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A B S T R A C T

In this work, we propose a data-driven framework to identify precursors of extreme events in turbulent reacting
flows. Specifically, we tackle the problem of flashback prediction in a lean hydrogen reheat combustor. Our
framework is composed of two parts. The first consists in the use of a co-kurtosis based approach to identify
the components of the thermochemical and flow state which are the most relevant for the onset of flashback.
This allows for an efficient low-dimensional representation. From this reduced representation, a modularity-
based clustering algorithm is then employed to segregate between clusters which contain normal and extreme
(flashbacking) states, and the cluster located in-between these states, which are the precursor states of extreme
events. We show that this method is able to identify the most important features at the onset of flashback in the
considered reheat combustor and then provide precursor states based on those. The prediction time obtained
with the identified precursors is relatively large when compared to the duration over which the combustor is
stable. Additional analyses on the specific choice of features for the precursor identification and the sampling
locations are made. The robustness of the method when using shorter time series to identify the precursor
is also investigated. Results show that the method is generally robust with respect to such changes. A first
step towards practical measurements is also attempted with wall pressure measurements, which shows only
a moderate reduction in prediction time. This work proposes for the first time a data-driven technique to
automatically identify precursors of flashback in hydrogen combustion opening the path for such applications
on other extreme events in reacting flows.
1. Introduction

Many combustion systems can exhibit extreme events which are
events where the combustor exhibits large excursions away from its
design point, potentially resulting in severe damages [1]. Examples
of such extreme events include engine unstart in scramjet, where the
shock necessary for flame stabilization is ejected from the scramjet [2],
flame blow-out where the flame extinguishes [3] or flashback in hydro-
gen combustors, where the flame suddenly moves upstream into the
mixing duct [4].

While one can try to design the combustor to avoid such events,
it is rarely possible to make such designs entirely fail-proof [1]. First,
turbulent systems are chaotic, which implies that identifying and un-
derstanding the infinitesimal perturbations at the origin of extreme
events is challenging. Second, combustors are high-dimensional sys-
tems, which span a wide range of spatio-temporal scales and are
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often coupled with other components. Therefore, extreme events can
originate from many different paths which cannot all be accounted
for at the design phase. Given these complexities and potential grave
consequences, it is necessary to develop methods that can reliably pre-
dict the occurrence of such events in combustors. However, achieving
the prediction of extreme events has been quite limited owing to the
complexity of their origin and the limited observations we have of
those [5]. For some specific extreme events in reacting flows, such
as thermoacoustic instabilities, some precursors could be identified
from physical considerations [6]. However, for many others, reliable
techniques are still needed and advances on this understanding is still
limited in the literature. Such advances can be provided by machine
learning techniques given their ability in analysing and identifying
patterns in large datasets [7,8].

For methods based on machine learning, two different capabilities
are needed: (i) featurization to obtain a latent reduced representation
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and (ii) precursor identification in that reduced representation. Regard-
ing featurization, the high-dimensionality of reacting flows makes their
analysis at the onset of extreme events very challenging, Thus data-
driven techniques capable of identifying which features (or reduced
number of combined features) are the most relevant in the early stage
of extreme events, is crucial. Principal Component Analysis (PCA) has
for example been used to project the thermochemical state onto a
lower dimension [9,10]. However, PCA is only a linear method that
identifies a reduced space based on maximizing the explained variance
and extreme states may not be easy to spot with such a method [11–13].

For precursor identification, different approaches have been devel-
oped in the past years which are mostly ad-hoc methods. For exam-
ple, for thermoacoustic instabilities, precursor identification techniques
have relied on the multifractality concept [6]. However, such methods
are by definition not generalizable to other forms of extreme events
in reacting flows. More general alternatives have reframed the precur-
sor identification problem into an optimization problem with partial
differential equations as constraints. In this case, precursor states are
identified as the states which show the largest ‘‘growth’’ (according
to a quantity linked to extreme events) [14]. This method has so far
only been applied to non-reacting flows and is an expensive technique
requiring an adjoint-based solver to solve the optimization problem.
Another line of methods, of interest in this work, has relied on a
graph-based interpretation of the evolution of a flow combined with
community clustering to identify precursors of extreme events [15,16].
This was shown to be effective and relatively cheap on non-reacting
flows and be applicable for various extreme events. However, so far,
no precursor identification technique has shown to be applicable for
reacting flows in a general manner.

In this work, we propose and demonstrate a combination of data-
driven techniques, based on co-kurtosis [11–13] and modularity clus-
tering [15,16], which can help in the physical investigation of the
cause of extreme events and in the identification of their precursors.
This framework is applied to the case of a lean hydrogen turbulent
reheat combustor which exhibits intermittent flashback. The remainder
of this paper is organized as follows. Section 2 provides details on
the case considered. Section 3 details the featurization method based
on the co-kurtosis approach and the precursor identification technique
based on modularity clustering used in this work. Section 4 presents
the features identified and the resulting identified precursors, including
the time warning they provide alongside further investigations on the
performance of the clustering technique. The final section summarizes
the main results and outlines avenues for future work.

2. Test case: reheat hydrogen combustor with intermittent flash-
back

The configuration considered here is a simplified version of the
Ansaldo Energia GT36 reheat combustor, as in [17], where both au-
toignition and deflagration play a role in the flame stabilization. Such
reheat configurations are typically designed to exploit autoignition
flame properties to ensure stability in a high velocity flows and have
been studied in past work like [17,18] using physics-based approaches.

The mid-𝑧 plane is shown in Fig. 1 alongside the boundary con-
ditions considered. Compared to [17], a higher pressure of 20 atm is
considered instead of 1 atm and the inflow temperature is increased
from 1100 K to 1180 K. The inflow velocity profile is set as a uniform
profile with a magnitude of 200 m/s. The turbulence intensity at the
inlet is set to 10% using the method in [19]. The reactant mixture
consists of premixed hydrogen/air with an equivalence ratio of 0.35.
With these conditions, intermittent flashback is observed as shown in
Fig. 2 which will be discussed below.

Our numerical set-up is very similar to the LES set-up used in [20]
which studied the same configuration (at low pressure) and whose LES
results were validated against the DNS data of [17]. Compared to [20],
we appropriately refined the mesh to resolve at least 80% of the subgrid
2

Fig. 1. Geometry of the reheat combustor shown in the mid-𝑧 plane. 𝐿 = 1 cm [20].

kinetic energy (Pope’s criterion) everywhere in the domain, except near
walls where wall functions are used and performed several sensitivity
analyses. This resulted in a mesh with approximately 10 million cells
which is considered to be sufficient to appropriately resolve the main
combustion dynamics. The simulation is performed using LES with the
artificial thickened flame model [21]. NSCBC boundary conditions are
applied at the inlet and outlet to properly account for pressure waves
propagation and non-slip isothermal walls at a temperature 𝑇 = 750 K
are considered. The Converge CFD solver is used with the PISO loop,
in conjunction with the SOR method and Rhie-Chow interpolation to
avoid pressure–velocity decoupling. The hydrogen-air chemical kinetics
is evaluated using the 9-species 21-reactions mechanism of [22].

The simulation is run for a time long enough to collect eight flash-
back events. It should be noted that those eight flashback events are not
identical to one another. Indeed, our set-up has partially non-reflective
boundary conditions, which will have a ‘‘rubberband’’ effect on the
pressure waves. These waves are partially reflected at the boundaries
subsequently inducing random pressure/velocity fluctuations. This en-
sures some stochasticity making each flashback event different. This
will be shown later in Fig. 7 where the duration of each flashback event
is shown to be different. 2D snapshots of the mid 𝑧-plane are saved at a
frequency of 1 MHz (to well capture the flashback dynamics) resulting
in 2500 snapshots for the analysis in Section 4.

From physical analysis, the following sequence leading to flashback
was observed. First, the flame is stabilized on the centreline by means
of autoignition, with its base located at the exit of the mixing tube,
where the flame is stabilized in an ignition-assisted mode due to the
recirculation zones at the expansion. This is the designed point of
operation, which results from the balance between the autoignition
and flow-through times. The process of autoignition expands locally
the gases, inducing pressure waves both downstream and upstream at
the combustor walls. The pressure waves converge at the centreline,
forming a constructive interference pattern, which leads to a positive
temperature fluctuation due to compressive heating (Fig. 2b). This
fluctuation ultimately gives rise to an early autoignition event (Fig. 2b
where the slightly higher temperature spot can be seen in the mixing
tube accompanied by the resulting pressure waves). Subsequently, the
pressure waves travel upstream into the combustion chamber heating
the inflowing mixture, inducing their early ignition (through a decrease
of their ignition delay time), eventually resulting in reactions in the
mixing tube.

3. Methodology

To predict the occurrence of flashback in the reheat combustor con-
figuration, two methods are combined. First, a featurization approach
based on co-kurtosis, as introduced in [11–13], is applied to derive
the features that have the largest contribution towards the occurrence
of flashback. Thereafter, based on the findings, the precursor identi-
fication technique based on modularity clustering [15,16] is used to
identify the precursor states. This workflow is illustrated in Fig. 3. The
aforementioned techniques are elaborated in the subsequent sections.
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Fig. 2. Contours of temperature during a typical flashback event (top to bottom). White
lines: pressure isolines. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. A schematic illustrating the precursor identification workflow.

3.1. Featurization method: co-kurtosis PCA

The co-kurtosis PCA technique is chosen here for the featurization
step as its use for extreme event/outlier detection was well documented
in previous studies [11–13]. In [11], the robustness of this approach
was also assessed on several test cases with extreme events and it was
shown that the co-kurtosis PCA was consistently more sensitive than
standard PCA to the presence of outliers (that signify the inception
of extreme events). Details on the co-kurtosis PCA procedure are now
provided.

Consider a feature vector 𝐕 of dimension 𝑁𝑓 with 𝑛𝑠 samples. The
joint fourth order moment tensor, i.e., co-kurtosis, can be represented
using index notation as:

𝜏𝑖𝑗𝑘𝑙 =
1
𝑛𝑠

∑

𝑛𝑠

𝑣𝑖𝑣𝑗𝑣𝑘𝑣𝑙 , 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑁𝑓 (1)

where 𝑣𝑖 ∈ 𝐕. We are interested in computing the principal vectors of
the co-kurtosis tensor that, in analogy to PCA, align themselves in the
directions in which the outliers are located. By subtracting the excess
variance, we obtain the final expression for computing the co-kurtosis
tensor as:
[

𝐶𝑦
4
]

𝑖1𝑖2𝑖3𝑖4
= E[𝑦 ⊗ 𝑦 ⊗ 𝑦 ⊗ 𝑦] − E[𝑦𝑖1𝑦𝑖2 ]

E[𝑦 𝑦 ] − E[𝑦 𝑦 ]E[𝑦 𝑦 ]
3

𝑖3 𝑖4 𝑖1 𝑖3 𝑖2 𝑖4
− E[𝑦𝑖1𝑦𝑖4 ]E[𝑦𝑖2𝑦𝑖3 ]

where, 1 ≤ 𝑖1 … 𝑖4 ≤ 𝑞 and E is the expectation operator. It should
be noted that the data used in the definition of joint moments is zero-
centred around the mean. It was shown that the cumulant tensor 𝐶𝑦

4
can be reshaped into a matrix 𝑀𝑦 which results in a simple singular
value decomposition (SVD) problem [23,24]:

mat(𝐶𝑦
4 ) ≡ 𝑀𝑦 =

𝑞
∑

𝑖=1
𝜅𝑖 𝑎𝑖 ⊗ vec(𝑎𝑖 ⊗ 𝑎𝑖 ⊗ 𝑎𝑖) (2)

where the vectors 𝑎𝑖 can be determined from the SVD of 𝑀𝑦. Note that,
mat and vec denote operations of matricising and vectorizing a tensor
respectively.

We perform a featurization step by defining a feature moment
metric 𝐹 𝑗,𝑛

𝑖 for each feature 𝑖 in a given sub-domain 𝑗 and time-step 𝑛
(see Eq. (3)), which can be used to quantify the changes in the principal
values and vectors:

𝐹 𝑗,𝑛
𝑖 =

∑𝑁𝑓
𝑘=1 𝜆𝑘(𝑒𝑖.�̂�𝑘)

2

∑𝑁𝑓
𝑘=1 𝜆𝑘

(3)

Note that 𝑒𝑖 ⋅ �̂�𝑘 corresponds to the 𝑖-th entry in the 𝑘-th vector �̂�𝑘.
By definition, the set of vectors �̂�𝑘 is orthonormal. Second, the sum of
all feature moment metric (FMM) values for each feature 𝑖 in a given
sub-domain 𝑗 and time-step 𝑛 yields unity, i.e., ∑𝑁𝑓

𝑖=1 𝐹
𝑗,𝑛
𝑖 = 1, ∀𝑗, 𝑛. The

FMM value for a given feature 𝑖 represents the fraction of the overall
moment (kurtosis or variance) contained in feature 𝑖 and thus can be
considered as a representative of moment distribution. Qualitatively,
this represents the contribution of a feature 𝑖 towards the occurrence
of an anomalous/extreme state. Therefore, this method can provide the
most important features to identify precursors of extreme states.

3.2. Precursor identification: modularity clustering

To identify precursors of extreme events (i.e. states which will lead
towards an extreme state within a given time), the modularity-based
clustering approach first introduced in [25] and then further developed
in [16] is used. The initial step consists in extracting time series of rep-
resentative features from the dataset (in this case, those observed to be
of importance from the co-kurtosis featurization) and then interpreting
them in a phase space. This phase space trajectory is then tessellated
into hypercubes covering the entire phase space, thus representing the
system’s dynamics as the transitions between the different hypercubes,
essentially reducing the complexity of the system. At this stage, the
specific hypercubes covering extreme states are also identified based
on a user-defined threshold. A probability transition matrix, 𝑷 , is then
computed, where the probability of transitioning from hypercube 𝐵𝑖
to hypercube 𝐵𝑗 (between two consecutive snapshots) is calculated as
follows:

𝑃𝑖𝑗 =
𝑚
(

𝐵𝑖 ∩ 1 (𝐵𝑗
))

𝑚
(

𝐵𝑖
) 𝑖, 𝑗 = 1,… , 𝑁 (4)

Here, 𝑁 is the total number of hypercubes needed to represent the
trajectory, 𝑚(𝐵𝑖) represents the number of phase space points (i.e. snap-
shots) laying in hypercube 𝐵𝑖 and 1 is the temporal forward operator.
𝑃𝑖𝑗 can then be interpreted as a weighted and directed graph, where the
nodes of the graph represent the hypercubes, the graph edges are the
possible transitions and the edge weights are values given by the actual
probabilities of transitioning from one hypercube to another. To make
this graph human-tractable, modularity-based clustering can be applied
as proposed in [26]. This algorithm focuses on optimizing a metric
called modularity, which gauges how effectively a network is divided
into distinct clusters (of nodes). This metric is premised on the notion
that a favourable cluster division is one characterized by a reduction
in inter-cluster edges beyond what would be statistically expected, as
opposed to simply having fewer edges overall. The greater the deviation
from a random network created with the same degree sequence as the
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Fig. 4. Evolution of normalized scalars of interest during a typical flashback event.

original graph, the higher the resulting modularity score. The division
of the network into clusters is done iteratively until no further division
increases the modularity metric.

Once the clusters have been found, a matrix deflation step is made,
where a cluster affiliation matrix 𝑫 is created by assigning the nodes
of the original graph to the identified clusters. Then, a new transition
probability matrix 𝑷 (𝟏) is calculated by deflating the original matrix 𝑷 :

𝑷 (𝟏) = 𝑫𝑇𝑷𝑫 (5)

This matrix is again interpreted as a graph and the process repeats until
an interpretable (but still detailed enough) graph is obtained. In the
graph based on the deflated transition probability matrix, we can then
distinguish between the extreme and precursor clusters and compute
statistics related to the transition time between these two types of
clusters. This time represents the time available to react to an impeding
extreme event when entering precursor clusters.

4. Results

4.1. State-space featurization

In this section, the co-kurtosis analysis is performed to identify the
important features for the onset of flashback. First, the full thermo-
chemical state (all nine species mass fractions, temperature, pressure
and density) and components of velocity are collected at the centreline
close to the area jump (square E0 in Fig. 1) for a total of 𝑁𝑓 =
15 features. That sampling location is picked as it is located close
to the observed early autoignition kernel discussed in Section 2 and
shown in Fig. 2. Typical time-series of quantities which will be further
investigated (temperature, streamwise velocity 𝑢, pressure 𝑝, density 𝜌
and some species mass fractions) are shown in Fig. 4 during a flashback
event. The quantities are normalized by their maximum and minimum
to have an evolution between 0 and 1 (only for plotting purposes): �̃� =
(𝜙−min(𝜙))∕(max(𝜙)−min(𝜙)) (𝜙 being one of the considered features).
One can observe the flashback when the temperature increases abruptly
around 𝑡 = 60 μs which indicates that the flame front has progressed
upstream of the sampling location.

Before applying the co-kurtosis PCA method, each feature is nor-
malized by subtracting their respective means and dividing by their
absolute maximum to ensure an equitable contribution of each variable
to the FMMs. Then, the co-kurtosis analysis described in Section 3.1
is applied using these normalized features on the full time series
(which contains 8 flashback events). The FMMs are then obtained using
Eq. (3), which allows to identify the features that contribute the most
to changes towards extreme states (here, the flashbacking state).
4

Fig. 5. Evolution of the six most important FMMs during flashback of Fig. 4. Full line:
left axis, dashed: right axis.

In Fig. 5, the FMM evolution of the six most important features
during flashback is plotted for the same time instants as in Fig. 4. As
the FMMs (of all features) sum up to unity, it is possible to rank what
feature contributes more to state changes based on its FMM values. To
more clearly identify the most important ones, we further computed
a moving time average of the FMM of each feature (not shown here
for brevity) which resulted in the selection of the temperature 𝑇 , the
streamwise velocity 𝑢, the density 𝜌, the pressure 𝑝 and the species mass
fractions of HO2 and OH as the most important features for flashback.
This analysis allows to discard the other features of the thermochemical
and flow states as they are less relevant for this flashback according to
their lower FMM contributions (and are not shown here for brevity).

From a physical perspective, the features identified confirm the
physical intuition given by the observed flashback mechanism (detailed
in Section 2): there is an early autoignition in the sampling region that
can be associated with changes in HO2 (a precursor of autoignition),
which is picked up by the FMM. The effect of the pressure waves at the
origin of that early kernel also appears in the FMM of pressure (by the
large contribution of the pressure FMM) as well as its resulting effect
on the streamwise velocity. The other quantities identified by the FMM
(𝜌, 𝑇 and OH) are quantities which are directly resulting from those
initial small changes in the flow state.

4.2. Precursor identification

In this section, we only retain the features identified previously,
namely 𝑇 , 𝑝, 𝑢, 𝜌, HO2, OH to apply the precursor identification
technique. We retain only six features to limit the computational cost
of the clustering algorithm. To more easily capture the full range of
the species mass fractions, we consider their logarithms instead of their
actual values (i.e., we use ln(𝑌HO2

) and ln(𝑌OH)). This allows to use
an equidistant phase space tessellation (in logarithmic space) which
better covers the full range of variations of the species mass fractions
(which evolve exponentially over very short times). This improves the
convergence of the clustering algorithm. From the time-series of those
features sampled at location E0, we now consider their evolution in a
phase space. For illustration purposes, a projection in the 𝑇 -𝑝 plane
of the evolution is shown in Fig. 6 (while we actually still retain
the six mentioned features). It can be seen that the evolution shows
two different patches: one at high temperature corresponding to when
flashback has occurred and the flame is upstream of E0, and one at
low temperature corresponding to when the flame is located in the
combustion chamber. The aim of the clustering algorithm is to identify
which parts of the lower patch corresponds to precursors of extreme
events.

We apply here the modularity-based clustering technique described
in Section 3.2, using a uniform tessellation consisting of 20𝑁𝑓 hyper-
cubes (𝑁 being the number of features used), to identify different
𝑓
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Fig. 6. Projected evolution in the 𝑇 -𝑝 space of the features sampled at location E0. Dot
colours indicate the cluster index in which that specific snapshot belongs. The cluster
numbers are shown and located at the centroid of that cluster (red numbers indicate
extreme clusters). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

clusters of states that can be categorized into normal, precursor and
extreme states. The horizontal line in Fig. 6 indicates the temperature
above which we consider that the clusters are extreme (here 𝑇 =
1300 K). The resulting clusters identified are shown in Fig. 6, where
the colour of the points indicates the cluster to which a given state
(along the evolution) belongs. In the bottom half several clusters are
identified. The following clusters are identified as precursor: 0, 1, 2,
5, 8, 9 and 10. From direct inspection of the phase-space trajectory in
Fig. 6, it would not be obvious that those specific states are precursors
because of the density of states that overlaps and how normal clusters
are located directly next to precursor clusters. This shows the advantage
the clustering provides in analysing the evolution in this phase space.

From the obtained clusters, it becomes possible to estimate the mean
time between the moment the combustor enters the precursor cluster
and when it enters the extreme cluster. We call this time the prediction
time, 𝑡𝑝𝑟𝑒𝑑 . In addition, we also assess the number of false positives (FP),
which is the number of times the combustor enters what is considered
a precursor cluster without being followed by an actual extreme state.
It should be noted that we do not discuss false negative here as, in
our approach, each cluster of states that can transition to flashback is
marked as a precursor. Therefore, there is no extreme state without a
preceding precursor and there are thus no false negative.

The prediction time when considering all six features is shown in
the first line of Table 1 with a value of 𝑡𝑝𝑟𝑒𝑑 = 15.7 μs. While this
prediction time may seem small, it actually corresponds to a state with
a temperature of around 1218 K sampled at location E0, which is a
very small change in the mixture given that the inflow temperature is
1180 K. Furthermore, this combustor is strongly unstable: between two
flashback events, the combustor actually only spends approximately
60 μs in a ‘‘non flashbacking’’ state and therefore, this prediction
time constitutes 25% of that ‘‘stable’’ time. Additionally, the precursor
does not show any false positive meaning that it did not wrongly
integrate normal states within precursor clusters. The prediction time
is further illustrated in Fig. 7 for the best combination of features (to
be discussed next). We show the temperature evolution (sampled at
E0) with a background colour indicating to what type of cluster the
combustor is considered to belong (blue: normal, orange: precursor,
red: extreme). One can see that the algorithm correctly identifies a
precursor state ahead of the large temperature increase, showing that
it could potentially be used as a warning indicator of flashback.

We now analyse the influence of the number of features on 𝑡𝑝𝑟𝑒𝑑 .
The different combinations tested are shown in Table 1. When only
5

Fig. 7. Temperature time series sampled at the E0 location with background colour
indicating the type of cluster the combustor is in (blue: normal; orange: precursor;
red: extreme) when using [𝑇 , 𝑢, 𝑝, 𝜌, HO2] for clustering. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Prediction time (𝑡𝑝𝑟𝑒𝑑 ) and false positives (FP) for different combinations
of the important features. Sampling location E0 (𝑥 = 3.1 and 𝑦 = 0.0 cm
in the mid-𝑧 plane). FP reported as number of events.
Features used 𝑡𝑝𝑟𝑒𝑑 [μs] FP

𝑇 , 𝑢, 𝑝, 𝜌, HO2, OH 15.7 0
𝑇 , 𝑢, 𝑝, 𝜌, HO2 32.1 0
𝑇 , 𝑢, 𝑝, HO2, OH 16.0 0
𝑇 , 𝑢, 𝑝, 𝜌, OH 20.9 0
𝑇 , 𝑢, 𝜌 HO2, OH 17.1 0
𝑇 , 𝑝, 𝜌, HO2, OH 14.1 1
𝑇 , 𝑢, 𝑝, HO2 15.8 0
𝑇 , 𝑢, 𝑝, 𝜌 18.1 0
𝑇 , 𝑢, 𝑝, OH 24.5 0
𝑇 , 𝑢, 𝜌, HO2 12.6 0
𝑇 , 𝑢, HO2, OH 12.5 0
𝑇 , 𝑢, 𝜌, OH 15.0 0
𝑇 , 𝑝, 𝜌, HO2 18.6 1
𝑇 , 𝑝, HO2, OH 11.1 1
𝑇 , 𝑝, 𝜌, OH 13.1 1
𝑇 , 𝜌, HO2, OH 8.38 0

four features are used (last ten lines), the prediction time is seen to
generally decrease. This could be expected as, in this case, the cluster-
ing algorithm has fewer features available to segregate between normal
and precursor states. However, when using five features, a different
observation can be made for the case [𝑇 , 𝑢, 𝑝, 𝜌,HO2], which shows a
larger 𝑡𝑝𝑟𝑒𝑑 than when using all six features. This could be explained by
the limited amount of data available for the clustering algorithm which
only contains 8 flashback events. Indeed, when using all the features,
the probability transition matrix used for the graph representation
(explained in Section 3.2) may not have fully converged (as there
are fewer points per tessellation hypercube). This would decrease the
performance of the clustering technique in identifying correctly all
the clusters. Conversely, decreasing the number of features may yield
better converged transition statistics which then allows improving the
prediction time obtained from the clustering. Therefore, a balance has
to be struck between number of features used and the length of the
available dataset.

In addition to the above analysis, we also investigate the importance
of the sampling location with locations offset from the centreline (Ei
locations in Fig. 1) and a location in the mixing tube (CU location
in Fig. 1) for the best case of Table 1. The resulting prediction times
are shown in Table 2, where it can be observed that the prediction
time degrades, but not significantly when considering offset locations.
This makes sense given that the location E0 was chosen as it was
observed to be the region of most early autoignition events that lead
to flashback. Regarding the CU location, a large decrease in 𝑡𝑝𝑟𝑒𝑑 is
observed due to the large velocity of the flashbacking flame when it
is travelling upstream (at nearly the speed of sound), which makes any
long prediction time impossible.
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Table 2
𝑡𝑝𝑟𝑒𝑑 and FP for the [𝑇 , 𝑝, 𝑢, 𝜌,HO2] case sampled at different
locations. FP reported as number of events.
Location [cm] 𝑡𝑝𝑟𝑒𝑑 [μs] FP

E0: x = 3.1; y = 0.0 32.1 0
E1: x = 3.1; y = 0.1 20.6 2
E2: x = 3.1; y = 0.2 32.0 1
E3: x = 3.1; y = 0.3 20.4 0
CU: x = 2.0; y = 0.0 13.9 0

Fig. 8. Temperature evolution during 3 flashback events not used during the clustering
procedure. Background colour indicates the combustor state (blue background: normal;
orange: precursor; red: extreme). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

4.3. Robustness analysis of precursor identification

Here, we analyse the robustness of the identified precursor to future
flashback events not used for the clustering algorithm. Specifically,
we consider a time series that only contains the first three flashback
events to obtain the precursor clusters (using the features of the best
case in Table 1: 𝑇 , 𝑢, 𝑝, 𝜌, HO2 sampled at E0). We use at least
three flashback events as we observed that using only two did not
give reliable precursors. Using those three flashback events results in
a prediction time (on those three events) of 26 μs, which is a decrease
of 19% as compared to using the full time series. Then, the centroid
of all identified precursor clusters are recorded. Fig. 6 indicates, for
example, the centroids of each cluster (the number of each cluster
is plotted at the centroid of that specific cluster). Subsequently, for
the rest of the time series (i.e. during the rest of the time series that
contains the five next flashbacks), we classify the state of the combustor
by computing the distance between the normalized state at that time
instant, �̃�(𝑡), and the centroid of the clusters previously identified:
𝜖𝑖 = ‖�̃�(𝑡)− �̃�

𝑐𝑒𝑛𝑡,𝑖
‖, where �̃�

𝑐𝑒𝑛𝑡,𝑖
indicates the location in phase space of

the centroid of cluster 𝑖. The combustor state is attributed to the cluster
with the smallest distance 𝜖𝑖 and the combustor state is then classified
as normal, precursor or extreme depending on the type of cluster. This
classification of the combustor state is shown in Fig. 8 for flashbacks
not used during clustering. The identified precursor still shows a similar
prediction time on the flashback events not seen during training, with
a prediction time of 23.6 μs (computed on the five flashback events
not used to obtain the precursor states). This shows that the algorithm
is able to somewhat identify useful precursors even when the dataset
is relatively short. This indicates that despite potentially not having a
fully converged probability transition matrix (due to the shortness of
the dataset), the clustering algorithm is able to already roughly identify
the region of the phase space where most precursor states lie.

4.4. Precursors from pressure time series

Here, we assess the performance of the clustering-based precursor
identification technique when using measurable quantities. Specifically,
we use pressure measurements at five different locations of the com-
bustor (yellow squares in Fig. 1), in addition to the temperature time
series at location E0, which is used to identify extreme clusters. We
apply the same methodology as previously and obtain a prediction
time of 23.75 μs, which implies a decrease of 25% as compared to
the previous best case in Table 1. This reduction in prediction time
6

could be expected as using only pressure measurements constitutes a
limitation in the information that the clustering can use to identify
precursors. Indeed, as observed in the previous section and in the
FMM analysis, other features (such as HO2) are also important in the
flashback mechanism in this reheat combustor. Nonetheless, the order
of magnitude of the prediction time remains similar as in the previous
best precursor, indicating that the clustering algorithm is still able to
identify some specific combinations of pressure signals that can serve
as a precursor to flashback in this reheat combustor.

5. Conclusions

We have proposed and combined two different data-driven tech-
niques for the analysis and prediction of extreme events in turbulent
reacting flows, specifically the prediction of flashback in a lean pre-
mixed hydrogen reheat combustor. First, we used a co-kurtosis based
featurization method to identify the most important thermochemical
and flow features that change prior to flashback. It is observed that
this method is able to identify the important features of flashback, in-
line with our physical understanding of the mechanism of flashback in
this reheat combustor. Second, we used those features to identify the
precursors of flashback using a clustering-based method. This combina-
tion of featurization with clustering differentiates our approach from
similar combustion mode/reaction rate analysis techniques such as
Chemical Explosive Mode Analysis (CEMA) or Computational Singular
Perturbation (CSP). Indeed, while in the featurization steps the full
thermochemical states was used, like in CEMA or CSP, we then combine
the results of co-kurtosis PCA with a clustering algorithm that accounts
for the preceding dynamics to identify precursor states before even
the onset of flashback. We showed that the identified precursor states
provide some prediction time before the flashback, up to 50% of the
time over which the combustor is stable between two flashback events,
depending on the specific choice of features and sampling locations.
The robustness of the identified precursor was also analysed by ob-
taining it based on few flashback events and we observed that it was
reliable for future unseen flashback events. A first step towards practi-
cal measurement configurations was finally made by considering wall
pressure measurements, where only a moderate decrease in prediction
time was observed. This last test shows the novelty of our approach as
such an analysis, based purely on pressure/temperature times series,
would not be possible with CEMA or CSP.

In future works, the robustness of the proposed method to stronger
forms of fluctuations (like temperature/equivalence ratio fluctuations)
or when applied to a less ideal case (with partially premixed mixture)
will be assessed. Furthermore, the applicability of the proposed meth-
ods will be explored on other extreme events in turbulent reacting
flows, such as blow-off. The performance of the proposed algorithms
under more practical conditions, such as fewer measurements or the
effect of noise, will also be investigated.

Novelty and significance statement

In this work, we tackle the problem of extreme event prediction in
turbulent reacting flows. We demonstrate the capabilities of two novel
techniques, namely co-kurtosis principal component analysis for the
featurization problem and modularity-based clustering for the precur-
sor identification. Our approaches are applied to the case of intermit-
tent flashback in a reheat lean premixed turbulent hydrogen combustor
which is relevant for the decarbonisation of our society. Our results
show for the first time a robust data-driven workflow that allows to
identify precursor of flashback, potentially enabling its prevention. This
is significant both from a fundamental perspective given the advances
this represent in the analysis of complex chaotic dynamics, as well
as from a practical perspective given the potential risk that flashback
poses for hydrogen combustion.
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