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ABSTRACT
Intent prediction finds widespread applications in user interface
(UI/UX) design to predict target icons, in automotive industry to
anticipate driver’s intent, and in understanding human motion
during human-robot interactions (HRI). Predicting human intent
involves analyzing factors such as handmotion, eye gazemovement,
and gestures. This paper introduces a multimodal intent predic-
tion algorithm involving hand and eye gaze using Bayesian fusion.
Inverse reinforcement learning was leveraged to learn human pref-
erences for the human-robot handover task. Results demonstrate
that the proposed approach achieves the highest prediction accu-
racy of 99.9% at 60% task completion as compared to state-of-the-art
(SOTA) methods.

CCS CONCEPTS
•Mathematics of computing→Bayesian computation; •Com-
puting methodologies→ Inverse reinforcement learning; • Com-
puter systems organization→ Robotic autonomy.
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1 INTRODUCTION
Target prediction or intent recognition has been studied for various
applications ranging from user interface design [7], automotive
[2], human-machine interaction [4], clinical environment [14], do-
mestic settings, and so on. Leveraging multiple input modalities
for target prediction enhances the performance and robustness of
Human-Robot Interactive (HRI) systems [36]. Human-robot han-
dover is an important aspect of HRI which refers to actions initiated
either by the human or their robotic counterpart, to deliver objects
to each other [31]. These handovers require the robot to anticipate
human hand movements and intentions to effectively plan its path,
take control of the object from human, and deliver it to the intended
destination, as shown in Fig. 1a. Trajectory prediction algorithms
with multiple input modalities are frequently employed to fore-
cast human movements and intended targets [5, 9, 23] during HRI.
These algorithms for trajectory prediction can be categorized into
four groups: (a) Physics-based (Kalman filter [10], minimum jerk
model [6, 22]), (b) Probabilistic graphical models (Gaussian Mix-
ture Models [21, 23], Hidden Markov Models [32]), (c) Recurrent
Neural Network (RNN) models [11, 16, 19, 26], and (d) Inverse Rein-
forcement Learning (IRL) models [15, 24, 25]. Physics-based models
cannot provide uncertainty in predicted human motion whereas
graphical and RNN-based models lack generalization to unseen
environments and adjustment of model parameters is complicated
[18]. Most of the IRL formulations assume linear reward-feature
dependency, which may not capture complex non-linear rewards
during human-robot collaboration (HRC). Maximum Entropy Deep
Inverse Reinforcement Learning (MEDIRL) [13, 33] leverages the
representational capacity of neural networks to capture complex
reward distribution. Wang et al. proposed a Maximum Entropy IRL
(MEIRL) [35] based teaching-learning-collaborative (TLC) frame-
work [30] to predict human intent. The model used speech and data
from wearable sensors as input modalities to predict intent using
gesture recognition. In contrast, this work predicts human intent
with hand and gaze data using MEDIRL. The main contributions of
this paper are:

(1) A multimodal target prediction algorithm with hand and
gaze movement using Bayesian fusion was proposed for ac-
curate anticipation of the intended target based on partial
demonstration. An IRL-based model with a comprehensive
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(a) (b) (c)

Figure 1: (a) Application of target prediction during human-robot handover in industrial, domestic, and clinical environments.
Human hands over assembly parts, domestic appliances, and surgical equipment, respectively to the robot for completing
subsequent intended action (b) Top-view of the setup captured by the hand-tracking webcam with four targets and robot
symmetrically placed with respect to the user (c) Experimental setup with user interface

set of features was proposed to explicitly capture hand mo-
tion during handovers.

(2) User studywas performed to analyze the effect of handmove-
ment and eye gaze for target prediction. Results demonstrate
that the proposedmultimodal target predictionmethod achieved
the highest accuracy of 99.9% at 60% task completion as com-
pared to SOTA Kernel ELM [31] with 99.7% accuracy. Using
hand movement, the method outperforms other SOTA meth-
ods by reporting an accuracy of 93% at 50% task completion.

2 MULTIMODAL TARGET PREDICTION
The task involved users reaching and placing objects (colored
blocks) at distant targets or goals𝐺 . Given a partial hand movement
𝜓 , future hand trajectory and the intended target was predicted for
handover to the robot. Hand and eye gaze of users were tracked.
Average Fixation Duration (AFD) which is the total duration of all
fixations by the total fixation count [28] for each target, obtained
from gaze data was used to estimate prior goal probability 𝑝 (𝐺),
given by:

𝑝 (𝐺) = 𝐴𝐹𝐷𝐺∑
𝐺𝜖G𝐴𝐹𝐷𝐺

(1)

where G is the set of targets. Probability of a goal given partial
demonstration was obtained using Bayes’ theorem:

𝑝 (𝐺𝜖G|𝜓 ) = 𝑝 (𝜓 |𝐺) 𝑝 (𝐺)∑
𝐺𝜖G 𝑝 (𝜓 |𝐺) 𝑝 (𝐺)

(2)

where 𝑝 (𝜓 |𝐺) is the probability of the partial hand trajectory ob-
tained from the learned reward distribution using IRL (Section
2.1). Equation (2) assigns higher probabilities to targets towards
which the demonstrated partial trajectory approaches. The above
approach can be implemented to any prediction pipeline involving
multiple input modalities. Probability 𝑝 (𝐺𝜖G|𝜓 ) were calculated
for all possible targets and the target corresponding to the maxi-
mum value was predicted𝐺𝑝𝑟𝑒𝑑 . Future hand trajectory to𝐺𝑝𝑟𝑒𝑑

was obtained from the corresponding reward distribution. The ro-
bot moves to the predicted hand trajectory for takeover and delivers
the block to the predicted target by the user.

2.1 Hand Movement Prediction
As evident from Equation (2), the multimodal target prediction algo-
rithm involves likelihood of the partial hand demonstration 𝑝 (𝜓 |𝐺).
This was obtained using Maximum Entropy Deep IRL (MEDIRL).
Human hand motion was modeled as an agent following a Markov
Decision Process (MDP). AnMDP is defined as {S,A, T , 𝛾, r} consist-
ing of of states 𝑠𝜖𝑆 , actions 𝑎𝜖𝐴, probability of transition T , discount
factor 𝛾 , and reward function r : S → R. Let 𝔇 = {𝜏𝑖 }𝑀𝑖=1 be the
expert dataset consisting of𝑀 hand motion trajectories 𝜏 given by
𝜏 = [𝑠1, 𝑎1, 𝑠2, 𝑎2, ..., 𝑎𝑁−1𝑠𝑁 ]. IRL aims to learn a reward function
𝑟 , under which the expert demonstration is optimal. MEDIRL [33]
approximates the reward function using a deep neural network
parameterized by 𝜔 , i.e., 𝑟𝜔 (𝑠) = 𝑔 (𝑓 (𝑠) , 𝜔) where 𝑓 (𝑠) are the
features of state 𝑠 and 𝜔 are the weights of the network or reward
parameters. Function 𝑔 : R𝑑 → R maps the feature space of dimen-
sion 𝑑 to a real-valued reward 𝑟 . The IRL problem was framed by
maximizing the joint posterior distribution of observing the expert
dataset and reward parameters under a given reward structure.

𝐿 (𝜔) = 𝑙𝑜𝑔𝑃 (𝔇, 𝜔 |𝑟 ) = 𝑙𝑜𝑔𝑃 (𝔇|𝑟 ) + 𝑙𝑜𝑔𝑃 (𝜔) (3)

The optimal reward parameters can be obtained by backpropagating
the gradient with a regularization technique [33] as given below:

𝜕𝐿

𝜕𝜔
= (𝜇𝔇 − E [𝜇])

𝜕𝑔 (𝑓 , 𝜔)
𝜕𝜔

(4)

where 𝜇𝔇 is the State Visitation Frequency (SVF) from the expert
data and E [𝜇] is the expected SVF [35] given the learned reward at
each iteration. Approximate Value Iteration and Policy Propagation
algorithm [8] were used to estimate SVF. A feedforward neural
network with 4 hidden layers with 128 neurons each and a ReLU
activation function was employed for feature parameterized reward
network. The state space was defined by discretizing the collab-
orative workspace of 60 × 60𝑐𝑚 into a 30 × 30 uniform grid. The
action space consists of five actions (up, left, right, up-left, up-right)
considering only forward motion of hand.
A goal-conditioned reward distribution was obtained by assign-
ing higher rewards to goal states. This was fused with the reward
distribution 𝑟 learned using MEDIRL. For each goal 𝐺 , a reward
distribution 𝑟𝐺𝜖𝑅 was learned such that the expectation of features
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of the expert with respect to the probability distribution 𝜋𝐺 over
the actions (i.e., hand movements) at a given state equals that of the
learner. Using the maximum entropy formulation of IRL [34, 35],
𝜋𝐺 is recursively defined by:

𝜋𝐺 (𝑎𝑖 |𝑠𝑖 ) ∝ 𝑒𝑄𝐺 (𝑠𝑖 ,𝑎𝑖 ) (5)

𝑉𝐺 (𝑠𝑖 ) = softmax
𝑎𝑖

{𝑟𝐺 (𝑠𝑖 ) +𝑄𝐺 (𝑠𝑖 , 𝑎)} (6)

𝑄𝐺 (𝑠𝑖 , 𝑎𝑖 ) = E𝑇 (𝑠𝑖+1 |𝑠𝑖 ,𝑎) [𝑉𝐺 (𝑠𝑖+1) |𝑠𝑖 , 𝑎𝑖 ] (7)
where 𝑉𝐺 and 𝑄𝐺 are the future expected and cumulative rewards
respectively. They are recursively calculated using equations (6), (7)
and the MDP given in Section 2.1. The above equations have a
closed form solution when the state transition dynamics are linear.
The probability distribution over a partial hand trajectory 𝜓 =

{𝑠1, ..., 𝑠𝑚},𝑚 < 𝑁 is given by:

𝑝 (𝜓 |𝐺) =
𝑚∏
𝑖=1

𝜋𝐺 (𝑎𝑖 |𝑠𝑖 ) = 𝑒{
∑𝑚

𝑖=2 𝑟𝐺 (𝑠𝑖 )}+𝑉𝐺 (𝑠𝑚 )−𝑉𝐺 (𝑠1 ) (8)

The above equation assigns higher probabilities to trajectories
which maximizes future expected rewards. A summary of target
prediction is given in Algorithm 1.

Algorithm 1Multimodal Target Prediction

1: Input: Partial hand trajectory𝜓 = {𝑠1, ..., 𝑠𝑚}, Goal𝐺𝜖G, MDP
= {𝑆,𝐴,𝑇 ,𝛾, 𝑟𝐺 }, 𝑟𝐺𝜖𝑅, Average Fixation Duration correspond-
ing to each goal (𝐴𝐹𝐷𝐺 ).

2: Output: Predicted goal 𝐺𝑝𝑟𝑒𝑑

3: for Goal G in set of goals G do
4: Initialize 𝑉𝐺 = 0 {%% Initialise value function to zero}
5: Update 𝑉𝐺 ← (𝑟𝐺 , 𝑆, 𝐴,𝑇 ,𝛾), [Equation (5) - (7)] {%% Per-

form Approximate Value Iteration until convergence}
6: 𝑝 (𝜓 |𝐺) = 𝑒{

∑𝑚
𝑖=2 𝑟𝐺 (𝑠𝑖 )}+𝑉𝐺 (𝑠𝑚 )−𝑉𝐺 (𝑠1 ) {%% Probability of

partial hand trajectory}
7: 𝑝 (𝐺) ← 𝐴𝐹𝐷𝐺∑

𝐺𝜖G𝐴𝐹𝐷𝐺
{%% Prior of a goal using gaze data}

8: 𝑝 (𝐺 |𝜓 ) ← 𝑝 (𝜓 |𝐺 )𝑝 (𝐺 )∑
𝐺𝜖G 𝑝 (𝜓 |𝐺 )𝑝 (𝐺 )

{%% Combined probability of a
goal using Bayes’ theorem}

9: end for
10: 𝐺𝑝𝑟𝑒𝑑 ← 𝑚𝑎𝑥 𝑝 (𝐺 |𝜓 ) {%% Predicted goal is the one with

highest combined probability}

2.2 Features Identification
From Equation (4), it may be noted that reward distribution is a
function of feature space. The following features were used tomodel
human preferences during the task:
• Distance feature (𝑓𝑑 ): To minimize effort, humans prefer the
shortest path. The distance feature captures deviation from
this path:

𝑓𝑑 (𝑠) = 𝑒
−
{
𝑑 (𝑠 )−𝑑𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡

(
𝑠
′ )}

(9)

where 𝑑𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is the straight line path from start to end of
the trajectory with states 𝑠

′
.

• Velocity feature (𝑓𝑣): Given the close proximity of targets,
relying solely on the distance feature is inadequate for dis-
tinguishing between targets. To address this, the velocity
feature was introduced, which captures deviations from the
desired hand velocity 𝑣𝑑𝑒𝑠 . Desired velocity was determined
based on previous work [17, 34], which reported velocity
profiles concerning the distance to the endpoint. Linear, qua-
dratic, and cubic velocity profiles were fit with respect to
the distance to the endpoint. Table 1, indicates that qua-

Table 1: Velocity Curve Fit

Average 𝑅2 Average error (𝑐𝑚/𝑠 )
Linear 0.80 10.33

Quadratic 0.97 7.21
Cubic 0.79 11.45

dratic velocity profile gives the lowest error and highest 𝑅2.
Therefore, the desired velocity at each state is given by:

𝑣𝑑𝑒𝑠 (𝑠) = 𝑎𝑋 (𝑠)2 + 𝑏𝑋 (𝑠) + 𝑐 (10)

where 𝑋 (𝑠) represents the distance of state 𝑠 from the end
state of the given trajectory, and a,b,c are constants derived
from quadratic polynomial fitting. Deviations from this de-
sired velocity is the velocity feature:

𝑓𝑣 (𝑠) = − (𝑣𝑑𝑒𝑠 (𝑠) − 𝑣 (𝑠))2 (11)

Considering hand dynamics and user comfort, acceleration 𝑓𝑎 (𝑠)
and jerk 𝑓𝑗 (𝑠) features were introduced. These features were com-
puted as the sum of squared acceleration and jerk at each state,
respectively. Feature of a trajectory was expressed as the sum of fea-
tures of each individual state of the trajectory. The above features
could be implemented to model any task involving rapid aiming
movement [1] through hand motion. All the features were nor-
malized to (0,1) to have equal contributions to the learned reward
function.

3 USER STUDY
User study was conducted to evaluate the performance of the target
prediction model with the following input modalities:

(1) Hand: This examines the effectiveness of using MEDIRL for
target prediction. The IRL model learns a reward distribution
trained from hand motion data. This was used to predict the
target.

(2) Eye: This examines reliability of eye gaze for target pre-
diction. Average fixation duration was used to predict the
target.

(3) Hand and eye: This examines the use of multiple input modal-
ities for target prediction.

Participants: 10 participants (8 males and 2 females) were re-
cruited from our university, averaging 27.9 years of age (SD: 4.2).
Their average arm length was 57.83 cm (SD: 2.5), with 7 being right-
handed and 3 left-handed individuals. None of the participants had
color blindness. All participants provided necessary permissions
and consent for the trials.
Setup: The experimental setup consists of four target bowls colored
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yellow, black, red and green as shown in Fig. 1b. {𝑦𝑒𝑙𝑙𝑜𝑤 ,𝑔𝑟𝑒𝑒𝑛}
were placed at a distance of 115𝑐𝑚 and {𝑏𝑙𝑎𝑐𝑘 , 𝑟𝑒𝑑} at a distance of
95𝑐𝑚 from the user, symmetrically at proximity to each other. The
user interface displays a random color from the target set, continu-
ous hand tracking, target positions, and the robot’s configurations.
The target bowl size increases upon prediction, providing visual
feedback. Additionally, it shows the number of iterations and the
predicted target. The interface ran on a TV positioned at 3.2𝑚 away
from the participant. A fixed-base robotic manipulator, Dobot Ma-
gician, was situated at a distance of 100𝑐𝑚 from the user. The user
sat on a chair positioned 40𝑐𝑚 from the nearest edge of the robot’s
workspace as shown in Fig. 1c. Hand coordinates were tracked
with Google Mediapipe [20] using a webcam. These coordinates
were transformed into Cartesian coordinates relative to the April
tag located at the bottom-left corner of the workspace using linear
regression. User’s eye gaze was captured using Tobii Glasses 2 eye
tracker.
Design: The user’s task involves reaching and placing a color block
at the corresponding colored target. However, before the user’s
hand completely reaches the target, based on the partial motion,
the intended target and the corresponding path to the target were
predicted. The robot advances along the predicted trajectory to a
fixed point for takeover. The user hands over the block to the robot,
which subsequently places the block at the predicted target. This
completes one iteration of the task. Each participant is required
to carry out a total of 20 iterations, with 5 randomly designated
for each target and varying input partial motion. For details please
refer to the supplementary video (Link).
Procedure: Participants were briefed on distinct prediction scenar-
ios — one involving solely hand movement, only eye gaze, and both.
Participants were then asked to take trials. Following each trial,
the robot was set to its home position and accuracy was calculated
based on the number of blocks in the same colored target.

4 RESULT AND DISCUSSION
The expert dataset consists of 200 hand trajectories with velocity,
acceleration, and jerk data at 30Hz. Corresponding 3D eye gaze
data were recorded at 120Hz. The gaze data was downsampled to
30Hz by taking an average of 4 frames. A total of 180 trajectories
were used for training and remaining 20 for testing. For predic-
tion using hand motion, the proposed approach was validated with
SOTA methods: 𝐶𝑀𝑘=5 [12], Bayesian Predictor for Human Mo-
tion Trajectory (BP-HMT) [18], Recurrent Neural Network-Inverse
Kinematics-Modified Kalman Filtering (RNNIK-MKF) [19], and Path
Integral-Inverse Reinforcement Learning (PI-IRL) [29]. To evaluate
target prediction, accuracy and sensitivity metrics [3] were used:
Accuracy: It is the percentage of correct target prediction (colored
block in same color target) among all predictions. Average accuracy
at a particular instant is the mean of accuracies obtained from that
time to the end of the task.
Sensitivity: It signifies how quickly the intended target could be
predicted. It is the accuracy obtained for different fractions of total
pointing time.
Figures 2a and 2b depict the accuracy at 50% task completion and
sensitivity, respectively, when relying on hand movement. As il-
lustrated in Fig. 2a, the proposed approach employing MEDIRL

(a)

(b)

Figure 2: (a) Average target prediction accuracy at 50% task
completion (b) Sensitivity as the task progresses, using hand
movement for target prediction

achieves the highest target prediction accuracy of 93% at 50% task
completion. In comparison, PI-IRL reaches a prediction accuracy
of 84% while BP-HMT, RNNIK-MKF, and 𝐶𝑀𝑘=5 report accuracies
of 61%, 55% and 40%, respectively. Highest prediction accuracy
using the proposed approach is due to the ability of the neural
network in MEDIRL to learn complex reward functions during han-
dover. BP-HMT and RNNIK-MKF exhibit lower accuracy due to
their dependency on specific set of demonstrations, which hampers
generalization to unseen hand movements. These methods require
a large dataset for training compared to IRL. From Fig. 2b, the sen-
sitivity remains below 80% during the initial 30% of the task but
increases as the task progresses. This is due to the precise modeling
of the handover task through the proposed set of features as more
input data is available for prediction. Accuracy approaches 99.9%
when less than 20% of the task remains.
Target prediction using only eye gaze reports an accuracy of 55%
as shown in Fig. 3a. The low accuracy is attributed to the vergence
gaze movement where black and red targets were visited, whereas
the user was looking at yellow and green, respectively. The im-
pact of multimodal target prediction using the proposed method
on accuracy and sensitivity is illustrated in Fig. 3a and 3b. It can
be noted that prediction accuracy of 99.1% is achieved using gaze
and hand as input modality, at 50% task completion. Fig. 3b shows
that the proposed method’s sensitivity with hand and gaze inputs
is comparatively higher than using only hand motion or gaze data.
The multimodal target prediction algorithm achieves an accuracy of
99.9%, compared to 95% with only hand and 55% with gaze as input,
when 60% of the task time has elapsed. This is attributed to the
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(a)

(b)

Figure 3: Effect of multimodal target prediction on (a) Av-
erage target prediction accuracy at 50% task completion (b)
Sensitivity, as the task progresses. Note that target was pre-
dicted at 2.5 seconds using eye gaze after the task commenced
and does not depend on the pointing time.

use of gaze for providing additional information about the user’s
intent by assigning prior probabilities to targets in addition to the
likelihood obtained from the partial hand motion. Hand motion
intuitively conveys details about the user’s intention, while eye
gaze rapidly signals the intended target. Note that a uniform prior
probability of 0.25 was assigned to the targets when only a single
input modality was used.
The effectiveness of the proposed method was evaluated by compar-
ing its results with those of relevant previous works across diverse
HRI applications, as detailed in Table 2. Each algorithm was trained
on application-specific data and was tested for the identical task.
Despite the varied applications, a meaningful comparison of algo-
rithms was facilitated by considering the average accuracy. The
results indicate that the proposed method demonstrates a com-
petitive average accuracy of 99.9% at 60% task completion when
compared to other established methods in the field.

5 CONCLUSION
This work introduced a multimodal target prediction algorithm
using Bayesian fusion to predict human hand movements and
intended targets during handover. Maximum-Entropy Deep IRL
(MEDIRL) was employed to learn the reward distribution, accom-
panied by a set of task-specific feature functions designed for cap-
turing hand motion. User study was conducted to evaluate the
proposed method involving a combination of hand and eye gaze.
The proposed method demonstrated highest prediction accuracy

compared to other methods. Subsequent efforts will utilize com-
puter vision to directly estimate 3D gaze fixation within the fixed
workspace of the robot. A more refined metric will be developed to
effectively model eye gaze behavior for improved target prediction.
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