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For a planar domain Ω, we consider the Dirichlet spaces with respect to a base 
point ζ ∈ Ω and the corresponding kernel functions. It is not known how these 
kernel functions behave as we vary the base point. In this note, we prove that 
these kernel functions vary smoothly. As an application of the smoothness result, 
we prove a Ramadanov-type theorem for these kernel functions on Ω × Ω. This 
extends the previously known convergence results of these kernel functions. In fact, 
we have made these observations in a more general setting, that is, for weighted 
kernel functions and their higher-order counterparts.

© 2024 Elsevier Inc. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

For a planar domain Ω ⊂ C and ζ ∈ Ω, the collection of holomorphic functions vanishing at ζ with L2-
integrable derivatives is called the Dirichlet space based at point ζ. One can associate this space with the 
space of L2- integrable holomorphic functions on Ω which admits a primitive – called the reduced Bergman 
space (see Definition 1.3 in [5]).

Prior to this note, we proved a transformation formula for the weighted reduced Bergman kernels under 
proper holomorphic maps between bounded planar domains and also saw some applications of the transfor-
mation formula (see [4]). Subsequently, we considered the higher-order counterparts of the reduced Bergman 
kernel and studied various important properties of the same (see [5]). More specifically, we proved some 
Ramadanov-type theorems for these higher-order reduced Bergman kernels, and made significant observa-
tions about the boundary behaviour of these kernels. This note is a continuation of our previous efforts in 
studying the reduced Bergman kernel and related objects.
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The aim of this note is to study the n-th order weighted kernel functions MΩ,μ,n(·, ·) with weight μ
associated with the Dirichlet space (see Definition 1.3). These kernel functions are used to define the n-
th order weighted reduced Bergman kernels. In 1978, M. Sakai (see [9]) used these kernel functions on a 
Riemann surface R in order to prove some fundamental results on the dimension of AD(R) (the space of 
holomorphic functions on R with finite Dirichlet integrals). In order to achieve this, he proved that for each 
w ∈ R, the sup norm of the kernel function MR,n(·, w) is bounded above by dMR,n

dz (w, w), which in turn 
tells us that MR,n(·, w) is bounded for each w ∈ R. Further works on these kernel functions and the span 
metric (the metric induced by MR,n(·, ·)) along similar lines can be found in [2], [3] and [10]. In this note, 
we study the regularity of these kernel functions. From the Definition 1.3, it is clear that MΩ,μ,n(z, w) is 
holomorphic as a function of z ∈ Ω. But the regularity corresponding to the other variable w ∈ Ω is not a 
priori clear. We will prove that these kernel functions MΩ,μ,n(·, ·) are smooth in the complement of a very 
small set in Ω × Ω. We will see by an example that these kernel functions need not be anti-holomorphic 
with respect to the second variable. Using the above regularity of these weighted kernel functions, we will 
prove a Ramadanov-type theorem for the n-th order weighted kernel functions given that it holds for the 
weighted reduced Bergman kernel. As a special case, we obtain a Ramadanov-type theorem for these kernel 
functions for eventually increasing sequence of domains. This extends observations made in Proposition 5.1 
in [10], and Corollary 1.8 in [5]. One shall note that more substantial observations can be made for the 1-st 
order weighted kernel functions MΩ,μ as compared to the higher order kernel functions MΩ,μ,n for n > 1 – 
similar to the case for the weighted reduced Bergman kernels in [5].

Before we define these weighted kernel functions, we shall see the type of weights that we will be working 
with throughout this article.

Definition 1.1. (Z. Pasternak-Winiarski, [6,7]) Let Ω ⊂ C be a domain and μ be a positive measurable 
real-valued function on Ω. The weight μ is called an admissible weight on Ω if for every compact set K ⊂ Ω, 
there exists a constant CK > 0 such that

sup
z∈K

|f(z)| ≤ CK‖f‖L2
μ(Ω)

for all f ∈ O(Ω) ∩ L2
μ(Ω). The space of admissible weights on Ω is denoted by AW (Ω).

Remark 1.2. It is known that if μ−a is locally integrable on Ω for some a > 0, then μ ∈ AW (Ω).

Definition 1.3. (See [1,9]) Let Ω ⊂ C be a domain, μ ∈ AW (Ω), ζ ∈ Ω, and n be a positive integer. The 
n-th order Dirichlet space based at point ζ is defined as

ADμ(Ω, ζn) =

⎧⎨
⎩f ∈ O(Ω) : f(ζ) = f ′(ζ) = · · · = f (n−1)(ζ) = 0,

∫
Ω

|f ′(z)|2μ(z)dA(z) < ∞

⎫⎬
⎭ .

This is a Hilbert space with respect to the inner product

〈f, g〉ADμ(Ω,ζn) =
∫
Ω

f ′(z) g′(z)μ(z) dA(z), f, g ∈ ADμ(Ω, ζn).

The linear functional defined by ADμ(Ω, ζn) 
 f �→ f (n)(ζ) ∈ C, is continuous. By Riesz representation theo-
rem, there exists a unique function MΩ,μ,n(·, ζ) ∈ ADμ(Ω, ζn) such that f (n)(ζ) = 〈f, MΩ,μ,n(·, ζ)〉ADμ(Ω,ζn)
for every f ∈ ADμ(Ω, ζn).
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The function MΩ,μ,n(·, ·) is called the n-th order weighted kernel function associated with the Dirichlet 
space with respect to weight μ. Define

K̃Ω,μ,n(z, ζ) = ∂

∂z
MΩ,μ,n(z, ζ), z, ζ ∈ Ω.

The kernel K̃Ω,μ,n(·, ·) is called the n-th order weighted reduced Bergman kernel of Ω with respect to the 
weight μ. Putting n = 1 gives the weighted reduced Bergman kernel K̃Ω,μ(·, ·) of Ω with weight μ.

Remark 1.4. The weighted reduced Bergman kernel K̃Ω,μ(·, ·) is the reproducing kernel of a closed subspace 
of the weighted Bergman space. This is the space of all L2(μ)-integrable holomorphic functions on Ω which 
admits a primitive. Therefore, K̃Ω,μ(·, ·) is holomorphic in the first variable and anti-holomorphic in the 
second variable. This in turn implies that K̃Ω,μ ∈ C∞(Ω × Ω).

It is known (see [1, p. 26], [3, p. 476]) that for a domain Ω ⊂ C, μ ∈ AW (Ω), and n ≥ 2,

K̃Ω,μ,n(z, ζ) = (−1)n−1

Jn−2
det

⎛
⎜⎜⎜⎜⎜⎝

K̃0,0̄(z, ζ) . . . K̃0,n−1(z, ζ)
K̃0,0̄ . . . K̃0,n−1
K̃1,0̄ . . . K̃1,n−1

...
...

K̃n−2,0̄ . . . K̃n−2,n−1

⎞
⎟⎟⎟⎟⎟⎠ , (1)

where Jn = det
(
K̃jk̄

)n
j,k=0 and

K̃jk̄(z, ζ) = ∂j+k

∂zj∂ζ̄k
K̃Ω,μ(z, ζ), K̃jk̄ ≡ K̃jk̄(ζ, ζ).

Here Jn > 0 for all ζ /∈ NΩ(μ) := {z ∈ Ω : K̃Ω,μ(z, z) = 0}. Thus, K̃Ω,μ,n ∈ C∞(Ω × (Ω \ NΩ(μ)). As a 
special case, if μ ∈ L1(Ω), then NΩ(μ) = ∅, and therefore K̃Ω,μ,n ∈ C∞(Ω × Ω).

Theorem 1.5. Let Ω ⊂ C be a domain, μ ∈ AW (Ω) and n be a positive integer. The kernel function 
MΩ,μ(·, ·) ∈ C∞(Ω × Ω). For n > 1, the higher-order kernel function MΩ,μ,n(·, ·) ∈ C∞(Ω × (Ω \NΩ(μ))), 
where NΩ(μ) = {ζ ∈ Ω : K̃Ω,μ(ζ, ζ) = 0}.
Moreover, for n ≥ 1 and non-negative integers r, s

∂r+sMΩ,μ,n(z, ζ)
∂ζr∂ζ

s =

⎧⎪⎪⎨
⎪⎪⎩

z∫
ζ

∂sK̃Ω,μ,n(ξ,ζ)
∂ζ

s dξ for r = 0
z∫
ζ

∂r+sK̃Ω,μ,n(ξ,ζ)
∂ζr∂ζ

s dξ −
r−1∑
k=0

∂k+sK̃
(r−1−k)
Ω,μ,n

∂ζk∂ζ
s for r ≥ 1

where for a positive integer m

K̃
(m)
Ω,μ,n(z, ζ) = ∂mK̃Ω,μ,n(z, ζ)

∂ζm
and K̃

(m)
Ω,μ,n = K̃

(m)
Ω,μ,n(ζ, ζ).

The following example gives the expression for the n-th order kernel function for the unit disc D.

Example 1. Let ζ ∈ D and f ∈ AD(D, ζn) for n ∈ Z+, that is f (k)(ζ) = 0 for all 0 ≤ k ≤ n − 1. For 
g ∈ AD(D, 0n) and 0 < r < 1, the Cauchy integral formula gives us
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g(n)(0) = (n− 1)!
2πi

∫
|ξ|=r

g′(ξ)
ξn

dξ = (n− 1)!
2πi

2π∫
0

g′(reit)
(reit)n reiti dt

= (n− 1)!
2π

2π∫
0

g′(reit)
rn−1 (eit)n−1 dt.

Multiplying both sides by r2n−1 and integrating with respect to parameter r, we get

1∫
0

g(n)(0)r2n−1dr = (n− 1)!
2π

1∫
0

2π∫
0

g′(reit)(reit)n−1 r dr dt.

By change of variables on the right hand side of the above equation, we get

g(n)(0) = n!
π

∫
D

g′(ξ)(ξ)n−1 dA(ξ). (2)

Let K̃n(·, ·) denote the n-th order reduced Bergman kernel of D. For all ζ ∈ D, and f ∈ AD(D, ζn), we have

f (n)(ζ) =
∫
D

f ′(ξ)K̃n(ξ, ζ) dA(ξ). (3)

Let φζ : D → D be the automorphism of unit disc given by φζ(z) = ζ−z

1−zζ
. Note that φζ(0) = ζ, φζ(ζ) = 0, 

and φζ ◦φζ(z) = z for all z ∈ D. Consider the holomorphic function f ◦φζ . Observe that f ◦φζ ∈ AD(D, 0n)
and (f ◦ φζ)(n)(0) = f (n)(ζ)(φ′

ζ(0))n. On substituting g = f ◦ φζ in equation (2), we get

f (n)(ζ)(φ′
ζ(0))n = n!

π

∫
D

(f ◦ φζ)′(χ)(χ)n−1 dA(χ)

= n!
π

∫
D

f ′(φζ(χ))φ′
ζ(χ)(χ)n−1 dA(χ).

Now by doing change of variables ξ = φζ(χ), we get χ = φζ(ξ), and φ′
ζ(χ) = 1

φ′
ζ(ξ) . Therefore

f (n)(ζ)(φ′
ζ(0))n = n!

π

∫
D

f ′(ξ)(φ′
ζ(ξ))−1(φζ(ξ))n−1 |φ′

ζ(ξ)|2 dA(ξ)

= n!
π

∫
D

f ′(ξ)(φζ(ξ))n−1 φ′
ζ(ξ) dA(ξ).

Therefore, we get

f (n)(ζ) =
∫
D

f ′(ξ)
n!(φζ(ξ))n−1 φ′

ζ(ξ)
π(φ′

ζ(0))n dA(ξ). (4)

Comparing the equations (3) and (4), we get

K̃n(ξ, ζ) = n!
π

(φζ(ξ))n−1 φ′
ζ(ξ)

(φ′ (0))n
.

ζ
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Since dMn(ξ,ζ)
dξ = K̃n(ξ, ζ) and Mn(ζ, ζ) = 0, therefore

Mn(ξ, ζ) = (n− 1)!
π

(φζ(ξ))n

(φ′
ζ(0))n

.

We can check that φ′
ζ(ξ) =

|ζ|2−1
(1−ζξ)2 , which gives φ′

ζ(0) = |ζ|2 − 1. Therefore,

Mn(ξ, ζ) = (n− 1)!
π

(ζ − ξ)n

(1 − ζξ)n
1

(|ζ|2 − 1)n .

Thus, for n ≥ 1, the n-th order kernel function is given by

Mn(ξ, ζ) = (n− 1)!
π

(ξ − ζ)n

(1 − ζξ)n(1 − |ζ|2)n
. (5)

Now suppose {Ωj}j≥1 be a sequence of planar domains with μj ∈ AW (Ωj) and n be a positive integer. 
Ramadanov [8] showed that if Ωj ⊂ Ωj+1 for all j ∈ Z+, and Ω :=

⋃∞
j=1 Ωj , the Bergman kernel Kj(·, ·)

corresponding to Ωj converges uniformly on compacts of Ω ×Ω to the Bergman kernel K(·, ·) corresponding 
to Ω. The question here is to study the variation of the kernel functions MΩj ,μj ,n, given some type of 
convergence of the domains (Ωj, μj).

In 1979, M. Sakai proved that if {Ωj}j≥1 is an increasing sequence of planar domains and μj ≤ μj+1 for 
all j ≥ 1 where μj ∈ AW (Ωj), and there exist a domain Ω ⊂ C with μ ∈ AW (Ω), such that Ω = ∪j≥1Ωj

and μj → μ pointwise, then for each ζ ∈ Ω, MΩj ,μj ,n(·, ζ) → MΩ,μ,n(·, ζ) uniformly on compacts of Ω (see 
Proposition 5.1 in [10]). In [5], we proved similar observations for the case when {(Ωj, μj)}j≥1 is eventually 
increasing, that is, for each j ∈ Z+, there exist k(j) ∈ Z+ such that Ωj ⊂ Ωl and μj ≤ μl for all l ≥ k(j), 
with Ω = ∪j≥1Ωj and μj → μ. Here we want to talk about the variation of MΩj ,μj ,n(·, ·) on Ω ×Ω. In fact, 
Corollary 1.7 tells us that the convergence is uniform on compacts of the complement of a thin set in Ω ×Ω.

Theorem 1.6. Let Ω, Ωj ⊂ C be domains with μj ∈ AW (Ωj), μ ∈ AW (Ω) and n be a positive integer. 
Assume that every compact set K ⊂ Ω is eventually contained in Ωj. If

lim
j→∞

K̃Ωj ,μj
(z, ζ) = K̃Ω,μ(z, ζ)

locally uniformly on Ω × Ω, then

1. the sequence of kernel functions MΩj ,μj
(·, ·) converges to the kernel function MΩ,μ(·, ·) locally uniformly 

on Ω × Ω. Moreover, all partial derivatives of MΩj,μj
converge to the corresponding partial derivatives 

of MΩ,μ locally uniformly on Ω × Ω.
2. for n > 1, the sequence of n-th order kernel functions MΩj ,μj ,n(·, ·) converges to the n-th order kernel 

function MΩ,μ,n(·, ·) locally uniformly on Ω × (Ω \NΩ(μ)). Moreover, all partial derivatives of MΩj,μj ,n

converge to the corresponding partial derivatives of MΩ,μ,n locally uniformly on Ω × (Ω \NΩ(μ)).

Now suppose that {(Ωj, μj)}j≥1 is an eventually increasing sequence of planar domains, and there exist a 
planar domain Ω with μ ∈ AW (Ω) such that Ω = ∪j≥1Ωj and μj → μ. Using Theorem 1.6 and Theorem 
1.6 in [5], the following corollary is immediate.

Corollary 1.7. Suppose that the sequence of domains Ωj increases eventually to Ω and μj increases eventually 
to μ as j → ∞. Then the sequence of kernel functions MΩj,μj ,n of the domain Ωj converges to the kernel 
function MΩ,μ,n uniformly on compact subsets of Ω × (Ω \NΩ(μ)).
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2. Proof of Theorem 1.5

Proof. Let n > 1. For z, w ∈ Ω, let 
∫ w

z
denote the integration along a path from z to w in Ω. Recall that

∂

∂z
MΩ,μ,n(z, ζ) = K̃Ω,μ,n(z, ζ), and MΩ,μ,n(ζ, ζ) = 0 for z, ζ ∈ Ω.

Therefore,

MΩ,μ,n(z, ζ) =
z∫

ζ

K̃Ω,μ,n(ξ, ζ)dξ, z, ζ ∈ Ω.

Since MΩ,μ,n is a primitive of K̃Ω,μ,n, the above integral does not depend upon the choice of path. Note 
that K̃Ω,μ,n(·, ·) ∈ C∞(Ω × (Ω \NΩ(μ))). Fix z ∈ Ω and let ζ ∈ Ω \NΩ(μ). For w ∈ C with small enough 
modulus,

MΩ,μ,n(z, ζ + w) −MΩ,μ,n(z, ζ) =
z∫

ζ+w

K̃Ω,μ,n(ξ, ζ + w)dξ −
z∫

ζ

K̃Ω,μ,n(ξ, ζ)dξ

=
z∫

ζ

(
K̃Ω,μ,n(ξ, ζ + w) − K̃Ω,μ,n(ξ, ζ)

)
dξ −

ζ+w∫
ζ

K̃Ω,μ,n(ξ, ζ + w)dξ.

Let ζ = u + iv. Take w = h with h ∈ R. Since K̃Ω,μ,n(·, ·) ∈ C∞(Ω × (Ω \NΩ(μ))), an application of DCT 
gives

lim
h→0

z∫
ζ

(
K̃Ω,μ,n(ξ, ζ + h) − K̃Ω,μ,n(ξ, ζ)

h

)
dξ =

z∫
ζ

lim
h→0

(
K̃Ω,μ,n(ξ, ζ + h) − K̃Ω,μ,n(ξ, ζ)

h

)
dξ

=
z∫

ζ

∂K̃Ω,μ,n(ξ, ζ)
∂u

dξ.

By taking the curve γ(t) = ζ + th, t ∈ [0, 1] (for small enough h), we get

lim
h→0

1
h

⎛
⎜⎝

ζ+h∫
ζ

K̃Ω,μ,n(ξ, ζ + h)dξ

⎞
⎟⎠ = lim

h→0

1∫
0

K̃Ω,μ,n(ζ + th, ζ + h)dt = K̃Ω,μ,n(ζ, ζ).

The last equality follows from the continuity of K̃Ω,μ,n(z, ζ) in both the variables on Ω × (Ω \NΩ). Similarly, 
for w = ih with h ∈ R, we obtain

lim
h→0

z∫ (
K̃Ω,μ,n(ξ, ζ + ih) − K̃Ω,μ,n(ξ, ζ)

h

)
dξ =

z∫
lim
h→0

(
K̃Ω,μ,n(ξ, ζ + ih) − K̃Ω,μ,n(ξ, ζ)

h

)
dξ
ζ ζ
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=
z∫

ζ

∂K̃Ω,μ,n(ξ, ζ)
∂v

dξ,

and taking γ(t) = ζ + ith for t ∈ [0, 1], we have

lim
h→0

1
h

⎛
⎜⎝

ζ+ih∫
ζ

K̃Ω,μ,n(ξ, ζ + ih)dξ

⎞
⎟⎠ = i lim

h→0

1∫
0

K̃Ω,μ,n(ζ + ith, ζ + h)dt = iK̃Ω,μ,n(ζ, ζ).

Thus, we obtain from above calculations that

∂MΩ,μ,n(z, ζ)
∂ζ

=
z∫

ζ

∂K̃Ω,μ,n(ξ, ζ)
∂ζ

dξ − 1
2
(
K̃Ω,μ,n(ζ, ζ) + K̃Ω,μ,n(ζ, ζ)

)

=
z∫

ζ

∂K̃Ω,μ,n(ξ, ζ)
∂ζ

dξ − K̃Ω,μ,n(ζ, ζ).

Also,

∂MΩ,μ,n(z, ζ)
∂ζ̄

=
z∫

ζ

∂K̃Ω,μ,n(ξ, ζ)
∂ζ̄

dξ − 1
2
(
K̃Ω,μ,n(ζ, ζ) − K̃Ω,μ,n(ζ, ζ)

)

=
z∫

ζ

∂K̃Ω,μ,n(ξ, ζ)
∂ζ̄

dξ.

It now follows from induction and the fact that K̃Ω,μ,n(·, ·) ∈ C∞(Ω × (Ω \ NΩ(μ))), for positive integers 
r, s, all the partial derivatives in ζ, ζ commute, and

∂r+sMΩ,μ,n(z, ζ)
∂ζr∂ζ̄s

= ∂r+sMΩ,μ,n(z, ζ)
∂ζ̄s∂ζr

= ∂s

∂ζ̄s

⎛
⎜⎝

z∫
ζ

∂rK̃Ω,μ,n(ξ, ζ)
∂ζr

dξ −
r−1∑
k=0

∂kK̃
(r−1−k)
Ω,μ,n

∂ζk

⎞
⎟⎠

=
z∫

ζ

∂r+sK̃Ω,μ,n(ξ, ζ)
∂ζ̄s∂ζr

dξ −
r−1∑
k=0

∂k+sK̃
(r−1−k)
Ω,μ,n

∂ζ̄s∂ζk
.

Moreover, the moment we differentiate with respect to z, the integrals disappear and the resulting expression 
is smooth by the smoothness property of K̃Ω,μ,n on Ω × (Ω \NΩ(μ)). Additionally, the functions involved 
are holomorphic in z. Thus, we have proved that MΩ,μ,n(z, ζ) is a C∞-smooth function on Ω × (Ω \NΩ(μ)).

For n = 1, it can be proved in a similar manner that the kernel function MΩ,μ(z, ζ) is smooth on Ω × Ω
because K̃Ω,μ(·, ·) ∈ C∞(Ω × Ω). �
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3. Proof of Theorem 1.6

Proof. Let n > 1. Fix (z0, ζ0) ∈ Ω × (Ω \ NΩ(μ)) and choose r > 0 such that B(z0, r) × B(ζ0, r) ⊂
Ω × (Ω \ NΩ(μ)). Let γ : [0, 1] −→ Ω \ NΩ(μ) be a piecewise C1-smooth curve such that γ(0) = ζ0 and 
γ(1) = z0. The set

W := (γ ∪B(z0, r) ∪B(ζ0, r)) ×B(ζ0, r)

is a compact subset of Ω × (Ω \NΩ(μ)). We may assume, without loss of generality, that W ⊂ Ωj × (Ωj \
NΩj

(μj)) for all j. Now, for ζ ∈ B(ζ0, r) and z ∈ B(z0, r), define a path σζ,z = γz ∗ γ ∗ γζ joining ζ and z, 
where γζ(t) := ζ + t(ζ0 − ζ) and γz(t) := z0 + t(z − z0) for all t ∈ [0, 1]. Set l(γ) := length(γ). Observe that 
length(σζ,z) ≤ 2r + l(γ) as

∫
σζ,z

|dξ| ≤
∫
γz

|dξ| +
∫
γ

|dξ| +
∫
γζ

|dξ| ≤ 2r + l(γ).

By Theorem 1.5, for non-negative integers r, s

∂r+sMΩj ,μj ,n(z, ζ)
∂ζr∂ζ

s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z∫
ζ

∂sK̃Ωj ,μj,n
(ξ,ζ)

∂ζ
s dξ for r = 0

z∫
ζ

∂r+sK̃Ωj ,μj,n
(ξ,ζ)

∂ζr∂ζ
s dξ −

r−1∑
k=0

∂k+sK̃
(r−1−k)
Ωj ,μj,n

∂ζk∂ζ
s for r ≥ 1.

By the determinant formula (1), note that the local uniform convergence of K̃Ωj ,μj
to K̃Ω,μ on Ω × Ω

implies that all the partial derivatives of K̃Ωj ,μj ,n converge to the corresponding partial derivatives of 
K̃Ω,μ,n uniformly on compact subsets of Ω × (Ω \NΩ(μ)).

Let r, s be fixed non-negative integers. Let ε > 0. Since 
∂r+sK̃Ωj ,μj,n

(ξ,ζ)
∂ζr∂ζ

s → ∂r+sK̃Ω,μ,n(ξ,ζ)
∂ζr∂ζ

s uniformly on 

compact subsets of Ω × (Ω \NΩ(μ)), there exists j0(r, s) ∈ Z+ such that

sup
(ξ,ζ)∈W

∣∣∣∣∣∂
r+sK̃Ωj ,μj ,n(ξ, ζ)

∂ζr∂ζ
s − ∂r+sK̃Ω,μ,n(ξ, ζ)

∂ζr∂ζ
s

∣∣∣∣∣ < ε

2r + l(γ)

for all j ≥ j0(r, s). Therefore,

sup
(z,ζ)∈B(z0,r)×B(ζ0,r)

∣∣∣∣∣∣∣
z∫

ζ

∂r+sK̃Ωj ,μj ,n(ξ, ζ)
∂ζr∂ζ

s dξ −
z∫

ζ

∂r+sK̃Ω,μ,n(ξ, ζ)
∂ζr∂ζ

s dξ

∣∣∣∣∣∣∣
= sup

(z,ζ)∈B(z0,r)×B(ζ0,r)

∣∣∣∣∣∣∣
∫

σζ,z

(
∂r+sK̃Ωj ,μj ,n(ξ, ζ)

∂ζr∂ζ
s − ∂r+sK̃Ω,μ,n(ξ, ζ)

∂ζr∂ζ
s

)
dξ

∣∣∣∣∣∣∣
≤ sup

(ξ,ζ)∈W

∣∣∣∣∣∂
r+sK̃Ωj ,μj ,n(ξ, ζ)

∂ζr∂ζ
s − ∂r+sK̃Ω,μ,n(ξ, ζ)

∂ζr∂ζ
s

∣∣∣∣∣ (2r + l(γ)) < ε

for all j ≥ j0(r, s). Moreover, for all integers r ≥ 1 and s ≥ 0,

lim
j→∞

⎛
⎝r−1∑ ∂k+sK̃

(r−1−k)
Ωj ,μj ,n

∂ζk∂ζ
s

⎞
⎠ =

r−1∑ ∂k+sK̃
(r−1−k)
Ω,μ,n

∂ζk∂ζ
s

k=0 k=0
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uniformly for all ζ ∈ B(ζ0, r) as all the partial derivatives of K̃Ωj ,μj ,n converges to the corresponding partial 
derivatives of K̃Ω,μ,n uniformly on compact subsets of Ω × (Ω \NΩ(μ)).

As noted before, the moment we differentiate the kernel functions with respect to z, the integrals disappear 
and the resulting expression is a linear combination of partial derivatives of the n-th order reduced Bergman 
kernels. Additionally, all the kernel functions involved are holomorphic in z. Thus, we have proved that all the 
partial derivatives of MΩj ,μj ,n converge to the corresponding partial derivatives of MΩ,μ,n locally uniformly 
on Ω × (Ω \NΩ(μ)).

Exactly similar calculations and the fact that the reduced Bergman kernel is holomorphic in the first 
variable and anti-holomorphic in the second variable will lead us to conclude the local uniform convergence 
of all the partial derivatives of MΩj ,μj

to the corresponding partial derivatives of MΩ,μ on Ω × Ω. �
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