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strategies on stiff collagenous substrata
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ABSTRACT In homoeostasis, the shape and sessility of untransformed epithelial cells are intricately linked together. Variations
of this relationship in migrating cancer cells as they encounter different microenvironments are as yet ill understood. Here, we
explore the interdependency of such traits in two morphologically distinct invasive ovarian cancer cell lines (OVCAR-3 and
SK-OV-3) undermechanically variant contexts.Wefirst establishedametric toolkit that assessed traits associatedwith cellmotion
and shape, and rigorously measured their dynamical variation across trajectories of migration using a Shannon entropic distribu-
tion. Two stiffness conditions on polymerized collagen I with Young’s moduli of 0.5 kPa (soft) and 20 kPa (stiff) were chosen. Both
the epithelioidOVCAR-3 andmesenchymal SK-OV-3 cells on soft substrata exhibited slow and undirectedmigration.On stiff sub-
strata, SK-OV-3 showed faster persistent directed motion. Surprisingly, OVCAR-3 cells on stiffer substrata moved even faster
than SK-OV-3 cells but showed a distinct angular motion. The polarity of SK-OV-3 cells on stiff substrata was well correlated
with their movement, whereas, for OVCAR-3, we observed an unusual ‘‘slip’’ behavior, wherein the axes of cell shape and move-
ment were poorly correlated. Whereas SK-OV-3 and OVCAR-3 showed greater mean deformation on stiffer substrata, the latter
was anticorrelated with variation in angular motion or the mean deviation between shape and motility axis for SK-OV-3 but poorly
correlated for OVCAR-3. Moreover, on softer substrata OVCAR-3 and SK-OV-3 were relatively rigid but showed greater shape
variation (with OVCAR-3 showing a higher fold change) on stiffer substrata. Our findings suggest that greater deformability on
stiffer milieu allow epithelioid cells to overcome constraints on the congruence in axis of shape andmotion seen for mesenchymal
cells and display distinct motile behaviors across this phenotypic spectrum.
SIGNIFICANCE We compared the speed and shape of migratory epithelioid (OVCAR-3) and mesenchymal (SK-OV-3)
ovarian cancer lines on soft and stiff collagen I gels. On stiff gels, SK-OV-3 cells showed higher speed, more persistent
migration, better shape-motility alignment, and higher deformability. The higher the mean deformation, the greater was the
persistence and better the shape-motion alignment. Remarkably, on stiffer gels, OVCAR-3 cells moved even faster, but
showed angular motion, poor shape-motility alignment, and higher deformation; however, the deformation was
uncorrelated with persistence or shape-motion alignment. Our work offers a rigorous methodological toolkit to study motile
cell behavior but also reveals surprising morphomigratory traits of transformed epithelioid OVCAR-3 cells that may underlie
the aggression of high-grade serous ovarian cancer.
INTRODUCTION

Cell migration is an essential phenomenon in organogen-
esis, homeostasis, wound healing, and immunosurveillance
(1). It involves a continuous coordination between physico-
chemical cues external to the cell and its internal signaling
cascades through active cytoskeletal rearrangement (2,3).
Abnormal migratory behaviors due to aberrant signaling
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or changes in the external microenvironment, in turn, have
been shown to be strongly associated with histopathological
states such as cancer, which is typified by ectopic localiza-
tion of cells due to their invasion outside native niches: a
process referred to as metastasis (4,5). Such changes in
the microenvironment have also been seen to have a broad
effect on cellular morphology. Awell-known correlation be-
tween morphology and migration is seen when polygonal
epithelial cells transit to a dysmorphic ‘‘mesenchymal’’ state
with a concomitant increase in motility (epithelial-to-
mesenchymal transition) (6). Recent studies also show that
cancer cells adopt an ameboid transition state by reducing
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cell-cell and cell-extracellular matrix (ECM) adhesion and
further increase their rate of migration. This constant switch
between epithelial to mesenchymal and ameboid pheno-
types has been postulated to play a major role in cancer
cell survival and metastasis (7,8). Current studies have high-
lighted the importance of measuring cell morphological
features as they help indicate the physiological status of a
cell and distinguish cancer cells from their untransformed
counterparts (9,10). The most common mathematical
metrics used currently for quantifying cellular shape include
aspect ratio, eccentricity, shape index, and circularity, while
for cell migration, it includes accumulated distance, average
speed, turning angles, and mean-square displacement
(MSD) (11,12).

Shannon entropy, which denotes the information contained
in a variable, has been increasingly used in biological systems
for investigating diversity and patterns in ecology, character-
izing periodicity in genomic and transcriptomic data, and
identifying cancer tissue samples, as well as for identifying
potential therapeutic targets (13–16). Recent studies by Liu
and co-workers have also shown the significance of Shannon
entropy as a measure in extracting the time-variant dynamics
of cellular migration and morphology (17–19). Advancement
in computational approaches has resulted in several machine
learning and neural network-based approaches for cellular
segmentation and classification models for distinguishing
and characterizing various morphology and migratory modes
(20–22). However, the complexity of such models has drawn
researchers back to using static mathematical parameters to
quantify morphology and migration, necessitating efforts to
come up with more creative combinations or toolkits of
metrics that describe motility behavior across time and
space. Furthermore, as studies look into the characteristics
of morphology and migration of cells as separate entities,
there is a need to rigorously investigate how correlated
these processes are under different microenvironmental con-
texts (21,23) (see a recent study byKo1odziej et al., which pro-
vides fresh insights on the interdependency between both
metrics using numerical parameters that incorporate cell ge-
ometry, cell orientation, and their corresponding migratory
behavior (24)).

The need for decoding cellular morphomigratory dy-
namics is particularly relevant to invasive cancer cells,
which exhibit distinct morphological features and migratory
characteristics. This study focuses specifically on epithelial
ovarian cancer, which ranks as the seventh most common
cancer in terms of incidence in women as well as the eighth
most common cause of death from cancer in women (25). It
uses one cell line each representing high-grade serous
ovarian cancer and nonserous cancer. Although having
distinct histopathological features, both cells are known to
metastasize in animal models (26).

The ability of cancer cells to metastasize rapidly comes
from their ability to change their surrounding microenviron-
ment as well as to adapt to such altering niches (27). Bio-
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physical cues from the ECM microenvironment include
stiffness, porosity, and topography of the underlying sub-
strate (28,29). Ovarian cancer progression involves cells
navigating transcoelomic tissues such as lymph nodes, peri-
toneal linings, and fibrosed areas that show a range of stiff-
ness from 0.5 to 25 kPa. Hence, in this study, we investigate
the role of substrate stiffness using collagen-coated poly-
acrylamide hydrogels mimicking normal (soft, 0.5 kPa)
and tumor (stiff, 20 kPa) tissue on the spatiotemporal
cellular plasticity in ovarian cancer cells. While the motility
of transformed mesenchymal cells and that of untrans-
formed epithelial sheets have received extensive attention,
behaviors of epithelioid cancer cells within, or on the sur-
face of, ECM are as yet ill understood.

In this study, we develop a toolkit to rigorously analyze
parameters relating to migration and morphology of can-
cer cells. We then utilize the toolkit to study the role of
biophysical cues on ovarian cancer cells’ phenotype
over a short but finely sampled spatiotemporal scale.
Our study reveals surprising effects of the mechanical
microenvironment on the locomotive plasticity of ovarian
cancer cells.
MATERIALS AND METHODS

Cell culture and time-lapse setup

This study used two different ovarian cancer cell types—OVCAR-3 and

SK-OV-3 (a kind gift from Professor Rajan R. Dighe, Indian Institute of

Science.). The OVCAR3 cells were cultured in RPMI medium supple-

mented with 20% FBS (Gibco, Waltham, Massachusetts), while SK-

OV-3 cells (WT and GFP-labeled) were cultured in McCoy’s medium

supplemented with 10% FBS. Approximately 12,000 cells were seeded

per well in an 8-well chamber slide coated with the required substrate.

Cells were then kept in a cell incubator with 5% CO2 at 37
�C and humid-

ification for overnight adhesion. The main objective was to obtain

sparsely distributed cells to collect single-cell data. Time-lapse experi-

ments were performed on an inverted epifluorescence microscope

(IX83 Olympus, Tokyo, Japan) at 20� objective for 3 h. Since, cellular

protrusion dynamics are in the range of 120–180 s, snapshots are taken

at a time interval of 2 min (30,31).
Polyacrylamide gel preparation

Polyacrylamide gels of required stiffness were prepared in reference to the

relative concentrations stated in Tse and Engler (32).

Activation of glass slide

Activation of glass slides (8-well chamber slides) was performed using 10%

(3-aminopropyl) trioethoxysilane with an incubation time of 20 mins.

Excess silane was removed by washing twice with autoclaved filtered water.

Fixation was then done using 0.5% glutaraldehyde for 45 min. Excess

glutaraldehyde was removed by washing thrice with autoclaved filtered

water.

Preparation of sandwich coverslip

The sandwich coverslip was coated with Rain-X to provide a hydrophobic

coating. After 10 min, the excess coating was removed by rinsing twice

with autoclaved filtered water.
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Preparation of hydrogel(s)

A solution of acrylamide and bis-acrylamide of the required concentra-

tion for specific stiffness was prepared in autoclaved filtered water. For

0.5 kPa, 0.75 mL of 40% acrylamide and 0.3 mL of 2% bis-acrylamide

were mixed in 8.95 mL of autoclaved filtered water. For 20 kPa, 2 mL

of 40% acrylamide and 1.32 mL of 2% bis-acrylamide were mixed in

6.68 mL of autoclaved filtered water. Polymerizing gel solution (60–80

mL) is usually added per well. Therefore, to the required volume of acryl-

amide and bis-acrylamide solution, 1/100th of the total volume of 10%

ammonium persulfate and 1/1000th of the total volume of tetramethyle-

thylenediamine were added to produce the polymerizing gel. This poly-

merizing gel was immediately added to the activated glass slide. The

hydrophobic sandwich coverslip was placed immediately on top of the

solution to uniformly spread the gel in the glass slide. The coverslip is

usually removed within 5 mins, as the gel usually forms by that time.

ECM coating the gel surface

The gel is initially coated with sulfo-SANPAH, a heterobifunctional pro-

tein cross-linker for ECM coating. Since sulfo-SANPAH is a photoreac-

tive cross-linker, the coated gel is exposed to UV for 25 mins. The gel is

then washed with phosphate-buffered saline (PBS) thrice to remove

excess sulfo-SANPAH. To the activated gels, 100 mg/mL of collagen

was added. An initial collagen (Gibco) concentration of 1 mg/mL was

prepared. Initial precooling of all the gel components (type I collagen,

10� DMEM, 2 N NaOH, PBS) and an Eppendorf tube were done. To

prepare a volume of 100 mL of 1 mg/mL collagen, 33.3 mL collagen

of stock concentration 3 mg/mL was neutralized with 0.67 mL of 2 N

NaOH. The solutions were thoroughly mixed until a pink color was

observed. To this, 10 mL of 10� DMEM and 56 mL of PBS were added.

This was further diluted to 100 mg/mL by the addition of PBS. The so-

lutions were thoroughly mixed, and a volume of 100 mL was added to

each well within an 8-well chamber. The 8-well chambers are kept in

the incubator at 37�C for 45–60 mins for fast polymerization and then

transferred into the refrigerator at 4�C overnight to enhance the duration

for attachment of collagen protein to the gel surface. The well chambers

are again placed in the incubator 1 h before seeding cells for the

experiment.
Image processing and analysis

Segmentation, binarization, and analysis

The image processing was done in an open-source package, namely, Fiji

(33). The raw time-lapse image sequence was converted to .tif format

and cropped to obtain fields with a higher number of single cells. To

segment the fluorescently labeled cells (GFP labeled) from each frame,

an initial adjustment of brightness and contrast was made to get a clear

outline of the body of the cell using Fiji. This was followed by default

thresholding to obtain binarized images. To the obtained processed

file, a fitted ellipse was overlaid to get the required parameters using

an ImageJ Macro code. Cell measurements such as centroid, major

axis length, minor axis length, major axis angle, area, and perimeter

were then generated using the ‘‘Analyze particles’’ option within Fiji.

Sorting of each cell from the generated excel sheet of parameters was

done manually. Time-lapse trajectories were taken in a manner to avoid

instances of cells colliding with or adhering to each other or dividing

into two daughter cells.

Quantitative descriptors of cell shape and migration within the
toolbox

From the above parameters, the required metrics within the toolbox was

constructed as indicated in Fig. 1. The displacement vector for each frame

was calculated by the distance traveled by the centroid from preceding
(n–1) frame to current (n) frame. Global turning angle (GTA) (q) was calcu-

lated as the angle made by displacement vector with the x axis, and given by

the formula tan�1 (
yiþ1 � yi
xiþ1 � xi

). GTA values have a range between �180 and

180�. Relative turning angle (RTA) (a) was calculated between current

displacement vector (between n–1 and n frames) and successive displace-

ment vector (between n and nþ1 frames), given by the formula cos�1

�
di dðiþ1Þ

jdi j�jdðiþ1Þj
�
, where di denotes displacement vector. This angle calculates

the smallest positive angle between two vectors, which is always between

0 and 180�. This is because cos(a) returns value in the range [–1,1] and in-

verse cosine (arccos) returns angle in the range [0,180]. Given that, in this

study, we focus on single-cell migration we have not distinguished between,

clock- or counterclockwise turn. Major axis (MA) endpoints were calcu-

lated from the length and centroid values generated before. The morphomi-

gratory angle (m) was obtained by calculating the acute angle between

major axis and the successive displacement vector (between n and n þ 1

frames). The MA dynamics (F) was obtained by calculating the difference

in MA angle (generated earlier) in current and preceding frames. It is to be

noted that values of F are not considered as plausible indicators of orienta-

tion in the case of rounded cells due to anomalies in major axis determina-

tion. Elongation (ε) was calculated by the ratio of minor axis length to

major axis length. The persistence ratio was calculated as the ratio between

Euclidean distance and accumulated distance. For detailed entropy calcula-

tion protocol please see Data S1. For bin number measurement, we applied

three rules: Cencov’s rule and Terrell and Scott’s rule predicted the optimal

bin number to be �5, whereas Rice’s rule predicted an optimal number to

be 9 (34). We have used 5 bins for all the calculations in this paper and, in

fact, observe that, for the first data set, changing the number to 9 leaves the

inferences unchanged (Data S1).Furthermore, MSD was calculated using

the formula MSDðtÞ ¼ 1
T� tþ1

PT� t
i¼ 0 ½ðxðiþtÞ � xiÞ2 þðyðiþtÞ � yiÞ2�,

where MSD(t) represents the MSD for a single cell with step size t in a total

time of T. Since, the frame acquisition rate was every 2 min, step size was

increased in increments of 2 up to 60. To obtain a population average

for each step size, MSDs were averaged over all cells. Log of average

MSD and step size was calculated and plotted to fit a linear regression

curve and obtain the slope value (k). Similarly, root mean-square

(RMS) of turning angle and elongation metrics was calculated with an addi-

tional square root calculation of the mean-squared values. All the parame-

ters were calculated using MATLAB version 23.2.0.2428915 (R2023b)

update 4.
Statistical analysis

All time-lapse experiments were performed thrice or more (mentioned

otherwise). GraphPad Prism 8.0.1 was used for generating graphs and sta-

tistical analysis. For statistical analysis, one-way ANOVA was performed.

The correlation matrix (seen in Fig. 5, E and F) is performed using a corr-

plot package in R, based on Pearson’s correlation coefficient, between all

biological replicates, after which the average of the values is considered.

The total number of cells analyzed in each condition are as follows: SK-

OV-3 (0.5 kPa), 172; SK-OV-3 (20 kPa), 175; OVCAR-3 (0.5 kPa), 140;

OVCAR-3 (20 kPa), 135. The ImageJ Macro and MATLAB codes used

in the above study are available in the following github link: https://

github.com/madhumitha-rsuresh/Morphomigratory-parameters.
RESULTS

Integration of a morphomigration toolkit with
entropic measurements reveals distinct modes of
migration

The metrics we have calculated in the context of invasive
ovarian cancer cells in this manuscript were chosen to
Biophysical Journal 123, 4009–4021, November 19, 2024 4011
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FIGURE 1 Metrics for the study of morphological and migrational features of cancer cells (A) Toolkit with the corresponding abbreviation, formula, and

graphical representation. (B–Di) Synthetic tracks generated using discretized and modified Ornstein-Uhlenbeck equation corresponding to persistent directed

motion (Bi), randommotion (Ci), and angular motion (Di). (B–Dii) Histograms corresponding to turning angle distribution (GTA and RTA), which is used for

entropy calculation. (E) Comparative analysis of mean entropy of global turning angle for each migratory mode. (F) Comparative analysis of mean entropy of

relative turning angle for each migratory mode (n ¼ 40; statistical analysis was performed using one-way ANOVA).
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estimate cell motility, shape, orientation, and derive their
correlations with their migratory direction. These metrics
and their representative formulae or pictorial representa-
tions are shown in Fig. 1 A. To elucidate the ‘uncertainty’
in cellular state change over time, Shannon entropy
(H) was used to decode the metric flux. Shannon entropy
(H) was calculated using the formula,

H ¼ �
Xn

i ¼ 1

pi log2ðpiÞ
where n represents the total number of events and pi repre-
sents the probability for each event (35). Using this defini-

tion, entropy for each metric within an individual cell was
calculated by sorting every metric value within the given
time frame into specific ranged bins and measuring the
probability for each bin. Here, n represents number of
bins and p represents the probability of a given metric found
within the bin at specific time point. Hence, this gives us a
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clear histogram depicting the probability distribution of
the corresponding metric values within the bins. Further-
more, the entropy values were normalized with the
maximum possible entropy (H), which corresponds to equal
probability occurrence in all bins, to obtain a dimensionless
quantity from 0 to 1 for easier comparison between different
scenarios. The Shannon entropy used here goes with the
conventional Gibb’s entropy interpretation that an entropic
value closer to unity corresponds to ‘‘highly random’’ dy-
namics, while a value closer to ‘‘0’’ corresponds to ‘‘ordered
dynamics.’’

To test the sensitivity of the toolkit, synthetic data corre-
sponding to specific migratory modes were generated using
a modified Ornstein-Uhlenbeck equation (36) involving
drift, diffusion, and an additional rotational term in
MATLAB.

dXðtÞ ¼ � qðXðtÞ � mxÞdtþsdWxðtÞ
þ u

�
YðtÞ � my

�
dt
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dYðtÞ ¼ � q
�
YðtÞ � m

�
dtþsdWyðtÞ
y

� uðXðtÞ � mxÞdt
Here, q denotes the rate of reversion to the mean; m is the

mean position; s denotes the volatility of the process (cor-
responds to random fluctuation intensity); u denotes rota-
tional frequency; dWt denotes Wiener process (Brownian
motion). X and Y correspond to centroid positions that
evolve over time under the above equations. Furthermore,
the above equations were discretized for simplification us-
ing a constant step size (Dt) of 0.25 for a total time frame
of 10 min.

Xiþ1 ¼ Xi � qðXi � mxÞDtþs
ffiffiffiffiffi
Dt

p
: Nð0; 1Þ

þ u
�
Yi � my

�
Dt

Y ¼ Y � q
�
Y � m

�
Dtþs

ffiffiffiffiffi
Dt

p
: Nð0; 1Þ
iþ1 i i y

þ uðXi � mxÞDt
Here, N(0,1) denotes a standard normal random variable.

Fig. 1, Bi, Ci, and Di denotes three different migratory
modes, namely, persistent directed, random, and angular
motion, obtained via tuning the values of q, m, s, and u.
The first term, referred to as the drift term, can be altered
through higher q and m values and is used for directing the
cell to a specific faraway point. The second term, referred
to as the diffusion term, can be altered via s value, where
the higher the value, the higher the induction of random fluc-
tuation to the system. The final term, referred to as the rota-
tional term, can be altered through the u value, which is
used for inducing angular change to the system. For persis-
tent directed motion, the values of m were kept three to four
coordinates away from the initial point with minimal fluctu-
ation (s ¼ 0.05) and null rotational frequency. For random
motion, the m values were kept closer to the initial starting
point with a higher fluctuation rate (s ¼ up to 0.5) and
null rotational frequency. For angular motion, the values
of m andu (u¼ up to 1.5) were allowed to vary, but the fluc-
tuation rate was kept minimal (s ¼ 0.05).

The synthetic tracks generated using the above equation
for different migratory modes are shown in Fig. 1, B–D.
The variation in entropy values for distinct migratory met-
rics, specifically global and relative turning angles (GTA
and RTA, respectively), clearly indicated the type of migra-
tion the particles have undertaken (Fig. 1, E and F; graph de-
picting mean entropies of GTA and RTA, respectively, for
particles of different migratory modes; statistical analysis
is done using one-way ANOVA). While the GTA corre-
sponds to the current direction in which the particle has
moved with respect to a fixed axis, the RTA corresponds
to the trajectory the particle has taken with respect to its pre-
vious position (37). Fig. 1, E and F show a comparison be-
tween the mean entropy for the two metrics for individual
trajectories. It was seen that the particles that move in a
persistent directed motion have lower mean GTA and RTA
entropy (angle distributions shown in Fig. 1 Bii; see
Fig. 1, E and F). In comparison, those having a random/
Brownian motion have higher mean GTA and RTA entropy
(angle distributions shown in Fig. 1 Cii; see Fig. 1, E and F).
In the case of angular motion, a constant small turn results in
lower mean RTA entropy, while the mean GTA entropy in-
creases due to a wider directional range (angle distributions
shown in Fig. 1 Dii; see Fig. 1, E and F). Hence, the syn-
thetic data confirm the efficacy of the toolkit to differentiate
between specific migratory modes based on direction and
persistence.
Substrata stiffness influences the rate
of migration and persistence of ovarian cancer
cells

To compare the impact of the biophysical cues of the sub-
strata matrix microenvironment on the migratory dynamics
of ovarian cancer cells, polyacrylamide hydrogels of
Young’s modulus 0.5 kPa (representing the lower value of
stiffness spectra that are indicative of the mechanical hetero-
geneity of untransformed ovarian tissues with the lowest
values at the edge, where the ovarian capsule and the pro-
spective site of tumorigenesis is located), and, addition,
also representative of the stiffness of adipose tissues rich
in omentum) and 20 kPa (representing the mean stiffness
of fibrosed desmoplastic tissues seen across different pat-
terns of high-grade serous ovarian cancers) were used
(38,39). Both SK-OV-3, a mesenchymal aggressive cell
line, and OVCAR-3, an epithelioid metastatic cell line,
when cultivated on soft substrata, moved with a slower
speed than those on stiffer substrata (Fig. 2, A–D; images
represent migration trajectories with a color heatmap repre-
senting speed values at different time points; inset of a sin-
gle trajectory shown on the right). Confirmation of lower
mean speed values of low stiffness-cultured cells is also
shown in Fig. 2 E (graph depicting individual cell speeds
on soft and stiff substrata; significance computed using
one-way ANOVA). Interestingly, OVCAR-3 cells, known
to have greater epithelioid characteristics, were faster than
mesenchymal SK-OV-3 cells agnostic of stiffness. Further-
more, the mean entropy for speed was also higher for both
cells on stiffer substrata compared with softer substrata, as
shown in Fig. 2 F (graph depicting mean entropies of cell
speed on soft and stiff substrata; significance computed us-
ing one-way ANOVA) as well as in Fig. 2, C and D, where
the heatmap reveals motion driven by constant switching be-
tween low- and high-speed rates compared with Fig. 2, A
and B.

The substrata-contextual difference in migration speed
led us to ask whether OVCAR-3 and SK-OV-3 cells have
distinct migration modes, especially in stiffer matrix micro-
environments. The possibility of distinct migratory modes
was initially characterized by measuring MSD values as a
Biophysical Journal 123, 4009–4021, November 19, 2024 4013



FIGURE 2 Determination of speed parameters of SK-OV-3 and OVCAR-3 cells. (A–D) Pictorial representation of cell trajectories of (A) SK-OV-3 on low

stiffness (0.5 kPa), (B) OVCAR-3 on low stiffness, (C) SK-OV-3 on high stiffness (20 kPa), and (D) OVCAR-3 on high stiffness (20 kPa) with each data point

color coded to the corresponding speed value at that particular time point. Inset highlights the trajectory of a specific cell within the field. (E) Comparative

analysis of mean speed for both the cell types on low and high stiffness. (F) Comparative analysis of entropy of speed for both cell types on low and high

stiffness (n ¼ 3; statistical analysis was performed using one-way ANOVA). Scale bars, 50 mm and 10 mm (inset).

Suresh and Bhat
function of time interval t, fit into a power law to identify
the diffusivity of the system. A constant slope value of
k¼ 1 indicates random motion, while that of k¼ 2 indicates
ballistic motion. Other values, such as those between 0 and 1
indicate subdiffusive motion, while those between 1 and 2
indicate superdiffusive motion (40). Both SK-OV-3 and
OVCAR-3 cell types showed superdiffusive motility on
low and high stiffness (Fig. 3, A–D, where A and B represent
the time-resolved migration of the centroids of representa-
tive SK-OV-3 cells on 0.5 and 20 kPa gels, respectively,
and C and D represent the same for OVCAR-3 cells; see
also Videos S1, S2, S3, and S4; MSD plots shown in
Fig. 3 E). However, the migration of OVCAR-3 cells on
lower stiffness was more random (k¼ 1.07) when compared
with that on higher stiffness (k ¼ 1.44). SK-OV-3 cells, on
4014 Biophysical Journal 123, 4009–4021, November 19, 2024
the other hand, showed directed motion in both cases,
with increasing stiffness increasing the directionality further
(k ¼ 1.58 and 1.78 for 0.5 and 20 kPa gels, respectively).
This was further quantified and interpreted through
measuring the GTAs and RTAs.

The mean GTA entropy for both cells on lower stiff-
nesses was high, suggesting lower persistence in motion;
on stiffer gels, SK-OV-3 had a lower mean GTA entropy
than OVCAR-3, indicating a relatively more persistent
migration for the former (Fig. 3 F; significance computed
using one-way ANOVA). The mean RTA entropy for
both cells on lower stiffnesses was also high; on stiffer sub-
strata, whereas the mean RTA entropy of SK-OV-3 was
low, this was (in contrast to GTA entropy) also found to
be low for OVCAR-3 cells (Fig. 3 G; significance



FIGURE 3 Determination of the diffusive nature and angular traits of motion in SK-OV-3 and OVCAR-3 cells. (A–D) Snapshots of time-lapse images at

specific time points along with the trajectory for SK-OV-3 on low (A, cell boundary in red) and high (B, cell boundary in green) stiffness and for OVCAR-3

cells on low (C, cell boundary in purple) and high (D, cell boundary in blue) stiffness. The time lapses have been performed at 2-min intervals but for visu-

alization, representative 40-min interval images are shown. (E) Comparative analysis of a representative set of the MSD values from the cell tracking data of

both cell types on low and high stiffness based on linear regression fit on log-log plot of MSD and t values. Slope value is indicated by k. (F) Comparative

analysis of the GTA entropy for both cell types on low and high stiffness. (G) Comparative analysis of the RTA entropy for both cell types on low and high

stiffness. (H) Comparative analysis of persistence ratio for both cell types on low and high stiffness (n ¼ 3; statistical analysis was performed using one-way

ANOVA). Scale bar, 20 mm. Videos S1, S2, S3, and S4 represent the time-lapse videos of the corresponding snapshots.
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computed using one-way ANOVA). Compared with the
entropic signatures seen for our synthetic data in Fig. 1
and confirmed through the time lapses, SK-OV-3 on high
stiffness migrated in a directed manner, whereas
OVCAR-3 on high stiffness showed migration in an
angular fashion. This was confirmed through the measure-
ment of persistence ratio in SK-OV-3 cells, which showed
higher mean values than for OVCAR-3 cells, with both
cells showing greater persistence on stiffer substrata than
on softer controls (Fig. 3 H; graph depicting mean persis-
tence ratios on soft and stiff substrata; significance
computed using one-way ANOVA). The RMS values of
GTA for both cells on both stiffness showed time-invariant
behavior (Fig. S1 A). While the RMS values of RTA were
invariant for SK-OV-3, for OVCAR-3, especially on high
stiffness substrata, there was a marked increase, which
can be explained by the increase in relative turn calculated
when the timescales for measurement in angular motion
are lengthened, consistent with the inferred migratory dy-
namics seen in Fig. 3.
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FIGURE 4 Determination of the dynamics of shape axes in SK-OV-3 and OVCAR-3 cells. (A and B) Snapshots of time-lapse images at specific time points

for SK-OV-3 (A) and OVCAR-3 (B) cells on high stiffness. Corresponding graphical representation of ellipse fit along with their major axis and the angle the

latter makes with the axis of motility (denoted as the morphomigrational angle m) is depicted. MA dynamics (F) and morphomigrational angle (m) are

mentioned for the frames (representative snapshots for visualization are taken at time intervals of 40 min; however, the analysis is done for images acquired

(legend continued on next page)
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Epithelioid migration on stiff gels
Ovarian cancer cells show morphology-specific
correlation between axes of shape and migration
on high stiffness

Thus far, our measurements for assessment of migration
explored the spatial dynamics of the centroid of cells. To
explore associations between the axes of their polar shapes
and their motion, the angular change in major axis orienta-
tion (denoted by the angle F) and the angle between their
shape (major axis) and motility axis (or morphomigrational
angle denoted by m) between consecutive time frames was
measured over time (see Fig. 4, A and B for time-resolved
representative photomicrographs of SK-OV-3 and OVCAR-
3 cells on stiff substrates with major axes; the F and m
values are computed across time lapses with 2-min inter-
vals, although, for visualization, cell outlines at every
40-min interval has been shown; see also Videos S5 and
S6). For SK-OV-3, the mean F entropy was unchanged be-
tween soft and rigid substrata with both showing signifi-
cantly lower values than their OVCAR-3 counterparts
(Fig. 4 C; graph depicting mean entropies of major axis
orientation on soft and stiff substrata; statistical analysis
was performed using one-way ANOVA). OVCAR-3
showed higher mean entropy of F than SK-OV-3 on soft
and stiff substrata, indicating a constant change in orienta-
tion during its migration, especially in rigid gels, which
could be explained by its angular trajectories indicated
in Fig. 3.

To extrapolate this finding and correlate it with orienta-
tion and migration, we measured entropy of m for SK-
OV-3 and OVCAR-3 on stiff substrata (Fig. S2 A). The
mean m entropy for SK-OV-3 was significantly lower than
OVCAR-3, which suggested a variation in the axes of
shapes and movement of the latter. Visual examinations
under the microscope and in the time-lapse of OVCAR-3
also suggested instances where the movement of cells was
often orthogonal to its shape polarity (which we call slip
behavior). Therefore, we measured if the m values for a
given cell along its motility trajectory were predominantly
(60% or more) below 45� (indicating [near] alignment of
shape with motility axes) or above 45� (indicating [near]
orthogonal alignment of shape with motility axes). Pie
charts for the two cell types indicate that, for SK-OV-3,
70% of cells show trajectories with m values lesser than
45� in more than 60% of frames, while 30% show trajec-
tories for which equivalent m values are seen with neither
the greater or less than 45� values dominant over the other.
at 2-min intervals). (C) Comparative analysis of MA dynamics entropy for both

SK-OV-3 (green) and OVCAR-3 (dark teal) cells in whose trajectories, m values o

trajectories, m values of greater than 45� are observed for 60% or more of the reco

m values of less than 45� are observed for 60% or more of the recorded time p

Fig. S2). (E and F) Correlation matrix between mean entropy value of GTA,

OVCAR-3 (F) cells on high stiffness (green shading highlights correlation and

performed using one-way ANOVA). Scale bar, 20 mm. Videos S5 and S6 repre
For OVCAR-3, 21% show predominant frames with m
values less than 45�, but 11% also show predominant frames
with m values greater than 45�, signifying a slip behavior
(Figs. S2, B, C and 4 D show how, only in OVCAR-3 cells,
the slip behavior dominates, whereas an aligned behavior is
predominant in SK-OV-3 cells).

A correlation matrix between mean GTA entropy, meanF
entropy, and mean persistence ratio for both cell types also
revealed a relatively greater correlation between migratory
direction and orientation dynamics in SK-OV-3 cells
(Fig. 4 E; correlation ¼ 0.49 between entropic values for
F and GTA entropy) than OVCAR-3 cells (Fig. 4 F;
correlation ¼ 0.10). This gives a new insight into under-
standing the impact of high stiffness on the migratory capac-
ity of epithelioid cancer cells as they undergo a constant
speed and polarity change (often uncorrelated) to push
through different directions.
Global deformability of cells increases with an
increase in stiffness

We next asked whether ovarian cancer cells on higher stiff-
ness underwent morphological axis alteration through a
global shape alteration. To address this, we measured the
elongation ratio (see Fig. 5 A) from best-fitted ellipse pa-
rameters and calculated its distribution to measure elonga-
tion entropy values. As seen in Fig. 5, A–D (which shows
time-resolved shape changes in SK-OV-3 and OVCAR-3
cells grown on softer and stiffer substrata, respectively,
with their global cell shapes denoted using distinct colors;
see also Videos S7, S8, S9, and S10), both cell types on
lower (relative to higher) stiffness were less deformable,
suggesting that the cells on soft gels behaved like rigid ob-
jects with a rounded morphology, as indicated by lower
mean elongation values (Fig. 5 E; graph depicting mean
values of elongation ratio of cells on soft and stiff substrata;
statistical analysis was performed using one-way ANOVA).
The RMS values of mean elongation showed time-step
invariance (Fig. 5 F). On stiffer substrata, SK-OV-3 cells
showed anticorrelations between mean elongation values
and GTA entropy (�0.51), and also mean m (�0.61)
(Fig. 5 G). This indicated that the more elongated the cells
were, the lower the deviation in the axes of their shape and
migration. Elongation in cellular morphology is a function
of the cellular cytoskeletal state, which seems to constrain
the migratory behavior of these mesenchymal cells along
cell types on low and high stiffness. (D) Bar graph depicting the number of

f both greater than or less than 45� are equivalently observed (top), in whose
rded time points (middle), indicating slip motion, and in whose trajectories,

oints (bottom) indicating similar orientation of shape and motion (see also

mean entropy value of F, and the persistence ratio in SK-OV-3 (E) and

orange shading highlights anticorrelation) (n ¼ 3; statistical analysis was

sent the time-lapse videos of the corresponding snapshots.
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FIGURE 5 Determination of deformability dynamics in SK-OV-3 and OVCAR-3 cells. (A–D) Snapshots of time-lapse images at specific time points high-

lighting the change in the shape of cells over time (A, SK-OV-3 cells on 0.5 kPa; B, SK-OV-3 cells on 20 kPa; C, OVCAR-3 cells on 0.5 kPa; D, OVCAR-3

cells on 20 kPa) (representative snapshots for visualization are taken at time intervals of 20 min, however, the analysis is done for images acquired at 2-min

intervals). (E) Comparative analysis of mean elongation values of both cell types on low and high stiffness. (F) Root mean-square of elongation values of a

(legend continued on next page)
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Epithelioid migration on stiff gels
their axis of polarization. In contrast, the mean elongation
values of OVCAR-3 cells were poorly correlated with their
GTA entropy (Fig. 5H) (�0.08) and mean m (�0.14) values,
suggesting that the cellular cytoskeleton relieved such con-
straints on epithelioid cells to move in the direction of their
shape polarization. In fact, whereas GTA entropy and mean
m for SK-OV-3 strongly correlated (0.73), they were mildly
anticorrelated in OVCAR-3 cells, which can be explained
by the slip behavior seen in these cells. Our results led us
to examine the entropy of the elongation values: both cells
also showed high entropic values for elongation dynamics
on high stiffness compared with on softer substrata, as
seen in Fig. 5 I (graph depicting mean entropy of elongation
ratio of cells on soft and stiff substrata; statistical analysis is
done using one-way ANOVA), indicating the significance of
deformability for migration. Although, on stiffer environ-
ments, the entropy between the two cell types was insignif-
icantly altered, the fold change in deformability for
OVCAR-3 across stiffnesses was higher, suggesting that a
more substrate-pliable cytoskeleton was driving its behavior
of angular locomotion.
DISCUSSION

In this study, we propose a simple yet highly sensitive
approach to capture the spatiotemporal dynamics of cell
morphology and migration by combining mathematical im-
aging metrics and the concept of Shannon entropy. The met-
rics used here involve common descriptors, such as speed,
turning angles, persistence ratio, and elongation, as well as
recently developed metrics, such as major axis dynamics
and morphomigrational angle. The number and combination
of input variables, hence incorporated, allows us to build
further on other elegant studies to infer data on cellular
motility behavior. The study by Liu et al. showed entropic
angular distribution as an indicator of cellular persistence,
opening possibilities of utilizing information theory for un-
derstanding cellular migration (18). The current study uses
a synergistic approach to further widen the interpretation
scale of cellular plasticity in larger cell populations and
across cellular motility trajectories (motivated by the future
directions proposed at the end of the pioneering work by
Ko1odziej et al. (24)) and conditions with supportive numer-
ical data. The constructed pipeline establishes the complex
associations between the distinct morphogenetic metrics
while reinforcing the interdependency between shape and
motility dynamics in the context of microenvironmental
cues (41). It also provides a wealth of data for the future con-
struction of complex theoretical models of cellular motility.
representative set shows time step invariance of elongation dynamics. (G and H

GTA, and mean m in SK-OV-3 (G) and OVCAR-3 (H) cells on high stiffness (gr

lation). (I) Comparative analysis on elongation entropy of both cell types at low

ANOVA). Scale bar, 20 mm. Videos S7, S8, S9, and S10 represent the time-lap
In this study, ovarian cancer cells were found to be highly
sensitive to biophysical cues from their microenvironment,
resulting in distinct phenotypic behaviors. Tuning the stiff-
ness of the underlying substratum, while keeping the ligand
concentration and structure same, gave deeper insight into
the effect of elastic regime of the substrata environment on
cell deformability and motility. Current studies on under-
standing the role of substrata stiffness on cancer progression
have looked majorly at static quantities, and are consistent
with the fact that cells on higher stiffness have higher migra-
tory capacity and spreading (42). Our analysis goes beyond
this by showing that, compared with the directed persistent
behavior of the mesenchymal SK-OV-3, the migratory
mode of epithelioid OVCAR-3 cells on higher stiffness
showed novel behaviors (Fig. 4). Epithelioid OVCAR-3 cells
were in fact seen to surpass SK-OV-3 cells in their mean
speed distribution on higher stiffness as well as exhibiting
angular and slip motility, indicating a more exploratory
behavior that would be possible on fibrosed tissues within
the peritoneum. Our observations underscore the need to
move beyond a conventional narrative of relative sessility
and motility as shown by an epithelial and a mesenchymal
cell type. Our findings also lead us to propose that cell speed
may not be always correlated with the persistence of
migration (43,44) (the correlation for SK-OV-3 comes to
0.42, whereas the faster but angular moving deformable
OVCAR-3 cells show a correlation of 0.21). In this study,
we chose the stiffness magnitudes of 0.5 and 20 kPa as they
are representative of the elastic properties of untransformed
(and stromal) and transformed tissues within the peritoneum,
respectively. However, more extreme values (100 kPa and
beyond) have also been reported, and future studies will
examine motility behaviors on such substrata (38,39).

Recent studies have been investigating the interconvert-
ibility of epithelial, mesenchymal, and ameboid cell states
(8). Mesenchymal motility is known to be possible through
filopodial or lamellipodial formation, where cell-matrix
interaction plays a major role in the translocation of the
cell. The mesenchymal cells are known to exert force on
the matrix, which pushes the cell forward through actomy-
osin contractility. Ameboid cells, on the other hand, achieve
much higher speed rates than mesenchymal cells by forming
blebs, actin-rich pseudopodia, or highly contractile uropods.
Their ability to ‘‘shape-shift’’ is attributed to constant reorga-
nization of their actin cytoskeleton through rapid recycling
(45). The ability of OVCAR-3 cells to show higher mean
speed than mesenchymal SK-OV-3 suggests that OVCAR-3
cells might indeed display ameboid characteristics on higher
stiffness. Recent investigations on the ability of cells to
switch between different cellular states have indicated that
) Correlation matrices between mean elongation values, mean entropy of

een shading highlights correlation and orange shading highlights anticorre-

and high stiffness (n ¼ 3; statistical analysis was performed using one-way

se videos of the corresponding snapshots.
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the ameboid state might lie within a larger spectra of state
transitions in which epithelial andmesenchymal states reside
(7,46). Furthermore, the ability of cells to reside in a hybrid
state is consistent with the complexity and heterogeneity
observed in cancer cell populations (47). In our study, the
reduction in persistence ratio (Fig. 3 H) and increase in
angular motion (Fig. 3, F and G) seen in OVCAR-3 cells at
high stiffness, suggests that they might exhibit hybrid migra-
tional behavior, as they lose their directionality but continue
tomove at higher speeds (Fig. 2D). Representative snapshots
of time-lapse images of OVCAR-3 cells on high stiffness
(Figs. 3 D and 4 B) also show protrusion of fan-like lamelli-
podia during migration, which resembles actin polymeriza-
tion-driven ameboid structures: we aim to investigate such
cell biological phenomena in forthcoming papers (48). SK-
OV-3 cells, on the other hand, are seen to show an elevated
mesenchymal character with increased persistent directed
motion on high stiffness.

Aberrant cell polarity signaling has also been known to be
the leading cause of epithelial-to-mesenchymal transition,
which in turn causes higher cancer invasiveness and metas-
tasis (49). The loss in alignment of cellular polarity with
respect to the direction of migration was also frequently
seen in OVCAR-3 cells on high stiffness, where cells moved
in a direction unrelated to the orientation of the cells. This
loss in correlation, which we have referred to here as slip
behavior, was seen to be a trait unique to OVCAR-3 cells
(Fig. 4, B and F) and resulted in a constant change in their
orientation as they underwent consistent tilting during angular
motion on rigid gels. This was quantified and confirmed by
high entropic values ofF for OVCAR-3 cells in the sameme-
chanical context (Fig. 4C). Suchhybrid behavior suggests that
OVCAR-3, in general, might have higher mechanosensitivity
and adaptive capacity to switch between different transition
states, to increase its migratory and invasive potential. On
the other hand, SK-OV-3 cells were found to have typical
mesenchymal characteristics by forming lamellipodia or filo-
podia in the direction of motion, retaining cellular orientation
in the direction of motion (Fig. 4, A and E). Stiffness was also
seen to induce higher global deformability in both the cell
types, indicating that morphodynamics and the microenviron-
ment may cooperate to facilitate cells to attain their specific
migratory mode (Fig. 5).

In summary, we demonstrate that a rigorous imaging
approach combiningmorphology andmigrationmetrics helps
probe the spatiotemporal dynamics of the cellular phenotype,
which can be extensively used to study pathological states
such as cancer. In addition, it is seen that an interplay between
the mechanical microenvironment and morphological traits
produces distinct migratory modes in different ovarian cancer
subtypes. While SK-OV-3 cells show elevated mesenchymal
characteristics on high-stiffness gels, in the same environ-
ments OVCAR-3 cells show stunning diversity in migratory
exploration and higher speed. In future studies, wewill extend
the study to a greater diversity of cell lines and microenviron-
4020 Biophysical Journal 123, 4009–4021, November 19, 2024
mental contexts. In addition, we will investigate how these
matrix-driven cues will modulate the dynamical phenotype
of multicellular cancer collectives.
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