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Abstract
Background Biomarkers of Alzheimer’s disease (AD) and mild cognitive impairment (MCI, or prodromal AD) are 
highly significant for early diagnosis, clinical trials and treatment outcome evaluations. Electroencephalography 
(EEG), being noninvasive and easily accessible, has recently been the center of focus. However, a comprehensive 
understanding of EEG in dementia is still needed. A primary objective of this study is to investigate which of the 
many EEG characteristics could effectively differentiate between individuals with AD or prodromal AD and healthy 
individuals.

Methods We collected resting state EEG data from individuals with AD, prodromal AD, and normal cognition. Two 
distinct preprocessing pipelines were employed to study the reliability of the extracted measures across different 
datasets. We extracted 41 different EEG features. We have also developed a stand-alone software application package, 
Feature Analyzer, as a comprehensive toolbox for EEG analysis. This tool allows users to extract 41 EEG features 
spanning various domains, including complexity measures, wavelet features, spectral power ratios, and entropy 
measures. We performed statistical tests to investigate the differences in AD or prodromal AD from age-matched 
cognitively normal individuals based on the extracted EEG features, power spectral density (PSD), and EEG functional 
connectivity.

Results Spectral power ratio measures such as theta/alpha and theta/beta power ratios showed significant 
differences between cognitively normal and AD individuals. Theta power was higher in AD, suggesting a slowing of 
oscillations in AD; however, the functional connectivity of the theta band was decreased in AD individuals. In contrast, 
we observed increased gamma/alpha power ratio, gamma power, and gamma functional connectivity in prodromal 
AD. Entropy and complexity measures after correcting for multiple electrode comparisons did not show differences in 
AD or prodromal AD groups. We thus catalogued AD and prodromal AD-specific EEG features.
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Background
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disease, and its prevalence is rapidly increasing 
worldwide. The progression of AD has three phases: it 
starts with the preclinical asymptomatic stage, develops 
into mild cognitive impairment (MCI) due to AD, and 
finally, Alzheimer’s dementia. Currently, there is no cure 
for AD, and it creates an enormous socioeconomic bur-
den worldwide [1]. Therefore, early diagnosis and effec-
tive treatment of AD have been investigated at multiple 
levels.

Aberrant accumulation of amyloid plaques due to 
amyloid β (Aβ) peptide [2] and neurofibrillary tangles by 
hyper-phosphorylated tau [3], microglia- and astrocyte-
mediated inflammation [4], compromised blood-brain 
barrier [5] and the loss of neurons and synapse [6] are 
shown to develop with disease progression. Specifically, 
amyloid and tau accumulation starts in the preclinical 
stages and MCI [7–9], while neurodegeneration occurs 
later in the disease progression and is robustly associ-
ated with memory impairments [10]. Blood-based mark-
ers, including Aβ40, Aβ42, and phosphorylated tau, 
have now been explored as biomarkers for MCI and AD 
[11]. Because changes in electroencephalography (EEG) 
activity during memory processes have been well docu-
mented [12], MCI and AD-specific EEG biomarkers have 
received greater attention recently.

EEG is noninvasive and inexpensive; therefore, it has 
been suggested that the financial burden of implement-
ing widespread screening based on EEG biomarkers 
will be relatively low if such biomarkers are available 
[13]. Several recent studies examining specific features 
in EEG showed evidence for reduced EEG complex-
ity [14] (e.g., Lyapunov Exponent [15], Hjorth complex-
ity [16]), changes in entropy measures (e.g., Permutation 
entropy [17], Sample entropy [18]), slowing of oscilla-
tions (e.g., delta/alpha ratio [19], spectral power ratio 
[20]) and changes in connectivity (e.g., coherence [21]) 
in AD. While these observations are interesting, most 
studies have examined only a specific group of features 
and their significance. Comprehensive evaluations that 
have covered all possible EEG features are limited. Such 
a comprehensive analysis will facilitate choosing the best 
feature suitable for preclinical and clinical settings [22]. 
Also, recent guidelines suggest the need for monitor-
ing changes in biomarkers while assessing the efficacy 

of candidate drugs and interventions [23]. Tools for the 
objective analysis of EEG would facilitate evaluating and 
finding noninvasive biomarkers for AD or prodromal AD. 
Such biomarkers would also allow for determining the 
efficacy of candidate drugs or neurostimulation.

Most of the automated methods employed to distin-
guish AD use many possible features as input to the 
machine learning (ML) classifiers without the signifi-
cance check. In such models, the feature vector may con-
tain insignificant features as well. Including insignificant 
features increases the size of the input and subsequent 
layers of neural network classifiers, causing computa-
tional overhead and thereby degrading the performance. 
Knowledge regarding the features that are determinant 
enough to distinguish AD from healthy controls helps 
to simplify the architecture of artificial neural network 
(ANN) models and reduce training/testing time, as deter-
minant features can be selectively used to drive the mod-
els. In addition, the factors that drive the clinical decision 
need to be known or established as per the mandates 
of evidence-based medicine. However, rather than ML 
models employed for the diagnosis of AD that use many 
possible EEG features as input, comprehensive studies 
that explore the discriminant ability of the features to 
identify the potential EEG biomarkers are rare. There-
fore, we explored the discriminant ability of EEG features 
from all possible categories namely, descriptive statistics, 
impulsive metrics, spectral descriptors, spectro-temporal 
features, signal complexity measures, and brain connec-
tivity metrics. In addition, we have analyzed the influence 
of two such preprocessing pipelines on the discriminant 
ability of EEG features.

Here, we comprehensively investigated the differences 
in EEG characteristics in AD or prodromal AD compared 
to cognitively normal individuals across several datasets. 
Although amyloid and tau tangles accumulate more as 
MCI and AD progress, our results suggest that oscillatory 
activity and functional connectivity differences occur 
uniquely in prodromal AD and AD.

Methods
Study subjects and data collection
The present study used resting-state EEG data from 3 
independent datasets: Cohort 1 comprises 46 healthy 
control and 46 AD subjects [24], Cohort 2 comprises 
29 control and 36 AD subjects [25], and Cohort 3 
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stimulation.
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comprises 30 control and 30 prodromal AD subjects [17]. 
The Cohort 2 dataset is publicly available, whereas we 
recently generated Cohort 1 and 3 datasets [17, 24]. In 
addition to AD or MCI due to AD (i.e., prodromal AD) 
diagnosis, mini-mental state examination (MMSE) from 
all subjects was also available. The Supplementary Meth-
ods describes the detailed subject inclusion, exclusion 
criteria, and information regarding the data acquisition. 
The resting-state EEG data was collected in accordance 
with the international 10–20 electrode placement system. 
The sampling frequency of all three cohorts was 500 Hz.

EEG data preprocessing
Preprocessing EEG data to remove artifacts in the signal, 
such as bad electrodes/channels and segments, is vital 
for obtaining reliable results [13]. The impact of noise 
and artifacts on the outcome of the objective analysis of 
EEG, and the need for preprocessing are demonstrated 
by Robbins et al. [26] and Coelli et al. [27]. A variety of 
preprocessing pipelines [28] have emerged to alleviate 
the negative impacts caused by the artifacts. Among the 
pipelines, the ability of the Artifact Subspace Reconstruc-
tion (ASR) to improve the quality of EEG and its per-
formance over other candidate preprocessing pipelines 
is reported in the literature [29]. However, the ASR has 
some limitations including setting the threshold values 
for different parameters and residues of the suppressed 
transients left over in the pre-processed signal. Baseline 
wandering (motion artifacts) and transients (spikes) are 
two major artifacts seen in EEG. The potential of the 
local detrending in removing the baseline wandering [30] 
and the Hampel filter in suppressing the outlier spikes in 
EEG [31] are already appreciated in the literature. How-
ever, the impact of the combination of local detrending 
and the Hampel filter (det-Hamp in the present study) on 
the outcome of the objective analysis of EEG and its per-
formance in comparison with the ASR has not been stud-
ied yet. Therefore, we pre-processed EEG data using two 
different pipelines to improve the quality of EEG and for 
better interpretations. Specifically, we used (1) the det-
Hamp pipeline (detrending followed by Hampel filtering) 
[33] in MATLAB with Chronux 2.0 toolbox [34] and cus-
tom MATLAB codes (see supplementary Methods) and 
(2) artifact subspace reconstruction (ASR) in MATLAB 
using the EEGLAB plug-in function [32]. The ASR pipe-
line is widely used in the field [35] to suppress the arti-
facts and remove the distortions in the EEG data. EEG 
data was filtered in the range spanning 0.5–48 Hz using 
a bandpass filter for both the ASR and det-Hamp pipeline 
before further analysis. One-minute resting-state eyes-
closed EEG data was used for all further analysis. Specifi-
cally, the first 10 s immediately after the eyes closed was 
not included in the analysis, but the following one minute 
was chosen consistently across all subjects and cohorts. 

EEG was analyzed in different canonical frequency 
bands: delta (1–4 Hz), theta (5–8 Hz), alpha (9–13 Hz), 
beta (14–30 Hz), and gamma (31–48 Hz).

EEG feature analysis
We evaluated 41 distinct EEG features. These features 
belong to various groups, including temporal attributes, 
spectral descriptors, complexity measures, wavelet-based 
features, power ratios, and entropy measures. Tempo-
ral domain [36, 37] features include Variance, Skewness, 
Kurtosis, Shape Factor, Peak Amplitude, Impulse Factor, 
Crest Factor, Clearance Factor, Willison’s Amplitude, and 
Zero-crossing Rate. Entropy measures [38, 39] include 
Sample Entropy, Approximate Entropy, Permutation 
Entropy, and State Space Correlation Entropy. Complex-
ity measures [40] include the Correlation Dimension, 
Higuchi Fractal Dimension, Katz Fractal Dimension, 
Lyapunov Exponent, Hurst Exponent, Lempel-Ziv Com-
plexity, Hjorth Activity, Hjorth Mobility, and Hjorth 
Complexity. Spectral Descriptors [37, 41] include Alpha 
Dominant Frequency, Gamma Dominant Frequency, 
Spectral Roll-off, Spectral Centroid, Spectral Spread, 
Spectral Flux, Spectral Skewness, and Spectral Kurtosis. 
Power Ratios [20, 42, 43] include the Theta Beta, Theta 
Alpha, Gamma Alpha and Spectral Power ratios. Wave-
let Energy features [44] include Approximate Wave-
let Energy, Detailed Wavelet Energy, Relative Wavelet 
Energy, Approximate Wavelet Packet Energy, Detailed 
Wavelet Packet Energy, and Relative Wavelet Packet 
Energy. Custom MATLAB codes (see the Resource 
section) were used to extract all these features. These 
features are explained in detail in the Supplementary 
Methods section.

Power spectral density (PSD) and pairwise phase 
consistency (PPC)
PSD was estimated using a multi-taper method with 
a single Slepian taper using the ‘mtspectrum’ function 
of the Chronux toolbox [34]. Absolute power was used 
for further analysis. PPC analysis was conducted across 
frequencies ranging from 1 to 48  Hz with a resolution 
of 1 Hz using custom MATLAB codes and the Fieldtrip 
Toolbox [45] following a method described previously 
[46].

Statistics
All analyses were performed using MATLAB or Prism 
(GraphPad version 9.3). As detailed below, different 
statistical tests were employed based on the data distri-
bution. An unpaired two-tailed t-test was used to investi-
gate the statistical differences in age, MMSE, and years of 
education between the two groups. ANOVA with Tukey’s 
multiple comparison correction was used to test MMSE 
differences between groups and sex. The Wilcoxon 
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Rank-sum test [47, 48] equivalent to the Mann-Whitney 
U test was performed in MATLAB to examine the statis-
tical differences of EEG features, PSD, and PPC between 
control and disease states. False discovery rate (FDR) 
correction was done using the Benjamin and Hochberg 
method [49]. FDR correction was done across electrodes 
for EEG features and PPC, and across frequency bins for 
PSD. Spearman’s rank correlation [50] was computed in 
MATLAB to examine the degree of correlation between 
EEG features and MMSE scores at all electrodes. A sig-
nificance level of P < 0.05 was set for all statistical tests.

Results
Categories of EEG features
To examine which of the many EEG features could 
robustly distinguish AD from healthy subjects that 
could be explored as biomarkers (Fig.  1), we have writ-
ten MATLAB algorithms and verified them on simu-
lated time series signals (Supplementary Fig.  1A-1  C). 
We used age-matched healthy control (69.26 ± 0.96; 
N = 46) and AD subjects (70.96 ± 0.81; N = 46) of Cohort 
1 (Supplementary Fig.  2A). The years of education did 
not differ between control (9.739 ± 0.77) and AD sub-
jects (8.106 ± 0.71) (Supplementary Fig. 2B). As expected 
MMSE was significantly lower in AD (20.30 ± 0.53) com-
pared to healthy subjects (28.50 ± 0.24) (Supplementary 
Fig. 2C). Lower MMSE were observed in both male and 
female AD subjects compared to the healthy subjects 
(Supplementary Fig. 2D).

Slowing of neural oscillations in AD
We extracted the EEG features from Cohort 1 and tested 
significant differences using the Rank-sum test (P < 0.05 
with FDR correction). We observed that the power ratios 
showed robust differences compared to the other features 
(Fig. 2A). Theta/alpha (4–8 Hz/ 9–13 Hz) and theta/beta 
(power of 4–8  Hz/ 14–30  Hz) ratios significantly dis-
tinguish AD from controls across many scalp locations 
(Fig.  2A). We next investigated the directionality of the 
power ratio difference between the controls and AD sub-
jects. Topographic distributions of power ratios shown in 
Fig.  2B reveal that the theta/alpha and theta/beta ratios 
were higher in AD compared to age-matched healthy 
subjects (Fig. 2B and C) in both ASR and det-Hamp pipe-
line, suggesting a power increase in 4–8 Hz compared to 
alpha or beta in AD.

We next used the SHAP to cross-validate the Rank-
sum test results because when multiple features are used 
as input to ANN classifiers via SHAP analysis, the rela-
tive importance of individual features and their role in 
decision-making can be understood. The ANN trained 
with the 41 features offered classification accuracies of 
72.66% and 79.19%, respectively, for the det-Hamp and 
ASR pipelines. From SHAP, we observed that the power 
ratio category contributed the most to the classification 
(Fig.  2D). Theta/alpha, theta/beta, and spectral power 
ratios were found to be majorly contributing to the deci-
sion-making commonly in both preprocessing pipelines 
(Supplementary Fig. 3). These observations demonstrate 
an overall increase in the power of lower frequencies 
compared to higher frequencies in AD, consistent with 

Fig. 1 Studying the relationship between EEG and cognition. The schematic shows the outline of the data pre-processing, EEG feature extraction, and 
analysis. At the bottom, a comprehensive cataloging and classification of various EEG features extracted and analyzed are shown (see Supplementary 
Methods)
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Fig. 2 Widespread power ratio changes in AD. (A) Heatmaps show Wilcoxon Rank-sum test differences of EEG features between control and AD for the 
det-Hamp (left) and ASR (right) pipelines after FDR correction. Scalp electrodes (channels) and EEG features are shown on the horizontal (X) and vertical 
(Y) axes, respectively. Power ratios that show robust differences are highlighted (orange line). (B) Topographical plots show the distribution of the theta/
alpha power ratio (top) and theta/beta power ratio (bottom), averaged across all subjects in healthy control (left) and AD (middle left). Statistically signifi-
cant scalp locations sustaining FDR correction are shown for the det-Hamp (middle right) and ASR (right) pipelines. (C) The normalized theta/alpha ratio 
for representative electrodes for the det-Hamp (left) and ASR pipelines (right, Wilcoxon Rank-sum test). Data points represent subjects. (D) The normalized 
cumulative mean of absolute SHAP values for det-Hamp and ASR pipelines are shown
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Fig. 3 Correlation of EEG features with MMSE scores in AD subjects. (A) Heatmaps show Spearman’s rank correlation between EEG features and MMSE 
of AD subjects using det-Hamp (left) and ASR (right) pipelines. (B) Topographical plots show the correlation between theta/alpha power ratio and MMSE 
across all electrodes using det-Hamp (left) and ASR (middle right) pipelines. Correlations with significant P values using det-Hamp (left middle) and 
ASR (right) are shown. (C) The correlation between theta/alpha power ratio and MMSE of AD subjects for representative FP2 electrode (rho = -0.1386, 
P = 0.0047) or ASR (rho = -0.1077, P = 0.012) pipelines are shown
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the hypothesis of slowing neural oscillations in AD [51, 
52].

To assess the dependency between the EEG features 
and the MMSE scores, we computed Spearman’s corre-
lation coefficient (Fig.  3A). We used all 46 AD subjects 
of Cohort 1 and observed that EEG power ratios were 
markedly correlated with MMSE (Fig.  3A and B), con-
sistent with the Rank-sum test results. Specifically, the 
theta/alpha ratio was negatively correlated with MMSE 
scores across many brain areas in AD subjects (Fig.  3A 
and C), suggesting that increased power in the theta fre-
quency negatively correlates with MMSE in AD subjects.

To investigate whether these results can be replicated, 
we used another independent Cohort 2 dataset [25] 
(Supplementary Fig. 4A, 4B). The results in Cohort 2 also 
revealed a widespread increase in theta/alpha and theta/
beta ratios across frontal, central, temporal, parietal, and 
occipital areas in AD (Supplementary Fig. 4C). Negative 
correlation between theta/alpha ratio and MMSE was 
also evident in AD subjects of Cohort 2 (Supplementary 
Fig. 4D, 4E). Thus, results in both cohorts point to slow-
ing oscillations (more power in lower frequency bands) 
in AD.

Increased slow-gamma oscillations in prodromal AD
To test whether prodromal AD subjects also show differ-
ences in EEG features, we used age-matched 30 healthy 
and 30 MCI (prodromal AD) subjects of Cohort 3 (Sup-
plementary Fig.  5). We observed significantly higher 
gamma/alpha ratio in left-frontal, frontocentral, central, 
and parietal brain areas in prodromal AD (Fig.  4A, B 
and C). Increased gamma/alpha ratio in prodromal AD 
individuals was consistent across both the preprocessing 
pipelines (Fig.  4A). We should note that gamma/alpha 
ratio did not show any difference in AD (Fig.  2A). Fur-
ther, to cross-validate the power ratio differences in pro-
dromal AD, we performed ANN analysis. We observed 
74.88% (det-Hamp) and 83.99% (ASR) classification 
accuracies with SHAP analysis revealing power ratios 
contribute predominantly to the model (Fig. 4D). Taken 
together, these findings suggest that power ratios carry 
sufficient information to distinguish prodromal AD from 
healthy subjects.

Increased theta power in AD and gamma power in 
prodromal AD
To examine whether the increased power in theta com-
pared to alpha in AD and increased gamma power rela-
tive to alpha in prodromal AD suggest any total power 
change in these specific frequencies, we performed the 
power spectral density (PSD) analysis. We observed 
marked differences in the theta with a significantly higher 
power across many brain areas (FDR corrected Rank-
sum test, P < 0.05) in the AD group in both the left and 

right hemispheres in Cohort 1 (Fig.  5A and B). Consis-
tently, we observed higher theta power in AD in Cohort 2 
(Supplementary Fig. 6A, 6B). In addition, alpha and beta 
power were reduced in AD in Cohort 2 (Supplementary 
Fig.  6B). In the prodromal AD group, we observed ele-
vated gamma and delta powers (Fig. 5C and D). Given the 
differences in signal energy in PSD analysis, we reasoned 
that ANN would sufficiently classify the groups based on 
PSD. Indeed, we observed that neural network analysis 
(see Supplementary Methods) shows 97.73%, and 78.44% 
classification accuracy in Cohort 1 (AD) and Cohort 3 
(prodromal AD), respectively. To understand this fur-
ther, we performed SHAP, which revealed that theta 
band contributes predominantly to the classification in 
AD (Supplementary Fig.  7A); in contrast, the delta and 
gamma bands contribute in the prodromal AD dataset 
(Supplementary Fig. 7B). These observations suggest that 
theta and gamma bands are predominantly altered in AD 
and prodromal AD, respectively.

Theta is hypoconnected in AD, while gamma is 
hyperconnected in prodromal AD
We next asked whether EEG functional connectivity also 
differs in AD and prodromal AD. To test this, we used a 
pairwise phase consistency (PPC) [46], and performed 
PPC analysis for all 435 possible combinations from each 
subject, followed by statistical testing (Rank-sum test 
with FDR correction for multiple comparisons, P < 0.05) 
between control and AD subjects in Cohort 1. Theta con-
nectivity showed significant reductions in AD, and this 
reduction was widespread across several electrode pairs 
(Fig.  6A and B, Supplementary Fig.  8A). In addition, 
alpha and gamma connectivity were reduced primarily 
between pairs of fronto-parietal and other areas (Fig. 6A 
and B). The overall PPC was lower in theta, alpha and 
gamma bands in AD in Cohort 2 (Supplementary Fig. 8B-
8D). Next, we compared the PPC between control and 
prodromal AD subjects in Cohort 3. Interestingly, we 
observed a significant increase in the connectivity in the 
gamma in prodromal AD (Fig. 6C and D, Supplementary 
Fig. 8E). The increase in gamma connectivity in prodro-
mal AD was observed between left fronto-central elec-
trodes and right temporal, parietal, and occipital brain 
areas (Fig. 6D). Additionally, increased connectivity was 
observed sporadically in theta and alpha bands in pro-
dromal AD (Fig. 6D). These findings suggest that the sig-
nal energy and connectivity of frequency bands affected 
differ uniquely in AD and prodromal AD.

Discussion
A major contribution of our study is that it provides a 
comparative analysis examining multiple EEG features 
spanning various domains with two different preprocess-
ing pipelines, revealing a unique set of EEG features that 
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Fig. 4 Enhanced gamma alpha power ratio in prodromal AD. Enhanced gamma/alpha power ratio in prodromal AD. (A) Heatmaps show EEG feature 
differences between healthy control and prodromal AD for the det-Hamp (left) and ASR (right) pipelines after FDR correction. (B) The distribution of the 
gamma/alpha power ratios averaged across all subjects in healthy control (left) and prodromal AD (middle left). The topographic plots with statistically 
significant scalp locations sustaining FDR correction are shown for the det-Hamp (middle right) and ASR (right) pipelines. (C) Plots show the normalized 
gamma/alpha ratios for det-Hamp (left) and ASR (right, Wilcoxon Rank-sum test) pipelines from Cohort 3 (prodromal AD). Data points represent subjects. 
(D) The normalized cumulative mean of absolute SHAP values are shown
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Fig. 5 Changes in theta power in AD and gamma power in prodromal AD. (A) Heatmaps show the average EEG power in different areas across left and 
right brain hemispheres in controls (N = 46) and AD subjects (N = 46). (B) PSD differences between controls and AD after FDR correction. (C) Heatmaps 
show the average EEG power in different areas across left and right brain hemispheres between controls (N = 30) and prodromal AD subjects (N = 30). (D) 
PSD differences between control and prodromal AD after FDR correction are shown

 



Page 10 of 14Chetty et al. Alzheimer's Research & Therapy          (2024) 16:236 

Fig. 6 Altered theta connectivity in AD and gamma connectivity in prodromal AD. (A) Heatmap shows the PPC differences between controls and AD. 
(B) The connectivity patterns in AD compared to age-matched control subjects in theta, alpha, and slow gamma bands. (C) Heatmap shows the PPC 
differences between controls and prodromal AD. (D) The connectivity patterns in prodromal AD in theta, alpha, and slow gamma bands. The red and 
blue colors represent the measures studied statistically significantly (FDR corrected P < 0.05) higher and lower in AD/prodromal AD than in the control, 
respectively. The Y- axis labels in the A and C represent the seed electrode for connectivity with other remaining electrodes
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significantly deviated in subjects with AD or prodromal 
AD compared to the age-matched healthy control sub-
jects. Further, we show that brain functional connectivity 
at the resting state is altered uniquely in AD and prodro-
mal AD.

Changes in the theta/alpha power ratio and theta 
power in PSD in AD suggest a significant increase in the 
theta band power. These observations are consistent with 
a large body of literature [53, 54]. We expanded these 
observations and examined the topographic distribution 
of the EEG features and PSD. Our results revealed that 
theta power was elevated at the whole brain level in AD. 
The elevated theta power in AD was replicable in two 
independent cohorts. This suggests the consistency and 
robustness of the EEG power ratio features, which could 
be a potential biomarker to differentiate healthy from 
AD.

Elevated alpha band power in healthy humans dur-
ing eyes closed state did not differ between healthy and 
AD subjects in our Cohort 1 after multiple comparison 
corrections, consistent with previous reports [55]. How-
ever, in Cohort 2 and other studies [56] alpha power dur-
ing the eyes closed state was lower in AD subjects than 
in healthy subjects. Importantly, we should note that the 
alpha band was still the dominant oscillatory band in 
AD in the eyes closed state in both Cohorts 1 and 2 [57]. 
The eyes-closed state-dependent increase in alpha power 
is not different between the control and prodromal AD 
subjects in our study, which is consistent with the previ-
ous report [58]. Thus, alpha band power and connectivity 
are unlikely good markers for AD or prodromal AD [53].

Although alpha oscillations are the most prominent 
when eyes are closed [59], other bands are also present. 
The theta power, while not markedly affected in prodro-
mal AD in our study or mildly affected in previous stud-
ies [58], was significantly enhanced in AD compared to 
healthy control subjects and replicated across 2 indepen-
dent datasets. Recent studies suggest that the periodic 
components drive the slowing of oscillations in AD [60, 
61]. So, what is the underlying mechanism of elevated 
theta, which is periodic and not coherent between brain 
areas in AD? The mechanisms of neural oscillations, spe-
cifically when eyes are closed, have not been studied at 
the circuit and cellular level; however, we could specu-
late that nonessential neuronal ensemble in the local cir-
cuit continues to drive theta, in addition to the neuronal 
ensembles processing alpha in AD. Next, theta is shown 
to be modulated by acetylcholine [62], and cholinergic 
defects are observed in AD [63]. Therefore, alterations 
in cholinergic tone may induce higher theta across many 
areas in AD, which is another possibility. Finally, a dis-
turbed interaction between ensembles of neurons likely 
drives different bands of oscillations (theta vs. alpha). 

Consistently, AD animal model studies demonstrated 
altered interactions between theta and other bands [64].

Our findings suggest that slowing oscillations (i.e., 
higher theta power) are specific to AD and not present 
during the prodromal AD stage. In prodromal AD, the 
gamma/alpha ratio was higher in several brain areas. 
Thus, the spectral power change is a non-continuum 
from prodromal AD, at the group level, to AD. Though 
the increased delta power was evident in AD and pro-
dromal AD [58], the shift from higher gamma in MCI 
to higher theta in AD is an interesting observation that 
requires further studies to examine the underlying circuit 
and cellular mechanisms.

In addition to the power ratios that robustly distinguish 
AD and prodromal AD from control subjects, PPC-based 
brain connectivity also revealed significant differences. 
We observed that the frequency band and directionality 
of the changes differed uniquely in AD and prodromal 
AD. The theta amplitude was higher in AD, but the con-
nectivity was lower brain-wide. Delta and beta bands also 
showed reduced PPC. In contrast, prodromal AD sub-
jects exhibited higher gamma and stronger connectivity. 
The differences in the power and connectivity of AD and 
prodromal AD could not be attributed to age because the 
age of subjects in AD (70.96 ± 0.81) & MCI (69.4 ± 1.3) 
in the dataset we used were comparable. A recent study 
also suggested differences in gamma between AD and 
MCI [65]. This is consistent with recent observations of 
hyperconnectivity arising in prodromal AD [66]. Follow-
ing the administration of FDA-approved acetylcholine 
esterase inhibitors for one year, gamma power in AD 
was improved [67]. We speculate that these changes in 
gamma are likely a compensatory mechanism in prodro-
mal AD [65, 68]. Nonetheless, the gamma offers a marker 
for prodromal AD.

Although the Lyapunov exponent, Hjorth complexity, 
and correlation dimensions showed a trend similar to 
previous findings [14, 69, 70], these measures were not 
statistically significant after FDR correction for multiple 
electrode comparisons. Future studies with sufficient 
sample sizes are required to evaluate their suitability as 
potential biomarkers.

Our study revealed that EEG features alone are suffi-
cient to distinguish AD or prodromal AD from the age-
matched healthy subjects. Preprocessing EEG signals is 
the most crucial step to understanding the underlying 
biology [71]. A primary strength of our study was using 
two independent preprocessing pipelines and observing 
features that consistently showed similar results in both 
pipelines. Regardless of the two preprocessing pipelines, 
most of the results are consistent, suggesting the robust-
ness of the differences we observed in AD and prodromal 
AD.
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Limitations
A limitation of our study is its cross-sectional design- the 
observations were limited to prodromal AD or AD with 
their respective age-matched control groups. There-
fore, we could not fully understand the trajectory from 
prodromal AD to AD. Future longitudinal studies are 
required to fully understand the trajectories of mem-
ory impairments. Next, the study included only MMSE 
scores besides disease diagnosis. Examining the rela-
tionship between EEG features, brain imaging and body 
fluid-based biomarkers, including Aβ, phosphorylated 
tau, NFL, etc. would provide additional insights [72]. We 
did not offer interpretations of EEG features that show 
differences in selective electrodes, pipelines, or datasets, 
as the differences are inconsistent or not robust.

Conclusion
In conclusion, our study highlights the potential of EEG 
features as robust biomarkers for distinguishing Alzheim-
er’s disease (AD) and prodromal AD from healthy aging. 
By employing a comparative analysis across different pre-
processing pipelines, we identified unique deviations in 
EEG patterns, notably elevated theta power in AD, that 
were consistent across two independent cohorts. The 
findings reveal the distinct neurophysiological changes 
between prodromal AD and AD, particularly in oscilla-
tory dynamics and brain connectivity, with theta and 
gamma power emerging as key differentiators. These 
insights offer valuable directions for future research into 
the underlying mechanisms and may pave the way for 
EEG-based diagnostic tools for early detection and moni-
toring of Alzheimer’s disease.
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