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A R T I C L E I N F O A B S T R A C T

Editor: Tommy Ohlsson Di-Higgs couplings to fermions of the form ℎ2𝑓𝑓 are absent in the Standard Model, however, 
they are present in several physics Beyond Standard Model (BSM) extensions, including those 
with vector-like fermions. In Effective Field Theories (EFTs), such as the Standard Model Effective 
Field Theory (SMEFT) and the Higgs Effective Field Theory (HEFT), these couplings appear at 
dimension 6 and can in general, be flavour-violating (FV). In the present work, we employ a 
bottom-up approach to investigate the FV in the lepton and quarks sectors through the di-Higgs 
effective couplings. We assume that all FV arises from this type of couplings and assume that the 
Yukawa couplings 𝑌𝑖𝑗 are given by their SM values, i.e. 𝑌𝑖𝑗 =

√
2𝑚𝑖𝛿𝑖𝑗∕𝑣. In the lepton sector, 

we set upper limits on the Wilson coefficients 𝐶𝑙𝑙′ from 𝑙→ 3𝑙′ decays, 𝑙→ 𝑙𝛾 decays, muonium 
oscillations, the (𝑔 − 2)𝜇 anomaly, LEP searches, muon conversion in nuclei, FV Higgs decays, 
and 𝑍 decays. We also make projections on some of these coefficients from Belle II, the Mu2e 
experiment and the LHC’s High Luminosity (HL) run. In the quark sector, we set upper limits on 
the Wilson coefficients 𝐶𝑞𝑞′ from meson oscillations and from 𝐵-physics searches. A key takeaway 
from this study is that current and future experiments should set out to measure the effective 
di-Higgs couplings 𝐶𝑓𝑓 ′ , whether these couplings are FV or flavour-conserving. We also present a 
matching between our formalism and the SMEFT operators and show the bounds in both bases.

1. Introduction

Flavour physics provides an essential probe for the Standard Model (SM) and for new physics BSM. In the SM, flavor violation 
(FV) arises entirely through the fermionic couplings to the Higgs bosons, i.e. through the Yukawa matrices. These Yukawa matrices 
encode FV in the CKM matrix in the hadronic sector, and in the UPMNS matrix in the leptonic sector. In physics BSM, any new source 
of flavour violation is severely constrained. FV processes are well measured in Δ𝐹 = 1 and Δ𝐹 = 2 transitions. Some of the most 
robust constraints are obtained from 𝐾0 − 𝐾̄0 system in the quark sector, and from 𝜇→ 𝑒 + 𝛾 in the leptonic sector. Other processes 
which are not flavor violating (Δ𝐹 = 0) but still play an essential role in constraining new physics, are the magnetic and electric 
dipole moments of leptons, nucleons, atoms and molecules. To avoid strong constraints on new physics from flavor physics, typically 
it is assumed to follow the paradigm of Minimal Flavor Violation [1].

An interesting scenario would arise when non-minimal FV is induced through the effective Higgs couplings to fermions. There 
are many new physics scenarios where non-minimal FV can arise through the Higgs couplings, such as the multi-Higgs models, the 
Randall-Sundrum models and so on. The case of FV couplings with a single Higgs has been studied in Ref. [2,3]. FV can be understood 
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in terms of deviations of the SM Yukawa couplings from their SM values in the generation space. A complete global analysis of flavor 
observables was performed and the limits on the FV Yukawa couplings were derived. This work is similar in theme with the analysis 
conducted in [2,3], and extends it to the case of FV through the di-Higgs couplings to fermions.

Di-Higgs-fermion-fermion couplings are absent in the SM, however, they can be generated in a way similar to the single Higgs 
couplings in many new physics scenarios. A simple example of this are extensions of the SM with extra vector-like fermions. In the 
limit of heavy vector-like fermions, integrating them out would lead to operators with di-Higgs couplings to the SM fermions.1 It is 
true that such models which generate these couplings also generate single Higgs couplings too. However, it could be possible such 
that single Higgs couplings could be suppressed in some cases due to some hidden symmetries like in the case with magic zeros [4]. 
With this in mind, without resorting to any models, we will focus on the Di - Higgs couplings which are flavor violating. Further, 
it should be noted that the constraints obtained on these couplings are the most conservative. And in the presence of single Higgs 
couplings, these bounds only become stronger unless there are destructive interferences. The relevant operators can be mapped to 
EFT frameworks, such as the HEFT and the SMEFT, at the level of dimension six operator (see for example, [5–8] and the references 
therein). The study of FV in EFTs has been performed in many works in the literature, see for example [9–16]. To the best of our 
knowledge, non-minimal FV di-Higgs couplings have never been studied previously in the literature, as in most cases, these ℎ2𝑓𝑓
operators are either avoided entirely, or assumed to be proportional the Yukawa couplings by imposing (minimal) flavor symmetries 
[17,18].

Non-minimal di-Higgs couplings are interesting, as they have unique signatures, and can be probed by future colliders, especially 
the muon collider. A non-minimal di-Higgs coupling could even explain the discrepancy of the muon 𝑔 −2 anomaly [19]. In studying 
these couplings in the present work, we find it suitable to follow the framework proposed in [20–24]. We call this framework the 
Weak Scale Deviations framework (WSD). This formalism is model-independent and bottom-up, as it considers all possible deviations 
from the SM Lagrangian. The FV di-Higgs couplings appear naturally in the expansion of the Higgs operator in this formalism, along 
with deviations in the Yukawa couplings. While one could choose to work within either the SMEFT or the HEFT, we find the WSD 
framework to be more convenient and advantageous, as it has fewer assumptions compared to either the SMEFT or the HEFT, and 
is more closely-linked to experiment as we show later on. Nonetheless, we shall present the mapping of the WSD to the SMEFT, and 
present the SMEFT cutoff scale that corresponds to the upper limits on the FV di-Higgs Wilson coefficients for convenience.

Focusing on the di-Higgs couplings, we provide a complete analysis of the flavor physics constraints for both the quark and the 
lepton sectors. Our analysis follows similar lines as the analysis performed in [3] for FV Higgs Yukawa couplings. The results for the 
di-Higgs couplings are presented in terms of the bounds on the Wilson coefficient of the ℎ2𝑓𝑓 operators and also to the corresponding 
UV scale in the SMEFT. The bounds on the SMEFT operators are competitive and are similar to those on new physics. For example, 
assuming the Wilson coefficients to be (1) in the SMEFT, the bounds on the UV scale Λ range from ∼ 1 − 10 TeV in the leptonic 
sector, and can exceed 100 TeV in the 𝐾0 −𝐾0 oscillations in the quark sector.

This paper is organised as follows: In Section 2, we briefly review the WSD formalism we utilize in this paper. In Section 3, we 
present our complete analysis on the FV through the di-Higgs couplings in the leptonic sector, whereas in Section 4, we do the same 
analysis in the quark sector. In Section 5, and show how this formalism can be mapped to the SMEFT framework, and in particular 
derive the UV scale that corresponds to the upper limit on the FV Wilson coefficient. Finally, we present our conclusions in Section 6. 
We relegated much of the calculational details to the appendices A - D.

2. Framework

We begin by introducing our FV framework, which is essentially based on the phenomenological bottom-up WSD approach intro-

duced in [20–24], generalized to the case of FV couplings and Wilson coefficients. In this framework, we avoid power expansion in 
writing down higher-dimensional operators, as the case in the SMEFT. Instead, we parameterize New Physics (NP) as deviations from 
the SM predictions without making any references to any UV scale. Therefore, we write the most general FV effective Lagrangian of 
the Yukawa interaction as follows

eff = − 𝑣√
2
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, (1)

where 𝑌 𝑙
𝑖𝑗

and 𝑌 𝑞
𝑖𝑗

are the Yukawa coupling matrices for the leptons and the quarks, respectively, whereas 𝐶𝑙
𝑖𝑗

and 𝐶𝑞
𝑖𝑗

are matrices 

containing FV Wilson coefficients that do not have SM counterparts. Also notice that in the SM we have 𝑌 𝑙,𝑞
𝑖𝑗

= 𝛿𝑖𝑗
√
2𝑚𝑖∕𝑣, and 

𝐶
𝑙,𝑞
𝑖𝑗

= 0. The field 𝑋 is defined in terms of the Higgs doublet 𝐻 as

𝑋 =
√
2𝐻†𝐻 − 𝑣, (2)

whereas we define the projector ̃̂𝐻 = 𝜖𝐻̂∗, with

𝜖 =
(

0 1
−1 0

)
, 𝐻̂ = 𝐻√

𝐻†𝐻
=
(
0
1

)
+𝑂(𝐺⃗), (3)
2

1 These are not the only set of operators after integrating the heavy fermions. But we focus on these operators for the present discussion.
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Fig. 1. Induced FV Yukawa couplings 𝑌 ind
𝑖𝑗

through non-zero 𝐶𝑖𝑗 .

where 𝐺⃗ are the Goldstone bosons. Notice that 𝑋 has the same quantum numbers as the Higgs field, and in the unitary gauge we 
have 𝑋→ ℎ. Before we proceed, a few of remarks are in order.

• Notice that in Eq. (1), we are dividing the field 𝑋 by appropriate powers of 𝑣 in order to keep Wilson coefficients dimensionless, 
i.e., 𝑣 should not be interpreted as an expansion scale as the case in the HEFT [25], and the Wilson coefficients could in principle 
assume any value allowed by unitarity and experiment,

• We are assuming that 𝑣 is the minimum of Higgs potential including all higher-order corrections. Therefore, 𝑣 = 246 GeV. In 
addition, the value Higgs mass remains equal to the measured one, i.e. 125 GeV,

• Although Eq. (1) appear to be similar to the HEFT, we should keep in mind that secretly we are using the Higgs doublet in our 
expansion, and one can easily demonstrate that the effective Lagrangian in Eq. (1) can be mapped to either the SMEFT or the 
HEFT, depending on the chosen expansion, i.e. Eq. (1) can be mapped to SMEFT when 𝑋→𝐻 , and can be mapped to HEFT when 
𝑋→ ℎ, as the case when the unitary gauge is chosen, AND when 𝑣 is interpreted as a true expansion scale. In either the SMEFT 
or the HEFT frameworks, the deviations and Wilson coefficients in eqs. (1) can receive corrections from a tower of higher-order 
operators, which might be different depending on the order at which we truncate the expansion. We will present the matching 
to the SMEFT in Section 5 below and show the corresponding scale of new physics. The interested reader is instructed to refer 
to [21–24] for more details on mapping the operators into the SMEFT and the HEFT.

• There are two advantages to this construction: First, there are fewer assumptions in this framework compared to either the 
SMEFT or the HEFT. Namely, we are only assuming that there are no light degrees of freedom below the energy scale at which 
the EFT breaks down, and that the deviations and Wilson coefficients are compatible with experimental measurements. The 
second benefit lies in the fact that parameterizing NP this way is more transparent phenomenologically, and more closely-linked 
to experiment, as these deviations and Wilson coefficients are what is measured experimentally as opposed to any expansion 
scale.

It is commonly assumed in the literature that 𝑌𝑖𝑗 are the main source of FV, and studies that investigate limits on 𝑌𝑖𝑗 abound (see 
for instance [2,3,26–29]. In this paper however, we are more interested in the case where the effective couplings 𝐶𝑖𝑗 are the main 
source of FV. Therefore, we assume

𝑌𝑖𝑗 ≃ 𝑌 SM
𝑖𝑗 =

√
2𝑚𝑖
𝑣

𝛿𝑖𝑗 , (4)

for both the quarks and the leptons. We call FV through the couplings ℎ2𝑓𝑓 the next-to-minimum FV through di-Higgs effective 
couplings. The reason why it is not possible to make 𝑌𝑖𝑗 = 𝑌 SM

𝑖𝑗
exactly, is that it is not possible to simultaneously diagonalize both 

𝑌𝑖𝑗 and 𝐶𝑖𝑗 , as non-zero 𝐶𝑖𝑗 will induce corrections to 𝑌𝑖𝑗 at 2-loops as shown in Fig. 1. Let’s call this part of the Yukawas 𝑌 ind
𝑖𝑗

to 
distinguish it from any corrections arising from any other source. We can estimate the size of 𝑌 ind

𝑖𝑗
as follows

𝑌 ind
𝑖𝑗 ∼

( 1
16𝜋2

)2
× 𝑌𝑓𝑓𝐶𝑓𝑓𝑖𝐶𝑓𝑓𝑗 , (5)

which for 𝐶𝑓𝑓𝑖 , 𝐶𝑓𝑓𝑗 ∼𝑂(1) implies that 𝑌 ind
𝑖𝑗

∼𝑂(10−5) at best, i.e. the FV contributions from 𝑌 ind
𝑖𝑗

are always suppressed compared 
to those arising from 𝐶𝑖𝑗 and are thus negligible. We will not concern ourselves with these corrections in the remainder of this paper.

In the unitary gauge, the FV part of Eq. (1) reads
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𝐶𝑙
𝑖𝑗

2
√
2𝑣
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𝑖
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ℎ2. (6)

In general, the matrices 𝐶𝑙,𝑞
𝑖𝑗

could be complex and needn’t be symmetric. However, in this paper, we will simplify by assuming 
3

that they are both real and symmetric, i.e. Im(𝐶𝑙,𝑞
𝑖𝑗
) = 0 and 𝐶𝑙,𝑞

𝑖𝑗
= 𝐶𝑙,𝑞

𝑗𝑖
.
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Table 1

90% CL bounds and projections on the leptonic next-to-minimal FV di-Higgs couplings and the corresponding 
lower limit on the scale of NP Λ from matching to the SMEFT.

Channel Couplings Bounds (Λ TeV) Projections (Λ TeV)

𝜏 → 3𝜇 |𝐶𝜏𝜇 ||𝐶𝜇𝜇| < 2.54 × 10−2 (> 1.07) < 3.92 × 10−3 (> 1.7)
𝜇→ 3𝑒 |𝐶𝜇𝑒||𝐶𝑒𝑒| < 4.41 × 10−5 (> 5.23) < 4.41 × 10−7 (> 16.53)
𝜏 → 3𝑒 |𝐶𝜏𝑒||𝐶𝑒𝑒| < 2.88 × 10−2 (> 1.03) < 3.92 × 10−3 (> 1.7)
𝜏− → 𝑒+𝜇−𝜇− |𝐶𝜏𝜇 ||𝐶𝜇𝑒| < 2.29 × 10−2 (> 1.1) < 2.83 × 10−3 (> 1.85)
𝜏− → 𝜇+𝑒−𝑒− |𝐶𝜏𝑒||𝐶𝜇𝑒| < 2.15 × 10−2 (> 1.11) < 2.66 × 10−3 (> 1.88)
𝜏− → 𝜇+𝜇−𝑒− |𝐶𝜏𝜇 ||𝐶𝜇𝑒|, |𝐶𝜏𝑒||𝐶𝜇𝜇| < 2.88 × 10−2 (> 1.03) < 3.72 × 10−3 (> 1.73)
𝜏− → 𝜇−𝑒+𝑒− |𝐶𝜏𝜇 ||𝐶𝑒𝑒|, |𝐶𝜏𝑒||𝐶𝜇𝑒| < 2.35 × 10−2 (> 1.09) < 2.99 × 10−3 (> 1.82)

𝜇→ 𝑒𝛾 (𝜏 in loop) |𝐶𝜏𝜇 ||𝐶𝜏𝑒| < 7.83 × 10−5 (> 4.53) < 2.7 × 10−5 (> 5.91)
𝜇→ 𝑒𝛾 (𝜇 in loop) |𝐶𝜇𝜇||𝐶𝜇𝑒| < 4.4 × 10−4 (> 2.94) < 1.52 × 10−4 (> 3.84)
𝜇→ 𝑒𝛾 (𝑒 in loop) |𝐶𝜇𝑒||𝐶𝑒𝑒| < 8.28 × 10−4 (> 2.51) < 2.86 × 10−4 (> 3.28)
𝜏 → 𝜇𝛾 (𝜏 in loop) |𝐶𝜏𝜏 ||𝐶𝜏𝜇 | < 0.66 (> 0.47) < 9.92 × 10−2 (> 0.76)
𝜏 → 𝜇𝛾 (𝜇 in loop) |𝐶𝜏𝜇 ||𝐶𝜇𝜇| < 1.12 (> 0.41) < 0.17 (> 0.66)
𝜏 → 𝜇𝛾 (𝑒 in loop) |𝐶𝜏𝑒||𝐶𝜇𝑒| < 0.64 (> 0.48) < 9.66 × 10−2 (> 0.76)
𝜏 → 𝑒𝛾 (𝜏 in loop) |𝐶𝜏𝜏 ||𝐶𝜏𝑒| < 0.57 (> 0.49) < 0.22 (> 0.62)
𝜏 → 𝑒𝛾 (𝜇 in loop) |𝐶𝜏𝜇 ||𝐶𝜇𝑒| < 0.97 (> 0.43) < 0.38 (> 0.54)
𝜏 → 𝑒𝛾 (𝑒 in loop) |𝐶𝜏𝑒||𝐶𝑒𝑒| < 0.55 (> 0.49) < 0.22 (> 0.62)

𝑀 −𝑀 oscillations |𝐶𝜇𝑒| < 0.39 (> 0.68) -

(𝑔 − 2)𝜇 |𝐶𝜏𝜇 | 0.26 ± 0.03 (> 0.84) -

(𝑔 − 2)𝜇 |𝐶𝜇𝜇| 0.79 ± 0.1 (> 0.48) -

(𝑔 − 2)𝜇 |𝐶𝜇𝑒| 6.34 ± 0.8 (> 0.17) -

LEP |𝐶𝜏𝑒| < 9.52 (> 0.14) -

LEP |𝐶𝜇𝑒| < 9.0 (> 0.14) -

LEP |𝐶𝑒𝑒| < 13.25 (> 0.12) -

𝜇→ 𝑒 conversion in nuclei |𝐶𝜇𝑒| < 0.34 (> 0.73) < 4.56 × 10−3 (> 6.31)

ℎ→ 𝜏𝜇 |𝐶𝜏𝜇 | < 0.67 (> 0.52) < 0.23 (> 0.89)
ℎ→ 𝜏𝑒 |𝐶𝜏𝑒| < 1.04 (> 0.42) < 0.23 (> 0.89)
ℎ→ 𝜇𝑒 |𝐶𝜇𝑒| < 0.25 (> 0.85) < 7.3 × 10−2 (> 1.58)
ℎ→ 𝑒𝑒 |𝐶𝑒𝑒| < 0.58 (> 0.56) -

𝑍 → 𝜏+𝜏− |𝐶𝜏𝜏 |, |𝐶𝜏𝜇 |, |𝐶𝜏𝑒| < 7.9 (> 0.15) -

𝑍 → 𝜇+𝜇− |𝐶𝜏𝜇 |, |𝐶𝜇𝜇|, |𝐶𝜇𝑒| < 7.04 (> 0.16) -

𝑍 → 𝑒+𝑒− |𝐶𝜏𝑒|, |𝐶𝜇𝑒|, |𝐶𝑒𝑒| < 5.62 (> 0.18) -

𝑍 → 𝜏±𝜇∓ |𝐶𝜏𝜇 | < 0.11 (> 1.28) -

𝑍 → 𝜏±𝑒∓ |𝐶𝜏𝑒| < 9.65 × 10−2 (> 1.37) -

𝑍 → 𝜇±𝑒∓ |𝐶𝜇𝑒| < 1.59 × 10−3 (> 10.69) -

3. The lepton sector

We focus first on FV in the lepton sector. Explicitly, the lepton part of Eq. (6) reads

𝑙
FV
⊃ − 1

2
√
2𝑣

[
𝐶𝑒𝑒𝑒𝑒+𝐶𝜇𝜇𝜇𝜇 +𝐶𝜏𝜏𝜏𝜏 +𝐶𝜇𝑒(𝑒𝜇 + 𝜇𝑒) +𝐶𝜏𝜇(𝜇𝜏 + 𝜏𝜇) +𝐶𝜏𝑒(𝑒𝜏 + 𝜏𝑒)

]
ℎ2. (7)

Notice that 𝐶𝑙𝑙 are not FV, however, they will enter into the calculation and bounds along with the FV couplings 𝐶𝑙𝑙′ . The bounds 
on are summarized in Table 1 and shown in Figs. 9 and 10. Below, we discuss these bounds in more detail.

3.1. Bounds from 𝑙→ 𝑙1𝑙2𝑙3 decays

The 𝑙→ 𝑙1𝑙2𝑙3 decay through the di-Higgs couplings proceeds at one loop as in Fig. 2. Here, the ℎ2𝑙𝑙′ vertices should be viewed 
as effective interactions of some heavy degree(s) of freedom that has been integrated out. In the limit 𝑀ℎ ≫𝑚𝑙 , the decay width can 
be approximated as

Γ(𝑙→ 𝑙1𝑙2𝑙3) ≃
𝑚5
𝑙

𝑣4

[
𝐶𝑙𝑙1𝐶𝑙2𝑙3

512𝜋3
√
6𝜋

log
(𝑀2

ℎ

𝑚2
𝑙

)]2

. (8)

The detailed calculation is given in Appendix A. Before we proceed with extracting the bounds, we should note that the 2-loop 
diagram (similar to the bottom diagram in Fig. 3, with the photon decaying to 𝑙2𝑙3) is suppressed relative to the 1-loop diagram and 
can be neglected.

The relevant processes are 𝜏 → 3𝜇, 𝜇→ 3𝑒, 𝜏 → 𝜇𝜇𝑒, 𝜏 → 𝜇𝑒𝑒 and 𝜏 → 3𝑒. The latest bounds on the branching rations of these 
4

processes can be found in [30], and all of them are given @ 90% C.L., which we stick to throughout this paper. For the first process, 
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Fig. 2. The 𝑙→ 𝑙1𝑙2𝑙3 decay through the di-Higgs effective couplings 𝐶𝑖𝑗 .

Fig. 3. FV decays 𝑙𝑖 → ł𝑘𝛾 through one (top) and two loops (bottom).

the experimental bound is Br(𝜏 → 3𝜇) < 2.1 × 10−8, which translates into the bound |𝐶𝜏𝜇||𝐶𝜇𝜇| < 2.54 × 10−2. Notice that the FV 
coupling |𝐶𝜏𝜇| cannot be isolated from the non-FV one |𝐶𝜇𝜇|. This is a common feature of these types of couplings. The second 
experimental limit is given by Br(𝜇→ 3𝑒) < 1 ×10−12, which translates to the |𝐶𝜇𝑒||𝐶𝑒𝑒| < 4.41 ×10−5. The limit on the third process 
is Br(𝜏− → 𝜇−𝜇−𝑒+) < 1.7 × 10−8, translating into |𝐶𝜏𝜇||𝐶𝜇𝑒| < 2.29 × 10−2. The limit on the fourth decay is Br(𝜏 → 3𝑒) < 2.7 × 10−8, 
yielding the bound |𝐶𝜏𝑒||𝐶𝑒𝑒| < 2.88 × 10−2. The bounds on the fifth process read Br(𝜏− → 𝜇+𝑒−𝑒−) < 1.5 × 10−8 and translate to the 
limit |𝐶𝜏𝑒||𝐶𝜇𝑒| < 2.15 × 10−2.

The last 2 decays are more subtle as they involve two Feynman diagrams instead of one. The decay width is obtained by summing 
two matrix elements which have different FV couplings. For the decay 𝜏− → 𝜇+𝜇−𝑒−, in the first diagram, we have 𝑙 = 𝜏−, 𝑙1 = 𝑒−, 𝑙2 =
𝜇+, 𝑙3 = 𝜇−, whereas in the second we have 𝑙 = 𝜏−, 𝑙1 = 𝜇−, 𝑙2 = 𝜇+, 𝑙3 = 𝑒−. The experimental limit is Br(𝜏− → 𝜇+𝜇−𝑒−) < 2.7 ×10−8, 
which translates into the bound [2𝐶2

𝜏𝜇𝐶
2
𝜇𝑒 + 2𝐶2

𝜇𝜇𝐶
2
𝜏𝑒 − 𝐶𝜏𝜇𝐶𝜏𝑒𝐶𝜇𝜇𝐶𝜇𝑒]

1∕2 < 4.07 × 10−2. Upper bounds can be obtained by setting 
𝐶𝜏𝜇 = 𝐶𝜇𝑒 = 0 (𝐶𝜏𝑒 = 𝐶𝜇𝜇 = 0) in the first (second) diagrams, which yields the bounds |𝐶𝜏𝜇||𝐶𝜇𝑒|, |𝐶𝜏𝑒||𝐶𝜇𝜇| < 2.88 × 10−2. In the 
final process 𝜏− → 𝜇−𝑒+𝑒−, the two Feynman diagrams are given by 𝑙 = 𝜏−, 𝑙1 = 𝑒−, 𝑙2 = 𝑒+, 𝑙3 = 𝜇− in the first diagram, and 𝑙 = 𝜏−, 
𝑙1 = 𝜇−, 𝑙2 = 𝑒+, 𝑙3 = 𝑒−. The experimental bound for this process is Br(𝜏− → 𝜇−𝑒+𝑒−) < 1.8 × 10−8, which translates into the mixed 
bound [2𝐶2

𝜏𝜇𝐶
2
𝑒𝑒 + 2𝐶2

𝜏𝑒𝐶
2
𝜇𝑒 −𝐶𝜏𝜇𝐶𝜏𝑒𝐶𝜇𝑒𝐶𝑒𝑒]

1∕2 < 3.33 × 10−3, from which the upper bounds |𝐶𝜏𝜇||𝐶𝑒𝑒|, |𝐶𝜏𝑒||𝐶𝜇𝑒| < 2.35 × 10−2 are 
obtained.

Better bounds can be obtained from future experiments. In particular, the Belle II experiment [31,32] is expected to collect 
50 ab−1 over the next decade, and the bounds on the branching rations of the above processes are projected to be ∼ 𝑂(10−10) (see 
also [33,34]2). This leads to bounds that are 1-2 orders of magnitude stronger that what is currently available. For instance, the 
projected bound from Belle II for Br(𝜏 → 3𝜇) is 5 × 10−10. This yields the projected bound |𝐶𝜏𝜇||𝐶𝜇𝜇| < 3.92 × 10−3. The rest of the 
projections are summarized in Table 1.

3.2. Bounds from 𝑙𝑖 → 𝑙𝑘𝛾

Stringent constraints can be obtained from the bounds on the FV decays 𝜏 → 𝜇𝛾 , 𝜏 → 𝑒𝛾 and 𝜇→ 𝑒𝛾 . The Feynman diagrams of 
these processes are shown in Fig. 3. The 1-loop contributions are shown on the top row of the figure, where the photon could be 
emitted from the initial or final state lepton. The two contributions cancel one another and the contribution at one loop vanishes. 
Thus the leading contribution arises at 2-loops.3

Calculating the 2-loop diagram is somewhat subtle and we show the details in Appendix B. For each decay process, the structure 
of the matrix element and the corresponding Wilson coefficients depend on the lepton inside the loop, i.e., each decay will have 3 

2 The projections provided in these two references are slightly different. For our projected limits, we use the stronger of the two.
3 Notice that there are two more 2-loop diagrams where the photon is emitted from the initial and final states, however, these two contributions cancel each other 
5

in exactly the same manner as in the 1-loop case.
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contributions corresponding to setting the particle in the loop 𝑗 = {𝜏, 𝜇, 𝑒}. In order to set upper bounds on the Wilson coefficients, 
we isolate each contribution individually. This will lead to 9 different decay processes. For example, the decay width Γ𝜏𝜇𝑒 refers to 
the decay 𝜏 → 𝑒𝛾 with 𝜇 running in the loop.

Utilizing the results in Appendix B, assuming 𝑚𝜏 ≫𝑚𝜇 ≫𝑚𝑒, and setting the renormalization scale 𝜇 =𝑚𝑗 , the decay widths are 
given by

Γ𝜇𝜏𝑒 ≃
𝛼|𝐶𝜏𝜇|2|𝐶𝜏𝑒|2
16(4𝜋)8𝑣4

𝑚2
𝜏𝑚

3
𝜇

[
log

(𝑀2
ℎ

𝑚2
𝜏

)
− 𝜋

2

3

]2

, (9)

Γ𝜇𝜇𝑒 ≃
𝛼|𝐶𝜇𝜇|2|𝐶𝜇𝑒|2

9(4𝜋)8𝑣4
𝑚5
𝜇

[
log

(𝑀2
ℎ

𝑚2
𝜇

)
− 𝜋

2

4

]2

, (10)

Γ𝜇𝑒𝑒 ≃
𝛼|𝐶𝜇𝑒|2|𝐶𝑒𝑒|2
144(4𝜋)8𝑣4

𝑚5
𝜇 log

2
(𝑀2

ℎ

𝑚2
𝑒

)
, (11)

Γ𝜏𝜏𝜇 ≃
𝛼|𝐶𝜏𝜏 |2|𝐶𝜏𝜇|2

9(4𝜋)8𝑣4
𝑚5
𝜏

[
log

(𝑀2
ℎ

𝑚2
𝜏

)
− 𝜋

2

4

]2

, (12)

Γ𝜏𝜇𝜇 ≃
𝛼|𝐶𝜏𝜇|2|𝐶𝜇𝜇|2
144(4𝜋)8𝑣4

𝑚5
𝜏 log

2
(𝑀2

ℎ

𝑚2
𝜇

)
, (13)

Γ𝜏𝑒𝜇 ≃
𝛼|𝐶𝜏𝑒|2|𝐶𝜇𝑒|2
144(4𝜋)8𝑣4

𝑚5
𝜏 log

2
(𝑀2

ℎ

𝑚2
𝑒

)
, (14)

Γ𝜏𝜏𝑒 ≃
𝛼|𝐶𝜏𝜏 |2|𝐶𝜏𝑒|2

9(4𝜋)8𝑣4
𝑚5
𝜏

[
log

(𝑀2
ℎ

𝑚2
𝜏

)
− 𝜋

2

4

]2

, (15)

Γ𝜏𝜇𝑒 ≃
𝛼|𝐶𝜏𝜇|2|𝐶𝜇𝑒|2
144(4𝜋)8𝑣4

𝑚5
𝜏 log

2
(𝑀2

ℎ

𝑚2
𝜇

)
, (16)

Γ𝜏𝑒𝑒 ≃
𝛼|𝐶𝜏𝑒|2|𝐶𝑒𝑒|2
144(4𝜋)8𝑣4

𝑚5
𝜏 log

2
(𝑀2

ℎ

𝑚2
𝑒

)
. (17)

The experimental limits Br(𝜇 → 𝑒𝛾) < 4.2 × 10−13 [35] can be used in the decays (9), (10) and (11). The decay Γ𝜇𝜏𝑒 yields 
bounds |𝐶𝜏𝜇||𝐶𝜏𝑒| < 7.83 × 10−5, whereas Γ𝜇𝜇𝑒 yields |𝐶𝜇𝜇||𝐶𝜇𝑒| < 4.4 × 10−4, and Γ𝜇𝑒𝑒 translates to |𝐶𝜇𝑒||𝐶𝑒𝑒| < 8.28 × 10−4. On 
the other hand, the limit Br(𝜏 → 𝜇𝛾) < 4.4 × 10−8 [35] can be used in the decays (12), (13) and (14), with the decay Γ𝜏𝜏𝜇 leading 
to the bound |𝐶𝜏𝜏 ||𝐶𝜏𝜇| < 0.66 and the decay Γ𝜏𝜇𝜇 leading to the bound |𝐶𝜏𝜇||𝐶𝜇𝜇| < 1.12, whereas the decay Γ𝜏𝑒𝜇 leads to the 
bound |𝐶𝜏𝑒||𝐶𝜇𝑒| < 0.64. Finally, the experimental limits Br(𝜏 → 𝑒𝛾) < 3.3 × 10−8 are used in last 3 decays in Eqs. (15), (16) and 
(17), with Γ𝜏𝜏𝑒 yielding the bound |𝐶𝜏𝜏 ||𝐶𝜏𝑒| < 0.57, Γ𝜏𝜇𝑒 yielding the bound |𝐶𝜏𝜇||𝐶𝜇𝑒| < 0.97 and finally Γ𝜏𝑒𝑒 yielding the bound |𝐶𝜏𝑒||𝐶𝑒𝑒| < 0.55.

Notice that bounds obtained here are roughly an order of magnitude weaker than the bounds obtained from 𝑙→ 3𝑙′ decays. The 
reason for this is that the former case proceeds through two loops, whereas the latter proceeds through one loop.

As the case with the decays 𝑙→ 𝑙1𝑙2𝑙3, the Belle II experiment is projected to provide stronger bounds [31–33], with projected 
branching ratios that are about an order of magnitude stronger than the current limits. For example, the projected Belle II constraints 
on the decay 𝜏 → 𝜇𝛾 are Br(𝜏 → 𝜇𝛾) < 1 × 10−9. This can be used in Γ𝜏𝜏𝜇 , Γ𝜏𝜇𝜇 and Γ𝜏𝑒𝜇 to yield the projections |𝐶𝜏𝜏 ||𝐶𝜏𝜇| <
9.92 × 10−2, |𝐶𝜏𝜇||𝐶𝜇𝜇| < 0.17 and |𝐶𝜏𝑒||𝐶𝜇𝑒| < 9.66 × 10−2, respectively. The projected limits are summarized in Table 1.

3.3. Constraints from muonium-antimuonium oscillations

𝜇+ and 𝑒− can form a bound state called muonium. This bound state can oscillate to antimuonium 𝜇−𝑒+ through the diagrams 
shown in Fig. 4, with 𝑓𝑖 = 𝑒−, 𝑓𝑗 = 𝜇+, 𝑓𝑘 = 𝜇− and 𝑓𝑙 = 𝑒+. The time-integrated 𝑀 −𝑀 conversion probability is constrained by 
the MACS experiment at PSI [36]

𝑃 (𝑀 →𝑀) < 8.3 × 10−11∕𝑆𝐵, (18)

where 𝑆𝐵 accounts for the splitting of muonium in the magnetic field of the detectors, and is given by 𝑆𝐵 = 0.35 for (𝑆 ±𝑃 ) ×(𝑆 ±𝑃 )
operators and 𝑆𝐵 = 0.9 for 𝑃 × 𝑃 operators. In this paper, we chose to be conservative and set 𝑆𝐵 = 0.35. The loops in the s- and 
t-channels in Fig. 4 are given by Eq. (C.2), which can be integrated out in the non-relativistic limit, yielding the following effective 
Lagrangian

𝐶2
𝜇𝑒

( 𝑚2
𝜇
)

6

eff =
32𝜋2𝑣2

log
𝑀2
ℎ

[𝜇𝑒][𝑒𝜇], (19)
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Fig. 4. The 𝑓𝑖𝑓 𝑗 → 𝑓𝑘𝑓 𝑙 scattering through the ℎ2𝑓𝑓 couplings. The left diagram is the s-channel, whereas the right diagram is the t-channel.

where we have set the renormalization scale 𝜇2 = 𝑚2
𝜇 . The theoretical prediction for the conversion rate is governed by the matrix 

element

𝑀 =
⟨
↑𝜇↓𝑒 − ↓𝜇↑𝑒

||| 12eff
|||↑𝑒↓𝜇 − ↓𝑒↑𝜇

⟩
, (20)

where the factor of 1∕2 arises from the normalization of the initial and final states. Following the argument in [37], the mass splitting 
between two states is given by

|Δ𝑀| = 2|𝑀 | = 1
𝜏𝑀
, (21)

where 𝜏𝑀 is the muonium oscillation time. A non-relativistic reduction of the effective Lagrangian in Eq. (19) yields the following 
effective potential in position space

𝑉eff(𝑟) =
𝐶2
𝜇𝑒

64𝜋2𝑣2
log

( 𝑚2
𝜇

𝑀2
ℎ

)
𝛿3(𝑟). (22)

We can assume that both 𝑀 and 𝑀 are in the Coulombic ground state, such that their wavefunctions are 𝜙100 = exp
(
−𝑟∕𝑎𝑀

)
∕√

𝜋𝑎3
𝑀

, with 𝑎𝑀 = 1∕𝛼𝑚red being the muonium Bohr radius, and 𝑚red = 𝑚𝜇𝑚𝑒∕(𝑚𝜇 + 𝑚𝑒) ≃ 𝑚𝑒 being the muonium reduced mass. 
Therefore, the mass splitting can easily be calculated as

|Δ𝑀| ≃ 2∫ 𝑑3𝑟𝜙∗100(𝑟)𝑉eff(𝑟)𝜙100(𝑟) ≃
𝐶2
𝜇𝑒

32𝜋3𝑣2𝑎3
𝑀

log
( 𝑚2

𝜇

𝑀2
ℎ

)
, (23)

and the conversion rate readily follows

𝑃 (𝑀 →𝑀) =

∞

∫
0

𝑑𝑡Γ𝜇 sin2 (Δ𝑀𝑡)𝑒−Γ𝜇𝑡 =
2

4 + Γ2𝜇∕(Δ𝑀)2
. (24)

Given the bound in Eq. (18), we find the upper limit on |𝐶𝜇𝑒| < 0.39.

3.4. Constraints from the magnetic dipole moment and the 𝑔 − 2 anomaly

It was first shown by the E821 experiment at BNL [38] and later confirmed by the E989 experiment at Fermilab [39–41], that 
there is a discrepancy between the measured and predicted [42] magnetic dipole moment of the muon. This discrepancy, known as 
the 𝑔 − 2 anomaly, currently stands at

Δ𝑎𝜇 = 𝑎
Exp
𝜇 − 𝑎SM

𝜇 = (251 ± 59) × 10−11, (25)

with a significance of 4.2𝜎. On the other hand, several lattice QCD groups have recently reported higher theoretical predictions 
compared to the data-driven approach, and seem to agree with experiment [43–45]. For the purposes of extracting the relevant 
bounds, we shall assume that the 𝑔 − 2 anomaly exists and that it is given by Eq. (25) above, and if future studies show that indeed 
the theory and experiment agree, then the bounds are simply ignored.

The possibility of the effective coupling ℎ2𝜇𝜇 solving the 𝑔 − 2 anomaly was considered in [19], where it was shown that this 
type of coupling can accommodate the anomaly if this coupling is large enough. It was also shown that such a deviation from the SM 
would point to a scale of NP ∼ 10 − 18 TeV through unitarity arguments, which can be lowered to ∼ 5 TeV if the Higgs couplings to 
𝑊 ∕𝑍 conform to the SM predictions.

Here we generalize the situation to FV ℎ2𝑙𝑙 couplings. These couplings contribute to the muon magnetic dipole moment at 2 loops 
as shown in the diagrams in Fig. 5. Notice that the FV case corresponds to 𝑙 = 𝑒, 𝜏 . These diagrams can be evaluated using the same 
7

techniques illustrated in the appendices and in [19], and they are found to provide the following contribution to (𝑔 − 2)𝜇
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Fig. 5. FV contribution to the muon magnetic dipole moment through the couplings ℎ2𝑙𝑙. Here, 𝑙 = {𝑒,𝜇, 𝜏}.

Δ𝑎𝑙𝜇 ≃
𝐶2
𝜇𝑙

2(4𝜋)4𝑣2
𝑚𝜇𝑚𝑙

[
2 log2

(𝑚2
𝑙

Λ2

)
−
(
1 +

2𝑚𝜇
3𝑚𝑙

)
log

(𝑀2
ℎ

Λ2

)
+ 𝜋

2

3

]
, (26)

where the UV cutoff Λ ≫𝑀ℎ. Setting Λ = 10 TeV, the 𝑔 − 2 anomaly in Eq. (25) can be explained with the following values4

|𝐶𝜏𝜇| ≃ 0.26 ± 0.03, (27)

|𝐶𝜇𝜇| ≃ 0.79 ± 0.1, (28)

|𝐶𝜇𝑒| ≃ 6.34 ± 0.8. (29)

3.5. Constraints form electric dipole moment

In general, FV coupling of the form 𝐶𝑖𝑗 can contribute to the Electric Dipole Moment (EDM) of electrons and muon if such couplings 
are complex. In such case, the EDM will be proportional to the imaginary parts of 𝐶𝑖𝑗 , however, as we are assuming real couplings, 
there will be no constraints from the EDM of the electron or the muon.

3.6. LEP constraints

Constraints can be obtained from LEP from the processes 𝑒+𝑒− → 𝜇+𝜇−, 𝜏+𝜏−. These processes are shown in Fig. 4. The s-channel 
involves the couplings 𝐶𝑒𝑒, 𝐶𝜇𝜇 and 𝐶𝜏𝜏 and thus does not lead to any FV. Therefore, we ignore it by setting these couplings to 0. On 
the other hand, the t-channel involves the FV couplings 𝐶𝜇𝑒 and 𝐶𝜏𝑒. Details for calculating the loop are given in Appendix C. Using 
the explicit expression of the loop integral in Eq. (C.3), it is a simple exercise to calculate the cross-section of the above processes. 
Neglecting the masses of the initial and final state leptons, and using 

√
𝑠 = 207 GeV5 and a UV cutoff Λ = 104 GeV, we find

𝜎(𝑒+𝑒− → 𝜇+𝜇−(𝜏+𝜏−)) ≃ 2.2 × 10−2𝐶4
𝜇(𝜏)𝑒 fb. (30)

The 1𝜎 uncertainties on 𝜎(𝑒+𝑒− → 𝜇+𝜇−(𝜏+𝜏−)) are given by 0.088 (0.11) pb [46], which can be translated into the rather weak 
bounds |𝐶𝜇𝑒| < 9 (|𝐶𝜏𝑒| < 9.52). This is expected as these processes are proportional to four powers of the couplings and thus cannot 
compete with decay processes, which are proportional to only two powers of the coupling. This is consistent with the case of FV from 
Yukawa couplings, see for instance [3].

3.7. Constraints from 𝜇 conversion in nuclei

The experimental searches for the conversion of 𝜇→ 𝑒 in nuclei can be used to set limits of the leptonic effective FV couplings 
ℎ2𝑙𝑙. This process can proceed at one and two loops as shown in Fig. 6. In the notation of [47], the diagram on the left (right) is called 
the scalar (tensor) contribution. The scalar contribution can set limits on the coupling 𝐶𝜇𝑒 . On the other hand, the tensor diagram 
can provide constraints on the combinations |𝐶𝜏𝜇||𝐶𝜏𝑒|, |𝐶𝜇𝜇||𝐶𝜇𝑒| or |𝐶𝜇𝑒||𝐶𝑒𝑒| depending on the lepton running inside the loop. 

4 The coupling 𝐶𝜇𝜇 defined here is rescaled compared to the coupling 𝐶𝜇2 defined in [19]. The two couplings are related as follows: 𝐶𝜇2 =
𝑣𝐶𝜇𝜇√
2𝑚𝜇

. With this rescaling, 
both results are consistent.
8

5 Although the COM energy of LEP is 209 GeV, the relevant COM energy for the processes 𝑒+𝑒− → 𝜇+𝜇− , 𝜏+𝜏− quoted in [46] is actually 207 GeV.
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Fig. 6. FV contribution to 𝜇→ 𝑒 conversion in nuclei.

Fig. 7. FV Higgs decays to 𝑙𝑖𝑙𝑗 .

However, the tensor contribution is not expected to compete with the bounds from 𝑙𝑖 → 𝑙𝑘𝛾 and therefore we neglect it here. We 
present the detailed calculation in Appendix D.

From Eq. (D.8), the bound Br(𝜇 → 𝑒) < 7 × 10−13 @ 90% C.L. [48] translates to the upper bound |𝐶𝜇𝑒| < 0.34. On the other 
hand, the Mu2e experiment is planning on improving this limit to Br(𝜇→ 𝑒) < 10−16 [49]. This would better the bound to become |𝐶𝜇𝑒| < 4.56 × 10−3.

3.8. Higgs FV decays

Higgs FV decays can be used to set constraints on the leptonic couplings 𝐶𝑖𝑗 . These decays proceed at one loop as shown in Fig. 7. 
The diagram is easily evaluated using Dimensional Regularization (DR), and the decay width is given by

Γ(ℎ→ 𝑙𝑖𝑙𝑗 ) ≃
9𝐶2

𝑖𝑗
𝑀5
ℎ

4(4𝜋)5𝑣4
, (31)

where we have set the renormalization scale 𝜇2 =𝑀2
ℎ
𝑒−𝜋∕

√
3 and neglected the masses of the final state. The latest bounds on these 

decays can be obtained from [30]. In specific, we have the following bounds6: Br(ℎ → 𝜇𝑒) < 3.5 × 10−4, Br(ℎ → 𝜏𝑒) < 6.1 × 10−3 and 
Br(ℎ → 𝜏𝜇) < 2.5 × 10−3. These bounds translate into the constraints: |𝐶𝜇𝑒| < 0.25, |𝐶𝜏𝑒| < 1.04 and |𝐶𝜏𝜇| < 0.67 respectively. For 
completeness, [30] also provides the upper bound Br(ℎ → 𝑒+𝑒−) < 1.9 × 10−3, which provides the constraint |𝐶𝑒𝑒| < 0.58.

The High-Luminosity (HL) LHC is expected to yield stronger bounds on the Higgs FV decays [50]. The projected limited on the 
decay ℎ → 𝑒𝜇 is 3 × 10−5, which translates into a projected bound of |𝐶𝜇𝑒| < 7.3 × 10−2. On the other hand, the project limit on the 
decays ℎ → 𝜇𝜏, 𝜏𝑒 is 3 × 10−4, which leads to the upper bound of |𝐶𝜏𝜇|, |𝐶𝜏𝑒| < 0.23.

3.9. Constraints from 𝑍→ 𝑙𝑙

The excellent measurements of the 𝑍 branching ratios suggest that they can be used to extract bounds on the leptonic FV couplings. 
The FV couplings 𝐶𝑖𝑗 can contribute to the 𝑍 decay through a process similar to the bottom diagram of Fig. 5, with the photon being 
replaced with 𝑍 , and the external particles being leptons of the same flavor, whereas the internal leptons being of a different flavor. 
Using DR, we express the corrections to decay width of the 𝑍 boson as

𝛿Br(𝑍 → 𝑙𝑖𝑙𝑖) ≃
(𝑔2
𝑉𝑙
+ 𝑔2

𝐴𝑙
)𝑀𝑍

48Γ𝑍

(𝐶𝑖𝑗𝑀ℎ

16𝜋2𝑣

)4
[
log2

(𝑀2
ℎ

𝑀2
𝑍

)
− 3 log

(𝑀2
ℎ

𝑀2
𝑍

)
+ 𝜋

2

12
+ 7

2

]2

, (32)
9

6 The quoted bounds are @ 95% CL. Therefore, we rescale them to 90% to be consistent with the other bounds.
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Fig. 8. FV 𝑍 decays to 𝑙𝑖𝑙𝑗 .

where 𝑔𝑉𝑙 =
𝑔

2cos𝜃𝑊
(𝑇 3
𝑙𝐿
−2 sin2 𝜃𝑊 𝑄𝑙) and 𝑔𝐴𝑙 =

𝑔

2cos𝜃𝑊
(𝑇 3
𝑙𝐿
) are the vector and axial couplings of the lepton 𝑙 to the 𝑍 boson in the 

standard notation, and Γ𝑍 = 2.4952 GeV is the measured decay width of the 𝑍 . The limits on non-FV leptonic 𝑍 decays are given by 
[30]

Br(𝑍 → 𝑒+𝑒−) = (3363.2 ± 4.2) × 10−3%, (33)

Br(𝑍 → 𝜇+𝜇−) = (3366.2 ± 6.6) × 10−3%, (34)

Br(𝑍 → 𝜏+𝜏−) = (3369.8 ± 8.3) × 10−3%. (35)

Given these bounds, we can extract 90% C.L. constraints on the FV couplings 𝐶𝑖𝑗 by demanding that (𝛿Br)FV < 1.645(𝛿Br)Exp. Each 
bound can help constrain 3 different couplings depending on the flavor of the internal lepton, two of which are FV whereas one is 
flavor-conserving. Apart from the coupling 𝐶𝑖𝑗 , the correction in Eq. (32) is identical for all lepton flavors. This means that for each 
decay mode, the upper limit for all three FV couplings will be identical.

The experimental limits in Eq. (33) lead to the constraints |𝐶𝜏𝑒|, |𝐶𝜇𝑒|, |𝐶𝑒𝑒| < 5.62, whereas the limits in Eq. (34) translate into 
constraints |𝐶𝜏𝜇|, |𝐶𝜇𝜇|, |𝐶𝜇𝑒| < 7.04 and the limits in Eq. (35) yield the bounds |𝐶𝜏𝜏 |, |𝐶𝜏𝜇|, |𝐶𝜏𝑒| < 7.9. These limits are comparable 
to the ones obtained from the LEP measurements above (see subsection 3.6), which is expected, as the experimental limits shown in 
Eqs. (33) - (35) are essentially obtained from LEP data. However, improved 𝑍 decay measurements in future experiment, such as in 
the ILC [51]; can improve the these limits through its proposed ultra-precision electroweak measurements.

3.10. Constraints from 𝑍→ 𝑙𝑖𝑙𝑗

Better constraints can be obtained from the bounds on the FV decays of the 𝑍 boson, because unlike the decays 𝑍 → 𝑙𝑙 which 
starts at 2 loops, the decays 𝑍 → 𝑙𝑖𝑙𝑗 start at 1 loop as shown in Fig. 8. In addition, the experimental bounds on FV final states are 
more stringent compared to the flavor-conserving ones.

The corrections of the diagrams in Fig. 8 are easy to calculate by first integrating out the Higgs loop then calculating the tree-level 
diagram. Using DR in the MS scheme, and setting the renormalization scale 𝜇 =𝑀ℎ, we obtain

𝛿Γ(𝑍 → 𝑙𝑖𝑙𝑗 ) ≃
𝐶2
𝑖𝑗
(𝑔2
𝑉𝑙
+ 𝑔2

𝐴𝑙
)

6(4𝜋)5𝑣2
𝑚2
𝑖
𝑀𝑍𝑀

4
ℎ

(𝑚2
𝑖
−𝑚2

𝑗
)2
. (36)

The limits on FV leptonic 𝑍 decays are given by [30]7

Br(𝑍 → 𝑒±𝜇∓) = 7.5 × 10−7, (37)

Br(𝑍 → 𝑒±𝜏∓) = 9.8 × 10−6, (38)

Br(𝑍 → 𝜇±𝜏∓) = 1.2 × 10−5. (39)

Notice that for each decay, the corresponding 𝐶𝑖𝑗 will have 2 possible upper limits depending on which particle is identified as 𝑖
and which one is identified as 𝑗. For example, for the first decay, we will have a different bound when we identify 𝑖 as 𝑒 and 𝑗 as 𝜇
compared to when these particles are flipped. As can clearly seen from Eq. (36), the strongest bound is obtained when 𝑖 is identified 
with the heavier of the two leptons. In the following, we quote the stronger of the two bounds. Specifically, Eqs. (37), (38) and (39)

lead to the constraints |𝐶𝜇𝑒| < 1.59 × 10−3, |𝐶𝜏𝑒| < 9.65 × 10−2 and |𝐶𝜏𝜇| < 0.11 respectively.
10

7 Here too, the bounds quoted are @ 95% C.L., and we rescale them to be @ 90% C.L. to be consistent with the previous results.
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Fig. 9. The current experimental constraints and the future projections on the lepton FV through di-Higgs effective couplings 𝐶𝑙𝑙′ . The solid regions correspond to 
constraints, whereas the dashed lines represent future projections. In (a), the green color corresponds bounds/projections from 𝜏→ 3𝜇, whereas the blue corresponds 
to 𝜏 → 𝜇𝛾 . In (b), the green corresponds to 𝜇→ 3𝑒, and the blue to 𝜇→ 𝑒𝛾 . In (c), the green corresponds to 𝜏→ 3𝑒, and the blue to 𝜏→ 𝑒𝛾 . In (d), the green corresponds 
to 𝜏− → 𝑒+𝜇−𝜇− , whereas the blue to 𝜏− → 𝜇+𝜇−𝑒− , and the red to 𝜏→ 𝑒𝛾 . In (e), the green arises from 𝜏− → 𝜇+𝑒−𝑒− , the blue from 𝜏− → 𝜇−𝑒+𝑒− , and the red from 
𝜏 → 𝜇𝛾 . In (f), the green arises from 𝜏− → 𝜇+𝜇−𝑒− .

3.11. Fine-tuning and lepton mass corrections

None-zero 𝐶𝑙𝑙 can give rise to corrections to the mass of the lepton when the Higgs loop is closed. These corrections need to be 
suppressed in order to avoid the stringent bounds on the leptons’ masses, which could lead to fine-tuning. We can easily estimate the 
level of fine-tuning associated with 𝐶𝑙𝑙 as

𝛿𝑚𝑙

𝑚𝑙
∼
𝐶𝑙𝑙𝑀

2
ℎ

32𝜋2𝑣2
∼𝑂(10−3) ×𝐶𝑙𝑙, (40)

which is negligible for the range of 𝐶𝑙𝑙 required by FV constraints. Therefore, FV through 𝐶𝑙𝑙 does not require any fine-tuning.

4. Quark sector

We now turn our attention to investigating the next-to-minimal FV couplings in the quark sector. We first discuss the constraints 
on the couplings 𝐶𝑖𝑗 that arise from meson oscillations, then we investigate the bounds that can be extracted from 𝐵-physics searches. 
The constraints are summarized in Table 2.

4.1. Constraints from meson oscillations

Constraints on the couplings 𝐶𝑖𝑗 can be obtained from meson oscillations, which include in particular 𝐷0 − 𝐷̄0, 𝐵0
𝑠,𝑑

− 𝐵̄0
𝑠,𝑑

, and 
𝐾0 − 𝐾̄0 oscillations. These oscillations can proceed through the di-Higgs couplings 𝐶𝑖𝑗 via diagrams identical to the ones shown in 
11

Fig. 4. The effective Hamiltonian of these diagrams can be written as [52]
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Fig. 10. (Cont.) The current experimental constraints and the future projections on the lepton FV through di-Higgs effective couplings 𝐶𝑙𝑙′ . The solid regions correspond 
to constraints, whereas the dashed lines represent future projections. In (a), the bounds and projections arise from 𝜏− → 𝜇−𝑒+𝑒− , in (b) and (c) from 𝜇→ 𝑒𝛾 , in (d) 
from 𝜏→ 𝜇𝛾 and in (e) from 𝜏→ 𝑒𝛾 .

Table 2

90% CL bounds on the FV di-Higgs effective couplings in the quark 
sector and the corresponding lower limit on the scale of NP from 
matching to the SMEFT. The bounds are obtained from meson 
oscillations and 𝐵-physics searches.

Channel Couplings Bounds Λ (TeV)

𝐷0 Oscillations |𝐶𝑢𝑐 | < 7.73 × 10−4 15.3

𝐵0
𝑑

Oscillations |𝐶𝑑𝑏| < 1.73 × 10−3 10.2

𝐵0
𝑠

Oscillations |𝐶𝑠𝑏| < 1.50 × 10−2 3.5

𝐾0 Oscillations |𝐶𝑠𝑑 | < 1.20 × 10−5 123

𝑅𝐾+ |𝐶𝜇𝜇|∕|𝐶𝑒𝑒| [0.93,1.01] -

𝐵0
𝑑
→ 𝜇+𝜇− |𝐶𝜇𝜇||𝐶𝑑𝑏| < 4.17 × 10−5 66

𝐵𝑠
𝑑
→ 𝜇+𝜇− |𝐶𝜇𝜇||𝐶𝑠𝑏| < 9.64 × 10−5 43.4

eff = 𝐶2,𝑖𝑗 (𝑞
𝛼
𝑗𝑅𝑞

𝛼
𝑖𝐿
)(𝑞𝛽

𝑗𝑅
𝑞
𝛽

𝑖𝐿
) +𝐶5,𝑖𝑗 (𝑞

𝛼
𝑗𝑅𝑞

𝛽

𝑖𝐿
)(𝑞𝛽

𝑗𝐿
𝑞𝛼
𝑖𝑅
), (41)

where 𝐶2,𝑖𝑗 arises from integrating out the t-channel, whereas 𝐶5,𝑖𝑗 arises from integrating out the s-channel in Fig. 4. The detailed 
calculation of these loops is presented in Appendix C. In particular, the loop factor 𝑉 (𝑃 2) is given in Eq. (C.2), and in the non-

relativistic limit where we can assume that 𝑀2
ℎ
≫ 𝑃 2, 𝑉 (𝑃 2) is approximately given in Eq. (C.4). Thus, identifying the renormalization 

scale with the mass of the meson 𝑚, we can relate 𝐶2,𝑖𝑗 and 𝐶5,𝑖𝑗 defined in [52] to the FV di-Higgs couplings 𝐶𝑖𝑗 as follows

𝑖𝐶2
𝑖𝑗

(𝑀2 )

12

𝐶2,𝑖𝑗 ≃ 𝐶5,𝑖𝑗 ≃ −
64𝜋2𝑣2

log ℎ

𝑚2 . (42)
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Using Eq. (42) above, we can translate the bounds on 𝐶2,𝑖𝑗 and 𝐶5,𝑖𝑗 presented in [52] into bounds on 𝐶𝑖𝑗 .8 𝐷0 − 𝐷̄0 oscillations 
place constraints on the coupling 𝐶𝑢𝑐 . The stronger bound arises from |𝐶2,𝑢𝑐 | with an upper limit of 1.6 × 10−13, which translated 
to the constraint |𝐶𝑢𝑐 | < 7.73 × 10−4. 𝐵0

𝑑
− 𝐵̄0

𝑑
, oscillations can set limits on the coupling 𝐶𝑑𝑏 , where here, the stronger of the two 

bounds is |𝐶5,𝑑𝑏| < 6 ×10−13, which translated to |𝐶𝑑𝑏| < 1.73 ×10−3. On the other hand, 𝐵0
𝑠 − 𝐵̄

0
𝑠 , oscillations constrain the coupling 

𝐶𝑠𝑏, with |𝐶5,𝑠𝑏| < 4.5 × 10−11 being the more stringent bound, which leads to |𝐶𝑠𝑏| < 1.5 × 10−2. Finally, 𝐾0 − 𝐾̄0 oscillations place 
bounds on 𝐶𝑑𝑠. These bounds however, only constrain the imaginary parts of |𝐶2,𝑠𝑏| and |𝐶5,𝑠𝑏|. Specifically, the bounds read

Im(𝐶2,𝑑𝑠) = [−5.1,9.3] × 10−17, (43)

Im(𝐶5,𝑑𝑠) = [−5.2,2.8] × 10−17. (44)

Given Eq. (42) and our assumption that 𝐶𝑖𝑗 are real, it’s not hard to see that only the negative part of bounds in Eqs. (43) and 
(44) will be translated into a bound on 𝐶𝑑𝑠. In addition, it’s easy to see that 𝐶2,𝑑𝑠 leads to a stronger bound, which translates to |𝐶𝑑𝑠| < 1.2 × 10−5.

4.2. Bounds from 𝐵-physics

Historically, 𝐵-physics attracted a lot of attention because experimental searches revealed several discrepancies between their 
findings and the SM predictions. These flavor anomalies have stirred intensive research in 𝐵-physics (see [53] for a recent review), 
however, recent experimental searches seem to eliminate most of these anomalies. In particular, the recent results from the LHCb 
[54], reveal that lepton universality ratios 𝑅𝐾+ and 𝑅𝐾∗ are consistent with the SM model. Furthermore, the latest CMS results [55]

also show consistency of the decays 𝐵𝑑,𝑠 → 𝜇+𝜇− with the SM model. Thus, we can use these searches to constraint the quark FV 
couplings.

The lepton universality ratio 𝑅𝐾+ is defined as

𝑅𝐾+ = Br(𝐵+ →𝐾+𝜇+𝜇−)
Br(𝐵+ →𝐾+𝑒+𝑒−)

. (45)

At the quark level, the decay of the 𝐵+ meson to 𝐾+𝑙+𝑙− with two leptons involves the decay 𝑏→ 𝑠𝑙+𝑙−, which can proceed 
via di-Higgs couplings through a diagram similar to the ones in Fig. 4. Given the results in Appendix C, it’s easy to see that within 
our framework, 𝑅𝐾+ = |𝐶𝜇𝜇 |2|𝐶𝑒𝑒|2 . The strongest bound on 𝑅𝐾+ arises from the central 𝑞2 region [54], with 𝑅Exp

𝐾+ = 0.949+0.048−0.047, which 
translates into the bound|𝐶𝜇𝜇||𝐶𝑒𝑒| = [0.93,1.01] @ 90% C.L. (46)

The bound is shown in part (a) of Fig. 11 The Measurements of the decays 𝐵0, 𝐵𝑠 → 𝜇+𝜇− can also furnish stringent bounds. At 
the quark level, the decays 𝑑(𝑠)𝑏→ 𝜇+𝜇+ proceed via the 𝑠-channel in Fig. 4. Utilizing the results in Appendix C, one can show that 
in the limit 𝑚𝐵𝑠 , 𝑚𝑏 ≫𝑚𝑠, 𝑚𝜇 , the decay width is given by

Γ(𝐵𝑥 → 𝜇+𝜇−) ≃
|𝐶𝑏𝑥|2|𝐶𝜇𝜇|2
(16𝜋𝑣)4𝜋

𝑚3
𝐵𝑥

(
1 −

𝑚2
𝑏

𝑚2
𝐵𝑥

)[
log

(𝑚2
𝐵𝑥

𝑀2
ℎ

)
− 1

]2

, (47)

where 𝑥 = 𝑑(𝑠) for 𝐵𝑑(𝑠). The recent measurement from [55] can be used to set the following upper bound of the branching ratio of 
the former decay. The bound comes out to be Br(𝐵𝑑 → 𝜇+𝜇−) < 1.61 × 10−10, which using Eq. (47) translates into the |𝐶𝜇𝜇||𝐶𝑑𝑏| <
4.17×−5. This bound is shown in part (b) of Fig. 11.

As for the decay 𝐵𝑠 → 𝜇+𝜇−, the SM prediction is BrSM(𝐵𝑠 → 𝜇+𝜇−) = (3.66 ± 0.14) × 10−9, whereas the CMS measurement is 
given by BrCMS(𝐵𝑠 → 𝜇+𝜇−) = (3.83+0.38+0.24−0.36−0.11) × 10−9. Thus, we can set an upper limit on the deviation between the SM prediction 
and the CMS measurement: 𝛿Br(𝐵𝑠 → 𝜇+𝜇−) < 9.44 × 10−10, where we have added the theoretical and experimental uncertainties in 
quadrature and rescaled the bound to be @ 90% CL. Using Eq. (47), this translates to |𝐶𝜇𝜇||𝐶𝑠𝑏| < 9.64 × 10−5. The bound is shown 
in part (c) of Fig. 11.

5. Matching to the SMEFT and the scale of new physics

Finally in this section, we show how our framework matches to the SMEFT, then use the upper bounds on the FV Wilson coefficients 
to set lower limits on the corresponding scale of NP. Working in the Warsaw basis [56], there is only one class of operators at 
dimension-6 that contributes to the FV di-Higgs couplings, which has the form 𝜓2𝐻3. There are 3 operator categories in 𝜓2𝐻3

𝜓2𝐻3 =
𝐶𝑙
𝑖𝑗

Λ2 (𝐻
†𝐻)(𝑙𝑖𝐻𝑒𝑗 ) +

𝐶𝑢
𝑖𝑗

Λ2 (𝐻
†𝐻)(𝑞𝑖𝐻̃𝑢𝑗 ) +

𝐶𝑑
𝑖𝑗

Λ2 (𝐻
†𝐻)(𝑞𝑖𝐻𝑑𝑗 ) + ℎ.𝑐., (48)
13

8 The bounds presented in [52] are @ 95% CL. So, we rescale them to a 90% C.L. as usual.
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Fig. 11. The experimental bounds on the FV di-Higgs effective couplings extracted from 𝐵-physics. (a) corresponds to the bounds from the measurement of 𝑅𝐾+ , (b) 
and (c) correspond to the bounds obtained from the measurement of 𝐵𝑑, 𝐵𝑠 → 𝜇+𝜇− respectively. The solid blue region is excluded.

which should be matched to the operators in eq. (6). The matching is identical for all of the operators and is fairly straightforward: 
We simply plug the Higgs doublet in eq. (48), then we match the ℎ2 term to eq. (6). Setting 𝐶SMEFT

𝑖𝑗
= 1, we find

𝐶𝑖𝑗 =
3𝑣2

Λ2 . (49)

Eq. (49) can be used to set a lower limit on the scale of NP Λ from the upper bounds on 𝐶𝑖𝑗 . We present these bounds in Tables 1

and 2. In the lepton sector, we can see that lower bounds ranges between ∼ 1 − 10 TeV. On the other hand, the stronger bounds in 
the quark sector lead to much higher scales Λ, ranging from a few TeV to ∼ 123 TeV.

6. Conclusions

In this paper, we employed a completely model-independent bottom-up EFT to investigate FV in the quark and the lepton inter-

actions with the Higgs. In this approach we dubbed the WSD, we did not resort to any power expansion, and instead listed the most 
general FV interactions. This approach is a generalization of the one introduced in [20–24] to the FV case.

Unlike previous studies on FV in the Higgs sector which focused on FV Yukawa couplings 𝑌𝑖𝑗 ≠
√
2𝑚𝑖𝛿𝑖𝑗∕𝑣. In this paper, we 

focused on the next-to-minimal FV that arises from the di-Higgs effective couplings of the form ℎ2𝑓𝑓 , and assumed that the Yukawa 
couplings are equal to the SM predictions. To the best our knowledge, this is the first time constraints are set on these types of 
couplings.

In the lepton sector, we investigated the bounds on the FV di-Higgs couplings that arise form 𝑙→ 𝑙1𝑙2𝑙3 decays, 𝑙𝑖 → 𝑙𝑘𝛾 decays, 
muonium oscillations, the 𝑔 − 2 anomaly, LEP searches, 𝜇→ 𝑒 conversion in nuclei, leptonic FV Higgs decays, and from both flavor-

conserving and FV 𝑍 decays. We have set upper limits on both individual effective couplings and products of the various couplings, 
and found that these bounds in general vary between ∼𝑂(1) down to ∼𝑂(10−5). In addition, we utilized the projections of some future 
experiments, such as Belle II, the Mu2e experiment and the HL-LHC in order to find future projections on some of these couplings, 
and found that these bounds can be improved by roughly a factor ranging between a few and two orders of magnitude. The bounds 
and future projections are summarized in Table 1 and Figs. 9 and 10. On the other hand, bounds on the FV di-Higgs couplings in 
the quark sector were obtained from meson oscillations and from 𝐵-physics searches, and these range between ∼ 𝑂(10−2) down to 
∼𝑂(10−5). These bounds are summarized in Table 2 and Fig. 11.

We have shown how our approach can be mapped to the SMEFT and have shown the scale of NP that corresponds to the upper 
limits on the FV Wilson coefficients. We saw that the scale of NP ranges between ∼ 1 − 10 TeV in the lepton sector, and between a 
few TeV up to ∼ 123 TeV in the quark sector. We believe that measuring the di-Higgs effective couplings, whether flavor-conserving 
or FV, is of particular importance and should receive adequate attention in the LHC searches and other low-energy experiments. The 
proposed muon collider would be an interesting laboratory where these couplings can be probed.
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Appendix A. The decay width of 𝒍 → 𝒍𝟏𝒍𝟐𝒍𝟑

The matrix element of the decay shown in Fig. 2 is given by

123 = −𝑖
𝐶𝑙𝑙1𝐶𝑙2𝑙3

2𝑣2
𝑢(𝑞1)∫

𝑑4𝑘

(2𝜋)4
1

(𝑘− 𝑝+ 𝑞1)2 −𝑀2
1

𝑘2 −𝑀2 𝑢(𝑝)𝑢(𝑞3)𝑣(𝑞2), (A.1)

where 𝑀 is the mass of the particle in the loop. The loop is logarithmically divergent and needs regularization. We use DR to perform 
the momentum integral

123 =
𝐶𝑙𝑙1𝐶𝑙2𝑙3

32𝜋2𝑣2
𝑢(𝑞1)𝑢(𝑝)𝑢(𝑞3)𝑣(𝑞2)Γ(2 −

𝑑

2
)
( 𝜇2
𝑀2

)2− 𝑑2
1

∫
0

𝑑𝑥
[
1 + 𝑥(𝑥− 1)(𝑚2 +𝑚2

1 − 2𝑝.𝑞1)∕𝑀2
] 𝑑

2 −2
, (A.2)

where 𝑚, 𝑚1 are the masses of 𝑙, 𝑙1 respectively and 𝜇 is the renormalization scale. Before we perform the integral over the Feynman 
parameter, we notice that in the limit 𝑀 ≫𝑚, 𝑚1 applicable in our case, we can drop the masses 𝑚 and 𝑚1 from the integral. In 
addition, in the rest frame of the decaying particle, 𝑝.𝑞1 = 𝑚𝐸1, with 𝐸1 being the energy of 𝑙1. Given that the upper limit of 𝐸1 is 
𝑚∕2, we can drop that term as well. Therefore, in the limit 𝑀 ≫𝑚, 𝑚1 the integral in Eq. (A.2) becomes trivial. Setting 𝑑 = 4 − 2𝜖
and using the MS scheme, the regularized matrix element reads

123 = −
𝐶𝑙𝑙1𝐶𝑙2𝑙3

32𝜋2𝑣2
log

(
𝑀2

𝑚2

)
𝑢(𝑞1)𝑢(𝑝)𝑢, (𝑞3)𝑣(𝑞2), (A.3)

where have set 𝜇2 =𝑚2. Before we calculate the decay width, we point out that depending on the decay, there could be either one or 
two Feynman diagrams. For example, 𝜏 → 3𝜇 obviously involves only one Feynman diagram, i.e. 𝑙 = 𝜏 , and 𝑙1, 𝑙2, 𝑙3 = 𝜇. On the other 
hand, a process like 𝜏− → 𝜇+𝜇−𝑒− involves two diagrams: the first with 𝑙1 = 𝑒−, 𝑙2 = 𝜇+, and 𝑙3 = 𝜇−, and the second with the 𝑙1 and 
𝑙3 interchanged. The matrix elements of the two diagrams should be added together, with the appropriate Fermi-Dirac statistics taken 
into consideration. Here we show the decay width of processes with only one Feynman diagram. Generalizing to processes with two 
Feynman diagrams is straightforward.

Since the decays we are interested in are 𝜏 → 3𝜇, 𝜏 → 3𝑒, 𝜏 → 𝜇𝜇𝑒, 𝜏 → 𝜇𝑒𝑒 and 𝜇→ 3𝑒, in all cases we have 𝑚 ≫𝑚1, 𝑚2, 𝑚3. 
Thus, we can treat the final states as massless. This simplifies the phase space integral greatly and the final result reads

Γ(𝑙→ 𝑙1𝑙2𝑙3) =
𝑚5

𝑣4

[
𝐶𝑙𝑙1𝐶𝑙2𝑙3

512𝜋3
√
6𝜋

log
(𝑀2

ℎ

𝑚2
𝑙

)]2

. (A.4)

Appendix B. Calculating the 2-loop diagram of 𝒍𝒊 → 𝒍𝒌𝜸

Here we show the general calculation of the 2-loop diagram in Fig. 3. This diagram is the leading contribution to the decays 
𝜏 → 𝜇𝛾 , 𝜏→ 𝑒𝛾 and 𝜇→ 𝑒𝛾 . Notice that in each case, the inner particle 𝑗 could be either 𝜏 , 𝜇, or 𝑒, which leads to different structures 
of the matrix element with the corresponding effective couplings 𝐶𝑖𝑗 and 𝐶𝑗𝑘. We can write the matrix element as

𝑖𝑗𝑘 =
𝑒𝐶𝑖𝑗𝐶𝑗𝑘

2𝑣2
𝑢(𝑝− 𝑞,𝑚𝑘)𝐼𝑖𝑗𝑘𝑢(𝑝,𝑚𝑖)𝜖∗𝜇(𝑞), (B.1)

where the two-loop momentum integral is given by

𝐼𝑖,𝑗,𝑘 = ∫
𝑑4𝑘1
(2𝜋)4

(∕𝑘1 − ∕𝑞 +𝑚𝑗 )𝛾𝜇(∕𝑘1 +𝑚𝑗 )

[(𝑘1 − 𝑞)2 −𝑚2
𝑗
][𝑘21 −𝑚

2
𝑗
] ∫

𝑑4𝑘2
(2𝜋)4

1
[(𝑝− 𝑘1 − 𝑘2)2 −𝑀2][𝑘22 −𝑀

2]
. (B.2)

We can perform the integral over 𝑘2 first, then combine the results with the remaining integral over 𝑘1 , and finally perform the 
momentum integral over 𝑘1. Using DR, we find the following general form of the matrix element

𝑖𝑗𝑘 =
𝑒𝐶𝑖𝑗𝐶𝑗𝑘

(4𝜋)4𝑣2
Γ(4 − 𝑑)(−1)5−

𝑑
2
(4𝜋𝜇2
𝑀2
ℎ

)4−𝑑
𝑢(𝑝− 𝑞,𝑚𝑘)𝑢(𝑝,𝑚𝑖)(𝑝 ⋅ 𝜖∗) (B.3)

×

1

∫
0

𝑑𝑥

1

∫
0

𝑑𝑦

1

∫
0

𝑑𝑧𝑧1−
𝑑
2 (1 − 𝑧)

[
(𝑎+ 𝑏− 1)(𝑎𝑚𝑖 +𝑚𝑗 ) − 𝑏(𝑎𝑚𝑘 +𝑚𝑗 )

]
𝛼
𝑑
2 𝛽4−𝑑

,

15

where 𝑀ℎ is the mass of the Higgs, 𝑝𝜇 the momentum of the initial state lepton, and the functions 𝛼, 𝛽, 𝑎 and 𝑏 are given by
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𝑎 = 𝑥𝑧(𝑥− 1)
𝛼

, (B.4)

𝑏 = 𝑦(𝑧− 1)
𝛼

, (B.5)

𝛼 = (𝑥2 − 𝑥+ 1)𝑧− 1, (B.6)

𝛽 = −𝑧+ 𝑥𝑧(𝑥− 1)(𝑦− 1)(𝑧− 1)
𝛼

𝑚2
𝑖

𝑀2
ℎ

+ (𝑧− 1)
𝑚2
𝑗

𝑀2
ℎ

− 𝑥𝑦𝑧(𝑥− 1)(𝑧− 1)
𝛼

𝑚2
𝑘

𝑀2
ℎ

. (B.7)

The integrals in Eq. (B.3) are badly divergent and care is needed to regularize them. In addition, it is not possible to evaluate 
them exactly for any general particles 𝑖, 𝑗 and 𝑘. Thus, was need to approximate them by assuming 𝑀ℎ ≫𝑚𝜏 ≫𝑚𝜇 ≫𝑚𝑒, and only 
keep the lepton with the largest mass in each decay. Notice that in Eq. (B.7), although 𝑀 ≫𝑚𝑖,𝑗,𝑘, we need to keep the term with the 
largest lepton mass to keep the integral IR finite. Therefore, evaluating Eq. (B.3) will depend on what the particles 𝑖, 𝑗 and 𝑘 are. In 
order to set upper limits on the FV couplings 𝐶𝑖𝑗 , we treat each case separately. For example, for the process 𝜏 → 𝜇, we could have 
𝑗 = 𝜏,𝜇, 𝑒 running in the loop. This furnished 9 distinct processes in total to consider. Here we show a sample calculation, then quote 
the results for the rest of the process.

Consider the process 𝜏 → 𝑒𝛾 with 𝜇 in the loop. We denote the corresponding matrix element by 𝜏𝜇𝑒, with 𝑚𝑖 = 𝑚𝜏 , 𝑚𝑗 = 𝑚𝜇
and 𝑚𝑘 =𝑚𝑒. Dropping 𝑚𝜇, 𝑚𝑒, the integral in Eq. (B.3) simplifies to

𝜏𝜇𝑒 ≃𝑚𝜏

1

∫
0

𝑑𝑥

1

∫
0

𝑑𝑦

1

∫
0

𝑑𝑧𝑧1−
𝑑
2 (1 − 𝑧)𝑎(𝑎+ 𝑏− 1)

𝛼
𝑑
2 𝛽4−𝑑

, (B.8)

with

𝛽 ≃ −𝑧+ 𝑥𝑧(𝑥− 1)(𝑦− 1)(𝑧− 1)
𝛼

𝑚2
𝜏

𝑀2 . (B.9)

The integral in Eq. (B.8) is still divergent. So, in order to regularize it, we use the method described in [57]. First, we define the 
function

𝑓 (𝑧) ≡ (1 − 𝑧)𝑎(𝑎+ 𝑏− 1)

𝛼
𝑑
2 𝛽4−𝑑

. (B.10)

Then isolate the divergence by splitting the integral over 𝑧 as follows

𝑓 (𝑧) =

1

∫
0

𝑑𝑥

1

∫
0

𝑑𝑦

[ 1

∫
0

𝑑𝑧𝑧1−
𝑑
2 𝑓 (0) +

1

∫
0

𝑑𝑧𝑧1−
𝑑
2
(
𝑓 (𝑧) − 𝑓 (0)

)]
= −1

6
. (B.11)

Plugging Eq. (B.11) in Eq. (B.3), then setting 𝑑 = 4 − 2𝜖 and using the MS scheme, we arrive at final answer

𝜏𝜇𝑒 ≃ −
𝑒𝐶𝜏𝜇𝐶𝜇𝑒𝑚𝜏

6(4𝜋)4𝑣2
𝑢𝑒(𝑝− 𝑞)𝑢𝜏 (𝑝)(𝑝 ⋅ 𝜖∗) log

(𝑀2
ℎ

𝑚2
𝜇

)
, (B.12)

where we have set the renormalization scale 𝜇2 =𝑚2
𝜇 in the logarithm.

Appendix C. 𝒇𝒊𝒇𝒋 → 𝒇𝒌𝒇 𝒍 scattering

Here we show how to calculate the matrix element of the scattering 𝑓𝑖𝑓 𝑗 → 𝑓𝑘𝑓 𝑙 , which will be used to find the bounds from 
LEP, muonium-antimuonium oscillations and meson oscillation. At 1-loop, the scattering proceeds through the s- and t-channels as 
in Figure (3). The matrix element is given by

𝑖 = 𝑖𝑠 + 𝑖𝑡,

=
𝐶𝑖𝑗𝐶𝑘𝑙

4𝑣2
𝑢𝑘(𝑘1)𝑣𝑙(𝑘2)𝑣𝑗 (𝑝2)𝑢𝑖(𝑝1)𝑉 (𝑃 2

𝑠 ) −
𝐶𝑖𝑘𝐶𝑗𝑙

4𝑣2
𝑢𝑘(𝑘1)𝑢𝑖(𝑝1)𝑣𝑗 (𝑝2)𝑣𝑙(𝑘2)𝑉 (𝑃 2

𝑡 ), (C.1)

where 𝑃𝑠 = 𝑝1 + 𝑝2, 𝑃𝑡 = 𝑝1 − 𝑘1, and 𝑝1,2 (𝑘1,2) are the initial (final) momenta. The loop integral is given by

𝑉 (𝑃 2) = ∫
𝑑4𝑘

(2𝜋)4
1

(𝑘+ 𝑃 )2 −𝑀2
1

𝑘2 −𝑀2 . (C.2)

The integral in Eq. (C.2) is logarithmically divergent and needs regularization. The suitable choice of regularization will depend 
on the type of process at hand. In high energy scattering like in LEP, using a UV cutoff is more appropriate. Evaluating the integral 
16

using a UV cutoff Λ, the final result can be approximated by
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𝑉 (𝑃 2) ≃ 𝑖

16𝜋2

(
1 + log

( Λ2

𝑀2

)
+
√

1 − 4𝑀2

𝑃 2 log

[√
1 − 4𝑀2∕𝑃 2 − 1√
1 − 4𝑀2∕𝑃 2 + 1

])
. (C.3)

On the other hand, in the non-relativistic limit suitable for 𝑀 −𝑀 and meson oscillation, it is more suitable to evaluate the 
integral using DR. In the MS scheme, the integral evaluates to

𝑉 (𝑃 2) ≃ 𝑖

16𝜋2
log

( 𝜇2
𝑀2
ℎ

)
, (C.4)

where 𝜇 is the renormalization scale. Notice that in the non-relativistic limit 𝑀2 ≫𝑃 2, Eq. (C.4) can be obtained from Eq. (C.3) by 
taking the limit 𝑃 2 → 0 and then setting Λ2 = 𝑒𝜇2.

Appendix D. Detailed calculation of 𝝁 → 𝒆 conversion in nuclei

The most general effective Lagrangian can be expressed as [47]

eff = 𝑐𝐿
𝑒

8𝜋2
𝑚𝜇(𝑒𝜎𝜇𝜈𝑃𝐿𝜇)𝐹𝜇𝜈 −

1
2
∑
𝑞

[
𝑔
𝑞

𝐿𝑆
(𝑒𝑃𝑅𝜇)(𝑞𝑞) + 𝑔

𝑞

𝐿𝑃
(𝑒𝑃𝑅𝜇)(𝑞𝛾5𝑞)

+ 𝑔𝑞
𝐿𝑉

(𝑒𝛾𝜇𝑃𝐿𝜇)(𝑞𝛾𝜇𝑞) + 𝑔
𝑞

𝐿𝐴
(𝑒𝛾𝜇𝑃𝐿𝜇)(𝑞𝛾𝜇𝛾5𝑞) +

1
2
𝑔
𝑞

𝐿𝑇
(𝑒𝜎𝜇𝜈𝑃𝑅𝜇)(𝑞𝜎𝜇𝜈𝑞)

]
+ (𝐿↔𝑅), (D.1)

where the sum is over all quarks. Here, the first term expresses the contributions arising from the magnetic dipole operators as in 
the bottom diagram of Fig. 3. On the other hand, the terms inside the square brackets refer to the scalar, pseudo-scalar, vector, 
pseudo-vector and tensor contributions, respectively. As shown in Fig. 6, only the scalar and tensor contributions are non-vanishing. 
Furthermore, the tensor contribution is expected to be small and the bounds are not expected to compete with those from 𝑙𝑖 → 𝑙𝑘𝛾 , 
therefore we neglect it as well.

The scalar contribution 𝑔𝑞
𝐿𝑆

and 𝑔𝑞
𝑅𝑆

, are shown in the left diagram of Fig. 6. They can be calculated by integrating out the loop 
in the non-relativistic limit and at vanishing momentum transfer, yielding

𝑔
𝑞

𝐿𝑆
= 𝑔𝑞

𝑅𝑆
≡ 𝑔𝑞

𝑆
=

3
√
2𝐶𝜇𝑒𝑌 2

𝑞 𝑚𝑁

64𝜋2𝑣𝑀2
ℎ

, (D.2)

where 𝑌𝑞 is the quark Yukawa coupling and 𝑚𝑁 is the mass of the nucleon. The 𝜇→ 𝑒 conversion rate receives contributions from 
protons and neutrons and can be expressed as [47]

Γ(𝜇→ 𝑒) = |𝑔̃(𝑝)
𝑆
𝑆(𝑝) + 𝑔̃(𝑛)

𝑆
𝑆(𝑛)|2, (D.3)

where

𝑔̃
(𝑝)
𝑆

=
∑
𝑞

𝑔
𝑞

𝑆

𝑚𝑝

𝑚𝑞
𝑓 (𝑞,𝑝), 𝑔̃

(𝑛)
𝑆

=
∑
𝑞

𝑔
𝑞

𝑆

𝑚𝑛

𝑚𝑞
𝑓 (𝑞,𝑛), (D.4)

where the nucleon matrix elements 𝑓 (𝑞,𝑁) ≡ ⟨𝑁|𝑚𝑞𝑞𝑞 |𝑁⟩∕𝑚𝑁 . These nucleon matrix elements were calculated in [58] but using an 
older value for the nucleon sigma term Σ𝜋𝑁 = 64 MeV. Using the updated value of 59.6 MeV [59],9 the nucleon matrix elements for 
the light quarks are given by

𝑓 (𝑢,𝑝) ≃ 0.022, 𝑓 (𝑑,𝑝) ≃ 0.038, 𝑓 (𝑠,𝑝) ≃ 0.342, (D.5)

𝑓 (𝑢,𝑛) ≃ 0.018, 𝑓 (𝑑,𝑛) ≃ 0.049, 𝑓 (𝑠,𝑛) ≃ 0.342, (D.6)

whereas the contribution for the heavy quarks is obtained from

𝑓 (𝑐,𝑁) = 𝑓 (𝑏,𝑁) = 𝑓 (𝑡,𝑁) = 2
27

(
1 −

∑
𝑞=𝑢,𝑑,𝑠

𝑓 (𝑞,𝑁)
)
≃ 0.044, (D.7)

for both the neutron and proton. The coefficients 𝑆(𝑝) , 𝑆(𝑛) are the overlap integrals of the electron, muon and nuclear wavefunctions 
for the proton and neutron respectively. They are tabulated for a variety of target materials in [47]. According to [48], gold provides 
the strongest bound on the conversion rate

BrAu(𝜇→ 𝑒) =

[
Γ(𝜇→ 𝑒)
Γ𝜇

Capture

]
Au

< 7 × 10−13 @ 90% C.L., (D.8)

9 In [3], the nucleon matrix elements were calculated using the then latest value of Σ𝜋𝑁 = 55 MeV, however, there is an error in their equation A19. In particular, 
17

𝑓 (𝑢,𝑛) = 0.018 ≠ 𝑓 (𝑑,𝑝) , and 𝑓 (𝑑,𝑛) = 0.043 ≠ 𝑓 (𝑢,𝑝) . All other values were correctly calculated for Σ𝜋𝑁 = 55 MeV.



Nuclear Physics, Section B 1008 (2024) 116694F. Abu-Ajamieh, M. Frasca and S.K. Vempati

and we find from [47] that ΓAu
Capture

= 13.07 × 106 s−1. In addition, the overlap coefficients for gold are given by 𝑆(𝑝) = 0.0614 and 

𝑆(𝑛) = 0.0918 in units of 𝑚5∕2
𝜇 . On the other hand, the Mu2e experiment is projected to improve the measurement of the conversion 

rate by roughly 3 orders of magnitude through utilizing aluminium as its stopping material. More specifically, the projected bound 
of the Mu2e experiment is given by [49]

BrAl(𝜇→ 𝑒) =

[
Γ(𝜇→ 𝑒)
Γ𝜇

Capture

]
Al

< 10−16 @ 90% C.L., (D.9)

and we have ΓAl
Capture

= 0.7054 × 106 s−1, and the overlap coefficients for aluminium are given by 𝑆(𝑝) = 0.0155 and 𝑆(𝑛) = 0.0167 in 

units of 𝑚5∕2
𝜇 .
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