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Turbulent cascade arrests and the formation of intermediate-scale condensates
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Energy cascades lie at the heart of the dynamics of turbulent flows. In a recent study of turbulence in fluids
with odd viscosity X. M. de Wit et al. [Nature (London) 627, 515 (2024)], the two dimensionalization of the
flow at small scales leads to the arrest of the energy cascade and selection of an intermediate scale, between
the forcing and the viscous scales. To demonstrate the generality of the phenomenon and its existence for a
wide class of turbulent systems, we study a shell model that is carefully constructed to have three-dimensional
turbulent dynamics at small wave numbers and two-dimensional turbulent dynamics at large wave numbers.
The large scale separation that we can achieve in our shell model allows us to examine clearly the interplay
between these dynamics, which leads to an arrest of the energy cascade at a transitional wave number and
an associated accumulation of energy at the same scale. Such pile-up of energy around the transitional wave
number is reminiscent of the formation of condensates in two-dimensional turbulence, but, in contrast, it occurs
at intermediate wave numbers instead of the smallest wave number.

DOI: 10.1103/PhysRevE.110.L043101

Introduction. Cascade processes are at the origin of the
multiscale nature of turbulent flows. The best-known example
is Richardson’s cascade of kinetic energy in three dimensions
(3D) [1]. Energy is injected into a characteristic wave number
k f by an external force that drives the flow. On average, non-
linear interactions transfer the injected energy to larger wave
numbers k without dissipation. This process persists up to the
Kolmogorov wave number, beyond which viscous dissipation
dominates. The continuous interplay between energy injection
and viscous dissipation leads to a nonequilibrium statistically
stationary state. The direct energy cascade is at the heart of
3D homogeneous isotropic turbulence [1]. In two-dimensional
(2D) turbulence, the direction of the energy cascade is re-
versed and on average energy flows from k f to smaller values
of k; furthermore, the inverse cascade of energy coexists with
a direct cascade of enstrophy [2,3]. In general, turbulent cas-
cades of inviscid invariants, and in particular their directions
(whether direct or inverse), are affected by phenomena such
as rotation, stratification, spatial confinement, and selective
suppression of Fourier modes of the velocity [4–7].

Dissipative mechanisms inherent to the system, typically
viscous dissipation at large k or frictional dissipation at small
k, naturally arrest or suppress a turbulent cascade. How-
ever, other complex mechanisms that induce such suppression
have been identified in geostrophic [8–10], magnetohydrody-
namic [11,12], and bacterial turbulence [13,14]. In particular,
de Wit et al. [15] recently studied the 3D Navier-Stokes
equations (NSE) with an odd-viscosity term that leads to a
quasi-two-dimensionalization of the velocity field at large k.
If the forcing acts at small k, the direct energy cascade is
arrested at an intermediate wave number kc. Since odd viscous
terms are not dissipative, the arrest of the cascade results in an
accumulation of energy around kc and thence an emergence
of flow structures of size k−1

c . If the flow is forced at large
k, this model displays an inverse energy cascade, which is

arrested by the 3D-type behavior of the flow at small k and
is accompanied by the formation of structures of intermediate
sizes.

We demonstrate that such intermediate-scale cascade ar-
rests are not restricted to odd-viscous fluids but are, in fact,
signatures of any turbulent systems where 3D-type dynamics,
at small k, coexist with 2D-type dynamics, at large k. To this
end, we construct a shell model that can display the desired
small- and large-k dynamics. Shell models are a class of
hydrodynamical equations, which retain the essential features
of the NSE in Fourier space and offer insights into energy-
transfer mechanisms in fully developed turbulence [1,16–19].
The interactions between the Fourier modes of the velocity are
restricted; thus numerical simulations of shell models reach
larger scale separations and better statistical convergence than
those presently achievable with direct numerical simulations
of the NSE [20]. The tractability of shell models makes them
invaluable for studying turbulence. New concepts in turbu-
lence theory that have been recently developed by using shell
models include hidden scale invariance [21], subgrid closures
[22], stirring strategies for optimizing mixing [23], and the
application of avalanche dynamics in amorphous materials in
the analysis of the temporal behavior of the kinetic energy
[24]. We modify the strategy that was used by Boffetta et al.
[25] for a shell-model study of thin fluid layers. By allowing
the coefficients of the shell model to depend suitably on k,
the model captured the split-energy cascade, in quasi-2D tur-
bulent flows, with direct and inverse components [26,27]. We
consider scale-dependent coefficients but select them so as to
obtain a shell model that is 3D-like at small wave numbers
and 2D-like at large wave numbers. The transition between
the two cascading regions occurs at a wave number ktr; the
forcing is localized at the wave number k f . We find that,
irrespective of the ratio of ktr/k f , the reciprocity between the
small- and large-wave-number dynamics results in the arrest
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of the energy cascade (be it forward or inverse). However,
the system dynamics differs depending on whether ktr/k f is
smaller or greater than unity. The main consequence of the
arrest of the cascade is a strong buildup of energy close to ktr .
We show that a statistically stationary state and the formation
of condensates is nevertheless possible because of an increase
in viscous dissipation near ktr .

Model. We consider the SABRA shell model [28,29]

dun

dt
= i�n − (

μk−2
n + νk2

n

)
un + fn, 1 � n � N, (1)

where kn = k0λ
n, μ and ν are the hyperfriction and viscos-

ity parameters, respectively, and the external forcing, fn =
ε f (1 + i)δn,n f /2u∗

n f
, injects energy at a constant rate ε f into

the shell n f . The nonlinear term is

�n = ankn+1un+2u∗
n+1 + bnknun+1u∗

n−1

− cnkn−1un−2un−1, (2)

where an, bn, cn are real and the ∗ denotes complex con-
jugation. In addition, u−1 = u0 = uN+1 = uN+2 = 0. In the
inviscid (μ = 0, ν = 0) and unforced ( fn = 0) case, the total
energy E (t ) = 1

2

∑N
n=1 |un(t )|2 is conserved provided an−1 +

bn + cn+1 = 0. In the original SABRA model [28], an =
a, bn = b, and cn = c, and H (t ) = 1

2

∑N
n=1(a/c)n|un(t )|2 is

a second invariant quantity. Different regimes are observed
depending on the ratio c/a. Here, it is sufficient to recall that
there is a regime of direct energy cascade, which mimics 3D
turbulence, for −1 < c/a < 0 [28]. In this regime, H does not
have a definite sign and it can be regarded as a generalized
helicity. By contrast, H is positive for 0 < c/a < 1 and in
the subrange λ−2/3 < c/a < 1 there is a 2D-turbulence-like
regime, with a simultaneous inverse cascade of E and a direct
cascade of H . In this case, H plays the role of a generalized
enstrophy [29].

To introduce a shell-model analog of the domain aspect
ratio in a study of quasi-2D fluid turbulence, Ref. [25] con-
sidered a version of the SABRA model with n-dependent
coefficients: {an, bn, cn} were chosen to generate an inverse
energy cascade for kn < kh and a direct energy cascade for
kn > kh, with k−1

h representing the depth of a fluid layer.
We consider a shell model with n-dependent coefficients

but reverse the directions of the energy cascades by taking

an = 1, bn = −0.5, cn = −0.5, 1 � n < ntr, (3)

an = 1, bn = −1.7, cn = −0.5, n = ntr, (4)

an = 1, bn = −1.7, cn = 0.7, ntr < n � N. (5)

Clearly, for modes n < ntr (n > ntr) the coefficients
{an, bn, cn} lead to a 3D (2D) turbulentlike regime. Note
that cn changes value at ntr+1 to respect energy conservation
in the inviscid limit.

We investigate the interplay between the small- and large-
kn modes in this model for the cases (a) ktr/k f > 1 and (b)
ktr/k f < 1, with ktr = k0λ

ntr the transitional wave number. We
integrate Eq. (1) by using an Adams-Bashforth scheme [30].

(a) Small-wave-number forcing. We first consider the case
k f < ktr (Table I, runs A and B, in which μ = 0). In the
limit ktr/k f → ∞, we recover the SABRA model with con-
stant 3D-like coefficients. Therefore, in this limit, our model

TABLE I. Parameters of the shell-model simulations. In addition,
λ = 2, k0 = 1/16, and ε f = 5 × 10−3 for all runs. The initial condi-
tion is un = k1/2

n eiθn for n = 1, 2 and un = k1/2
n e−k2

n eiθn for 3 � n �
N , where θn is a random variable distributed uniformly between 0
and 2π .

Run N nf ntr ν μ δt ktr/kν

A0 28 1 ∞ 5 × 10−7 0 1 × 10−4 ∞
A1 28 1 25 5 × 10−7 0 1 × 10−4 1.48 × 102

A2 28 1 20 5 × 10−7 0 1 × 10−4 4.63 × 100

A3 28 1 18 5 × 10−7 0 1 × 10−4 1.16 × 100

A4 28 1 15 5 × 10−7 0 1 × 10−4 1.45 × 10−1

A5 28 1 12 5 × 10−7 0 1 × 10−4 1.18 × 10−2

A6 28 1 10 5 × 10−7 0 5 × 10−5 4.50 × 10−3

B1 28 1 15 1 × 10−7 0 1 × 10−4 4.33 × 10−2

B2 28 1 15 1 × 10−8 0 1 × 10−5 7.77 × 10−3

B3 28 1 15 5 × 10−9 0 1 × 10−5 4.60 × 10−3

C1 34 3 5 1 × 10−10 1 × 10−3 1 × 10−4 2.38 × 10−7

C2 34 3 7 1 × 10−10 1 × 10−3 1 × 10−4 9.51 × 10−7

C3 34 3 9 1 × 10−10 1 × 10−3 1 × 10−4 3.80 × 10−7

D1 34 25 0 1 × 10−10 5 × 10−4 1 × 10−5 0
D2 34 25 15 1 × 10−10 5 × 10−4 1 × 10−6 2.44 × 10−4

D3 34 25 17 1 × 10−10 5 × 10−4 1 × 10−6 9.74 × 10−4

D4 34 25 18 1 × 10−10 5 × 10−4 1 × 10−6 1.90 × 10−3

D5 34 25 20 1 × 10−10 5 × 10−4 1 × 10−6 7.80 × 10−3

displays a direct cascade of E [28] and the energy flux [〈·〉 is
the time average]

	E (kn) =
〈

N∑
j=n

�{i� ju
∗
j }

〉
(6)

is constant and equal to ε f for k f � kn � kν , where kν =
(ε f /ν

3)1/4 is the Kolmogorov wave number. In the same
range, the energy spectrum E (kn) = 〈|un|2/kn〉 shows a scal-
ing range that is consistent with k−5/3

n , the Kolmogorov
(1941) form [1]. For kn � k f , E (kn) ∼ k−1

n , which indicates
energy equipartition [5]. Now consider 1 < ktr/k f � ∞. If
ktr � kν, E (t ) does not show significant deviations from
the limiting case ktr/k f → ∞ (inset of Fig. 1). However,
when ktr < kν we find that, with decreasing ktr (and fixed
k f ), E (t ) takes longer to reach the stationary state and its
stationary value increases (inset of Fig. 1). To characterize
the temporal energy fluctuations E ′(t ) = E (t ) − 〈E (t )〉 for
different ktr , we calculate the time scale τc from the expo-
nential decay of the autocorrelation function C(τ ) = 〈E ′(t +
τ )E ′(t )〉/〈E ′2(t )〉. Figure 1 shows that τc is nearly indepen-
dent of ktr , for ktr � kν , but it grows rapidly as ktr is decreased
below kν . These trends are reminiscent of the formation of
large-scale condensates in 2D turbulent flows [2,31], where,
in the absence of friction, condensate formation is associ-
ated with very long saturation times and strong deviations of
the energy spectrum from its inertial-range scaling (compare
Fig. 2 of Ref. [31] with our Fig. 1). Therefore, we examine
the dependence of energy spectra and flux on ktr . In Fig. 2(a),
we plot 	E (kn) [Eq. (6)] for different values of ktr . As long
as ktr > kν , this flux is indistinguishable from that of the
ktr/k f → ∞ case. However, if ktr < kν, 	E (kn) � ε f only
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FIG. 1. Plot of the energy-autocorrelation decay time τc, scaled
by the Kolmogorov time τν = √

ν/ε f , as a function of ktr/kν . Inset:
the time series of the total energy for different values of ntr (runs A0,
A3, A4, A5, and A6).

for k f < kn < ktr , and it vanishes rapidly beyond ktr . Thus the
direct energy cascade persists up until ktr , but is then arrested
by the 2D-like dynamics for kn > ktr . The consequence of
this arrest is a sharp buildup of energy around ktr , as seen
in Fig. 2(b), where we plot the compensated energy spectra
k5/3

n E (kn) versus kn/ktr , for different values of ktr . Energy
starts accumulating around ktr for ktr < kν ; this accumula-
tion increases as ktr approaches k f . We also remark that the
suppression of high-frequency fluctuations in E (t ), with de-
creasing ktr , is associated with the arrest of the energy cascade
at kn ≈ ktr .

Despite the buildup of energy at a wavenumber smaller
than kν , our model reaches a statistically stationary state,
albeit at times that increase as ktr decreases. To understand
this intriguing behavior, we examine the energy budget in the
statistically stationary state:

T (kn) + Dμ(kn) + Dν (kn) + F (kn) = 0. (7)

Here, T (kn) = 〈Rei{�nu∗
n}〉, F (kn) = 〈Re{ fnu∗

n}〉, Dν (kn) =
〈2νk2

n |un|2〉, and Dμ(kn) = 〈2μk−2
n |un|2〉 are the nonlinear,

forcing, viscous, and friction contributions, respectively. We
plot these quantities in the inset of Fig. 2(c) for ntr = 10.
Since friction is absent, the forcing term is balanced by the
transfer term at kn = k f and, in the cascade range kn < ktr ,
the contribution from the transfer term is negligible, so the
statistical properties are like those in the pure 3D direct cas-
cade (ktr/k f → ∞). Deviations from this 3D cascade arise
when we account for the dissipation term. The maximum of
|Dν (kn)| shifts from kn � kν to kn � ktr , thus compensating
for the accumulation of energy at the same wave numbers.
This is clearly shown in the inset of Fig. 2(c), where T (kn)
is balanced by Dν (kn) at kn � ktr . Moreover, as ktr decreases,
the maximum of |Dν (kn)| shifts to smaller values of kn and its
magnitude increases to compensate for the stronger buildup of
energy [Fig. 2(c)].

In the range kn > ktr , the coefficients in Eq. (3) lead
to 2D-like dynamics; hence H (t ) is both positive definite

and conserved locally. By analogy with the inverse-cascade
regime in 2D fluid turbulence, we expect that the energy that
accumulates at kn � ktr acts as a source for the direct cascade
of H in the range ktr � kn � kν . To confirm this, we plot, in
Fig. 3(a), the flux of H :

	H (kn) =
〈

N∑
j=n

�{
ikβ

n � ju
∗
j

}〉
, (8)

with β = logλ(a/c). Clearly, as ktr is decreased, the flux in-
creases and tends to flatten for ktr � kn � kν , suggesting a
direct cascade of H . However, the lack of significant separa-
tion between ktr and kν makes it difficult to identify a range
where 	H (kn) remains constant. In the inset of Fig. 3(a), we
plot 	H (kn) for fixed ktr and different values of ν to observe
indeed that, for small viscosities, 	H (kn) tends to flatten for
ktr � kn � kν . As further confirmation of the direct cascade
of H , we show in Fig. 3(b) that, by moving ktr close to
k1, we achieve a large range of constant 	H (kn). Moreover,
in such range, E (kn) ∼ k−γ

n with γ = 2[1 + β]/3 + 1 [inset
of Fig. 3(b)], as is expected in the direct-cascade regime of
H [29].

(b) Large-wave-number forcing. We now address the case
k f > ktr (Table I, runs D; μ = 0 helps the system to reach
a statistically stationary state but does not contribute to the
formation of the condensate [32]). For ktr = 0 and with our
choice of parameters, E (kn) ∼ k−5/3

n , in the range between
the friction-dominated wave numbers and k f [29]. In this
range, 	E (kn) < 0 remains constant and equals the rate of
hyperfriction energy dissipation εμ = ∑N

n=1 Dμ(kn). We now
consider k f > ktr > 0. Small values of ktr have a negligible
effect on energy spectra and fluxes, because at small kn the
inverse energy cascade is already stopped by hyperfriction,
so we focus on intermediate values of ktr between k1 and k f .
For such values of ktr , the energy flux [Fig. 4(a)] indicates
that the inverse energy cascade is arrested at kn � ktr and it
is accompanied by energy buildup (i.e. the formation of an
intermediate-scale condensate) around ktr [Fig. 4(b)].

We see the following two scaling forms on each side of
ktr: for k1 � kn � ktr, E (kn) ∼ k−1

n , which indicates equipar-
tition [Fig. 4(b)], and for ktr � kn � k f , E (kn) ∼ k−5/3

n , as
we expect in the range of the inverse energy cascade [inset of
Fig. 4(b)]. Clearly, the latter range decreases as ktr approaches
k f . The energy transfer that leads to a statistically stationary
state is similar to that observed in case (a): the accumula-
tion of energy at scales comparable to ktr is compensated
by an increased viscous dissipation at similar scales. Indeed,
in Fig. 4(a) we see, together with a peak of dissipation at
k f , a second peak at ktr [33]. Before concluding, we com-
ment on the aforementioned regime of energy equipartition.
In shell models, with constant 3D-like coefficients, the wave
numbers kn � k f are isolated from the effects of forcing and
viscous damping and the energy flux to these small wave
numbers is zero [34]. Therefore, energy in these modes is
expected to equilibrate [1,34]. Analogous arguments lead to
energy equipartition for kn � ktr in our model: the condensate
generated around ktr by the large-kn inverse cascade indeed
acts as a source of energy for the 3D-like low-kn modes. It
remains to be understood whether or not such a regime is ex-
pected to persist in real turbulent flows. Energy equipartition
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FIG. 2. (a) Log-linear plot of the scaled energy flux versus kn/kν for different values of ntr (runs A0 to A6); the plots for ntr = 20, 25 are
indistinguishable from the ntr = ∞ curve. The Kolmogorov wave number corresponds to n lying between 17 and 18. (b) Log-log plots of the
compensated energy spectra versus kn/ktr for the values of ntr in (a) (ktr = k0λ

ntr ); inset: the value of the peak ζ of the compensated spectrum
versus ktr/kν . (c) Log-linear plot of Dν (kn) versus kn/kν for different values of ntr (runs A); the plots for ntr = 20, 25 are indistinguishable from
the ntr = ∞ curve; inset: log-linear plots of T (kn), Dν (kn), and F (kn) versus kn/kν for the representative value ntr = 10. The color coding for
ntr is the same in (a)–(c).

FIG. 3. Log-linear plots of (a) 	H (kn) versus kn/ktr for runs A1–
A6 and, in the inset, for runs A6, B1, B2, and B3, and (b) for runs
C1–C3. Inset of (b): log-log plots of compensated energy spectra
versus kn/ktr .

FIG. 4. Plots for runs D1–D5. (a) Log-log plot of the compen-
sated spectra knE (kn) versus kn/ktr and in the inset the compensated
spectra k5/3

n E (kn) versus kn/ktr . (b) Log-linear plots of 	(kn) versus
kn/kν and in the inset Dν (kn) versus kn/kν . The Kolmogorov wave
number corresponds to n lying between 27 and 28.
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at length scales larger than the forcing length scale has been
reported in both numerical and experimental investigations
[35–37]. However, a recent study [38] has shown that, in 3D
homogeneous and isotropic turbulence, the statistics of the
large scales is not Gaussian. This has been attributed to a
strong coupling between the small and large scales, which
may not be captured by shell models. Furthermore, numer-
ical simulations of 3D turbulence have reported significant
deviations from the equilibrium spectrum for certain forcing
choices [36,39]. Therefore, we expect that spatial and tempo-
ral features of the intermediate-scale condensate, specific to
the hydrodynamical PDEs, are detrimental to the presence of
equipartition at large length scales.

Conclusions. Our study identifies a general energy-transfer
mechanism for the nondissipative arrest of energy cascades
(inverse or direct) when 3D turbulent dynamics, at small k, co-
exists with 2D turbulent dynamics, at large k. The shell-model
approach we employ allows us to resolve a large range of wave
numbers; this is crucial for uncovering the subtle interplay
between the nonlinear and viscous terms. Specifically, we find
that, when ktr/k f > 1, the direct energy cascade for kn < ktr

is arrested by the 2D-like dynamics at kn > ktr . In contrast,
when ktr/k f < 1, the inverse energy cascade for kn > ktr is
arrested by the 3D-like dynamics at kn < ktr . In both cases,
the arrest close to ktr results in energy accumulation around
ktr . In a spatially extended system, such an accumulation of
energy would lead to the emergence of spatial structures, or
condensates, of size k−1

tr . A statistically stationary state stems

from an increased viscous dissipation, at wave numbers close
to ktr , which compensates for the energy accumulation. This is
reminiscent of condensates in 2D turbulence. Furthermore, we
show that, when ktr/k f > 1, the energy that accumulates near
to ktr generates a direct cascade of generalized enstrophy for
kn > ktr , whereas, when ktr/k f < 1, the modes with kn < ktr

are in statistical equilibrium.
The details of the transitional scale will vary with dif-

ferent models, but the energy-transfer mechanisms we have
identified are general and apply to any turbulent system with
2D-like large-k dynamics and 3D-like small-k dynamics. Thus
our results will stimulate the study of new physical systems
with cascade arrests leading to intermediate-scale conden-
sates.
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