(Supplementary Section)

Facile synthesis of ZIF-67 incorporated electrospun PVA nanofibers composite for

efficient Pb (II) adsorption from water: Docking and experimental studies

Simranjeet Singh¹, Pavithra N¹, Basavaraju Uppara^{2,3}, Radhika Varshney¹, Nabila Shehata⁴, Nadeem A Khan⁵, Jinu Joji³, Joginder Singh⁶, Praveen C Ramamurthy^{1*}

¹Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, India

²Centre for Smart Manufacturing Precision Machine Tools and Aggregates, Central Manufacturing Technology Institute, Bengaluru – 560022, Karnataka, India,

³Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India

⁴Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511, Beni-Suef, Egypt

⁵Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

⁶Department of Botany, Nagaland University, Lumami, 798627, Nagaland, India

Corresponding author: onegroupb203@gmail.com

Scheme S1: A schematic flow diagram for the formation of ZIF-67

Scheme S2: Synthesis procedure for ZIF-67/PVA nanofibers

Table S1: Systems utilized for molecular docking

System	Macromolecule	Ligand
ZIF67-PVA	ZIF67	PVA
ZIF67-Pb	ZIF67	Pb
PVA-Pb	PVA	Pb
ZIF67-PVA-Pb	ZIF67-PVA	Pb

System	Topmost Docked Structure*	Binding Energy (Kcal mol ⁻¹)	Type of Interactions
ZIF67-PVA		+1.85	Hydrogen bonding (C-H)
ZIF67-Pb		-2.07	Electrostatic and hydrogen bonding (C-H)
PVA-Pb	venter	-2.90	Hydrogen bonding (conventional and C-H)
ZIF67-PVA- Pb		-3.30	Electrostatic and hydrogen bonding (conventional and C-H)

 Table S2. Results obtained using molecular docking simulations for predicting interactions in various systems

* Orange: Electrostatic interaction, Light green: C-H Hydrogen bond, Yellow: Conventional Hydrogen bond

Model	Co	10.0	20.0	30.0	40.0	50.0
Pseudo 1 st	K_1	0.030	0.022	0.016	0.004	0.001
order model	q_e	42.4	63.3	99.4	283.5	1808.7
	R^2	0.98	0.98	0.98	0.97	0.95
Pseudo 2 nd	$K_2 [g mg^{-1} min^{-1}]$	0.0005	0.0002	9.23E-05	0.0001	1.79E-05
order model	q_e	53.2	84.4	139.6	139.6	303.3
	R^2	0.99	0.99	0.98	0.89	0.89
The Mixed 1,	K	0.001	0.0006	0.001	0.0005	4.83E-06
2-order model	q_e	52.1	82.8	136.0	446.4	23.39 E4
	f_2	0.961	0.966	0.920	0.805	2.7E-07
	R^2	0.99	0.99	0.99	0.97	0.95
Avrami model	q_e	42.4	63.3	99.4	284.4	6828.8
	k_{av}	0.179	0.154	0.129	0.067	0.013
	n _{av}	0.169	0.145	0.123	0.064	0.013
	R^2	0.98	0.98	0.98	0.97	0.95
Intraparticle	k_{ip}	3.88	5.59	7.75	9.20	10.11
diffusion	C _{ip}	2.7	0.8	0	0	0
model	R^{2} [-]	0.98	0.99	0.99	0.91	0.79

 Table S3: Calculations of the different kinetic models for Pb (II) sorption onto ZIF

 67/PVA nanofibers

Where C_0 in mg/L, K_1 in min⁻¹, q_e in mg g⁻¹, K_2 in g mg ⁻¹ min ⁻¹, k_{ip} in mg/g.min^{1/2} and

 c_{ip} in mg g⁻¹

Table S4: Parameters of the isotherm adsorption for the Pb²⁺ sorption to ZIF-67/PVA nanofibers

Model	Parameter	Value	Parameter	Value
Langmuir (linear)	$q_{max} [mg. g^{-1}]$	109.9	R ²	0.81
	b	0.37		
Langmuir (non-linear)	q_{max} [mg. g ⁻¹]	364.49	R ²	0.86
	K _L	0.027		
Freundlich (linear)	n	2.297	R ²	0.88
	K _F [Lmg ⁻¹]	30.58		
Freundlich (non-linear)	n	1.56	R ²	0.91
	K _F [Lmg ⁻¹]	18.35		
Dubinin-Radushkevich	$q_{m}[mg. g^{-1}]$	226.73	\mathbb{R}^2	0.99
	Kad	0.0024		
Khan	$q_{m}[mg. g^{-1}]$	0.208	a _K	0.361
	b _K	1101	R^2	0.91
Fritz-Schlunder	$q_{mFSS} [mg. g^{-1}]$	31.21	m ₁	0.639
	K1	0.740	m ₂	0
	K ₂	0.259	\mathbf{R}^2	0.91

Figure S1. Effect of different parameters on Pb²⁺ adsorption (a) Variation of pH: 2-7 (ZIF-67/PVA nanofibers 20 mg/L, Pb²⁺ concentration 10 mg/L, time of contact 2 h), (b) Point of zero charge (c): Variation of ZIF-67/PVA nanofibers dosage (pH 6, ZIF-67/PVA nanofibers 20-100 mg/L, Pb²⁺ concentration 10 mg/L and time 2 h) & (d) Effect of Pb concentration (pH 6, ZIF-67/PVA nanofibers 20 mg/L, Pb²⁺ concentration 10 - 50 mg/L and time of contact 2 h).

Figure S2. Fitting of the experimental dats to the PFO, PSO, IPD, mixed 1st and 2nd order, and Avrami models for Pb²⁺ adsorption onto ZIF-67/PVA nanofibers at different initial concentrations: (a) 10, (b) 20 (c) 30 (d) 40 and (e) 50 mg L⁻¹.

Figure S3. Fitting the experimental data of the Pb²⁺ adsorption onto ZIF-67/PVA nanofibers using: (a) Langmuir (linear), (b) Freundlich (linear), (c) Langmuir (non-linear), (d) Freundlich (non-linear), (e) Dubinin–Radushkevich, (f) Khan, and (g) Fritz-Schlunder models.

Figure S4. (a) XPS spectra of C 1s in zif-67, (b) N 1s spectrum in zif-67, (c) O 1s spectrum in zif-67, (d): XPs of C after electrospinning and (e) high-resolution spectra of C 1s after Pb (II) adsorption.

Figure S5: Cyclic stability of ZIF-67/PVA nanofibers after seven cycles