localization at n = 0. Therefore, the
expansion coefficient φn,t = (On|Ot ) is nonzero for small n
which results in suppressed growth in complexity. In Fig. 6,
the K-complexity is calculated under temporal and spatial
disorder in the discrete-time quantum walk for increasing
disorder strength W . As with the OTOC, the suppression
in the K-complexity growth is smaller in the temporal case
compared to the spatial as a result of strong localization
(or AL) in the latter case.

FIG. 5. The numerical analysis for the Krylov complexity of discrete-time quantum walk with coin-angle θ = π/6 and initial operator
σ x ⊗ |0〉〈0|. (Left) The inner product matrix Anm = (On|Om ) whose elements odd off-diagonal elements are 0 while the even off-diagonal
elements are equal. (Center) The norm of operator {An} decays and then saturates to a value O(1). (Right) The K-complexity shows a linear
growth.
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FIG. 6. The K-complexity calculated for discrete-time quantum walk in the presence of (Left) spatial. (Right) temporal disorder with
varying disorder strength W . The disorder is taken over 500 copies. The dotted lines show the curve corresponding to y(t ) = t .

V. CONCLUSION

In summary, the discrete-time quantum walks are a quan-
tum model which can be used to simulate a large number of
phenomena from quantum many-body physics as well as for
the construction of quantum algorithms. Their experimental
implementation on a wide number of platforms makes them
suitable to study theoretical ideas. In this article, we study
information scrambling in the discrete-time quantum walk by
using the out-of-time correlators and K-complexity as probes.
The OTOC features the “shell-like” behavior, in which, at
long-time limit, it goes to zero indicating no scrambling of
the operator. The introduction of disorder (spatial or temporal)
results in a slowdown of information scrambling where the
shape of the light cone confines up to localization length. The
K-complexity shows a linear growth which ties to the fact that
the operator at any time is approximately orthonormal to all
operators at previous times. The disorder suppresses the K-
complexity growth resulting in its sublinear behavior. While
the spatial disorder results in strong localization, the temporal
disorder results in weak localization, which is apparent from
the behavior of both OTOC as well as K-complexity.

We would like to understand the effect of boundary con-
ditions. In this work, we focus on the discrete-time quantum
walk in an infinite-dimensional one-dimensional (1D) lattice,
but from the experimental point of view, it may be interesting
to see the late-time behavior of these quantities t > L. In
Ref. [75], the information scrambling was studied on Clif-
ford quantum cellular automata (QCA). These systems were
shown to break ergodicity, i.e., they exhibited quantum scar-
ring. It was further shown that such a system could exhibit
classical dynamics in some semi-classical limit. While the
discrete-time quantum walks are not the same as QCA, they
can be regarded as the dynamics of the one-particle sector
of a QCA [76]. Therefore, it will be interesting to see if the
connection between the two results can be made more direct.
In this direction, one should note that the Clifford QCAs
model studied in Ref. [75] also exhibits linear growth in K-

complexity. It follows from the evolution of the operator under
Clifford QCAs in which a string of Pauli operators maps to
another. Since the Pauli operator forms an orthonormal basis,
each evolution step generates a new basis element resulting
in linear growth. While for the infinite-dimensional case, this
growth will persist forever due to the infinite-dimensional
Hilbert space, in the case of the finite-dimensional lattice, the
growth will stop as the operator gets back to its initial state.
Therefore, the linear growth in K-complexity follows by a
sudden decay to zero followed by repetitive behavior which
is the refinancing of recurrence dynamics.

In this work, we formulate the K-complexity for the sys-
tem with discrete-time evolution. Therefore, it opens up a
way to consider more interesting many-body systems with
discrete-time evolution. One such example could be ran-
dom unitary circuits (RUCs) [77], which has been an active
area of research for the past several years. RUCs have shed
light on longstanding questions about thermalization and
chaos and on the underlying universal dynamics of quantum
information and entanglement [78]. While several works ex-
plored the dynamics of OTOC in a number of variants of
RUCs [79,80], the study of K-complexity can further help
understand postscrambling-time behavior.

From the point of view of discrete-time quantum walks,
which are the basis of many quantum algorithms, the study of
information scrambling could provide the basis for designing
algorithms that can efficiently explore the Hilbert spaces. In
this context, the K-complexity which describe the delocaliza-
tion of the operator in Hilbert space may be useful. Overall,
the study of scrambling in both discrete-time quantum walks
as well as in more generic systems with discrete-time evolu-
tion paves the way toward new physics in quantum many-body
physics.
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