
Order and chaos in the SUð2Þmatrix model: Ergodicity and classical phases

Chaitanya Bhatt ,1,* Vijay Nenmeli,2,† and Sachindeo Vaidya 1,‡

1Centre for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India
2Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

(Received 10 June 2024; accepted 30 July 2024; published 18 September 2024)

We study the classical nonlinear dynamics of the SUð2Þ Yang-Mills matrix model introduced in
[Mod. Phys. Lett. A 30, 1550080 (2015)] as a low-energy approximation to two-color QCD. Restricting to
the spin-0 sector of the model, we unearth an unexpected tetrahedral symmetry, which endows the
dynamics with an extraordinarily rich structure. Among other things, we find that the spin-0 sector contains
coexisting chaotic subsectors as well as nested chaotic “basins”, and displays alternation between regular
and chaotic dynamics as energy is varied. The symmetries also grant us a considerable amount of analytic
control which allows us to make several quantitative observations. We see that the classical spin-0 sector
has a rich phase structure, arising from ergodicity breaking. Surprisingly, we find that many of these
classical phases display numerous similarities to previously discovered quantum phases of the spin-0 sector
[J. Math. Phys. (N.Y.) 58, 022103 (2017)], and we explore these similarities in a heuristic fashion.
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I. INTRODUCTION

Quantum chromodynamics is an SUð3Þ non-Abelian
gauge theory that plays an indispensable role in the physics
of strong interactions. It is however, subtle and compli-
cated: not only is it nonlinear and possesses an infinite
number of degrees of freedom, it also has an infinite-
dimensional gauge group. Progress in understanding the
theory has been made mostly in the perturbative regime,
or by approximating the theory by simpler models. One
such model is the SUð3Þ gauge matrix model (such as those
studied in [1–3]) obtained as the extreme low-energy limit
of the full gauge field theory on S3 ×R: it has been
successful in predicting the masses of light hadrons with
surprising accuracy [4].
In this work we will study an even simpler model, the

SUð2Þ gauge matrix model and in particular, its classical
dynamics. Although nonlinear, the model has a finite
number of degrees of freedom: there are three rotational,
three gauge and three noncompact gauge-invariant degrees
of freedom. Angular momentum conservation naturally
allows a decomposition of the full dynamics into non-
rotating and rotating sectors. Here we will restrict our

attention to the former, which we shall henceforth refer to
as the “spin-0 sector” of the matrix model.
Despite this restriction, the spin-0 sector still has a six-

dimensional phase space. Coupled with the dearth of
quantitative methods inherent to nonlinear systems, even
this reduced system seems, at first glance, intractable.
However, as we shall see, the discovery of a hidden
tetrahedral symmetry simplifies matters enormously. In
this avatar, the model is a three-dimensional isotropic
oscillator perturbed by cubic and quartic nonlinearities.
A theorem of Weinstein [5] assures that integrable

Hamiltonian systems continue to have periodic orbits even
when perturbed by a small nonlinearity. The existence of
periodic orbits and a use of group theoretic methods for
classifying them allows us to systematize our study. While
Hamiltonian chaos is typically studied using the apparatus
of Kolmogorov-Arnold-Moser (KAM) theory [6–8], physi-
cal insights are sometimes masked by the abstract nature of
the necessary computations. A study of periodic orbits from
the point of view of their (in)stability will prove to be ideal
for our setup and will help us develop a much more intuitive
feel for the dynamics.
Second, the periodic orbits come with symmetries of

their own ([9,10]), which allows us to further simplify our
analysis. In particular, we shall see that a good fraction
of the orbits live on a four dimensional submanifold of the
full phase space and can be separately studied using an
appropriately reduced effective four dimensional system.
This is not unlike the Kepler problem, where the rotational
symmetry renders generic orbits planar. The effects of the
extra dimensions are mostly cosmetic, so that we lose
no generality by treating these orbits using the effective
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four-dimensional system and eventually reverting back to
the full model.
Lastly, the symmetries also simplify the expressions

governing time evolution along certain periodic orbits, to
the point where analytic solutions can be obtained, and
uncover dynamics that is far more intricate than one usually
encounters. It turns out that the set of all trajectories over
the phase space can be partitioned into classes, with each
class stemming from the destabilization of a specific type
of periodic orbit. Although the idea of regarding chaotic
trajectories as destabilizations of periodic orbits is not new,
any “memory” of the parent orbit is usually rapidly erased
in the chaotic domain, and perturbations about different
periodic orbits quickly cease to be distinguishable from one
another. What is novel here is that such a memory loss does
not occur as long as energies belong to particular “bands.”
As a result, for such energies, the phase space displays the
peculiar feature of multiple coexisting chaotic basins.
Systems containing coexisting attractors are quite rare—
the Rabinovich-Fabrikant model [11] being the prototypi-
cal example—and are normally rather artificial. It is thus
extremely interesting to see this phenomenon arising
naturally in the setting of a gauge matrix model.
The spin-0 sector thus possesses an extraordinarily rich

dynamics, worthy of a study even as a stand-alone non-
linear system. Our eventual aim however, is to work out
how such dynamics ties in with the physics of gauge theory.
Such a mapping can be carried out by identifying chaotic
and regular sectors of the nonlinear system with classical
phases of the underlying gauge-matrix model [1]. While
such themes will indeed feature in our analysis, albeit in a
more nuanced manner, they will only form one half of a two
stage procedure. This is because we have, in addition to our
nonlinear analysis, a thorough repository of the quantum
dynamics of the matrix model [4]. In particular, the
quantum matrix model has been shown to admit quantum
phases via superselection sectors; phases which, remark-
ably enough, bear some resemblance to the classical phases
associated with certain classes of periodic orbits. The
classical spin-0 sector of the full matrix model in some
sense retains some memory of its innate quantum nature!
These links between the classical and quantum regimes can
be exploited both ways: in one direction, we can use
techniques from the phase study of the quantum theory
to better elucidate their classical counterparts. On the
other hand, our classical-quantum correspondence is not
perfect—as we shall see, there are classical phases of the
spin-0 sector which have no apparent quantum analogs. It is
thus natural to use well-established methods, such as the
Gutzweiller trace formula [12], to attempt to search for
quantum counterparts to these classical phases or, should
they not exist, to understand the limits of this correspon-
dence. These questions are by no means trivial, and will
constitute the subject of a future work. In this article, we

will just provide a heuristic outline of the various con-
nections between classical and quantum phases.
To explain the peculiar features of the spin-0 sector

dynamics, we shall use two distinct but interlocking
diagnostic tools, designed for similar but not identical
purposes.
Our first tool involves quantifying the growth of fluc-

tuations about individual periodic orbits. The resulting
fluctuation equations are identical in form to those describ-
ing the eigenstates of a quantum particle in a certain
periodic potential. This correspondence allows us to con-
nect well-known results of band theory to novel analogs in
the study of fluctuations. As is well known from solid-state
physics, the spectrum of a quantum particle in a periodic
potential comprises several energy bands, separated from
one another by band gaps [13]. As we will show, such
features manifest on the nonlinear side of the correspon-
dence as alternations between regularity and chaos as we
vary the energy. Although alternations between regularity
and chaos (intermittency, as it is termed [14]) have been
documented in literature, such alternations are usually
irregular, with no clear-cut methods for identifying regions
of stability or instability. In contrast, the analytic control
(which we owe to the tetrahedral symmetry) we have over
our fluctuation equations allows us to make far more
precise statements on the locations of transition points.
Specifically, we will, for a particular class of periodic
orbits, work out the exact energy at which the first
transition from instability to stability occurs. For this same
class of orbits, we will also be able to obtain asymptotically
valid expressions for transition points in the high energy
limit. This analysis follows from a study of the monodromy
matrix U [15]. More precisely, it is the spectrum of U that
proves to be a reliable indicator of orbit stability. In our
case, it turns out the symmetries of the spin-0 sector and the
associated simplification in time evolution allow us to
assess orbit stability using just a single spectral invariant
(Trace U) rather than its entire spectrum. As we will later
see, this reduction will additionally grant us an unusually
strong analytic handle over the chaotic dynamics, and will
help us derive a good number of precise quantitative results.
Next, given that we are dealing with a highly nonlinear

system, it is natural to consider Lyapunov exponents and
Poincaré sections—the standard indicators of chaos. While
these constructs do not normally yield analytical informa-
tion, the latter is an excellent qualitative diagnostic for
chaos, while the former reliably quantifies the degree of
chaos present. Adapted to our system, Poincaré sections
wonderfully bring out the numerous substructures under-
lying the full dynamics, particularly the phenomena of
ergodicity breaking and coexisting chaotic basins.
Lyapunov exponents complement the visual aids provided
by the Poincaré sections and also serve as an excellent
independent identifier for ergodicity breaking.
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This article is organized as follows: In Sec. II, we
describe the Yang-Mills matrix model, its Lagrangian
and Hamiltonian formalisms, and obtain the equations
governing the spin-0 sector. In Sec. III, we outline the
symmetries of the spin-0 sector, investigate their topologi-
cal and dynamical effects, and introduce the families of
periodic orbits that they generate. Section IV builds on this
with a thorough enumeration of the structure and properties
of these aforementioned families, adding an extra pair
along the way. This is followed, in Sec. V, with an extensive
study of the stability properties of each family of orbits
using monodromy matrix theory. We then pursue a tradi-
tional chaos study (Poincaré sections and Lyapunov expo-
nents) in Sec. VI, where we also tie these results to those
of the monodromy analysis of the previous section.
Section VII then explores the classical phase structure of
the spin-0 sector, using the substantial collection of results
developed in preceding sections. Section VIII suggests
evidence for the links between the classical phases and a
host of quantum phases uncovered in a previous work of
one of the authors (SV). Section IX provides a summary of
this work and indicates directions for future work.

II. SETTING UP THE SUð2Þ MATRIX MODEL

The SUð2Þ matrix model contains nine degrees of
freedom grouped into a single matrix variable M∈M3ðRÞ
[4,16]. The dynamics of the system is governed by the
Lagrangian

LYM ¼ 1

2g2
ðEa

i E
a
i − Ba

i B
a
i Þ; i; a ¼ 1; 2; 3: ð2:1Þ

Here g is the Yang-Mills coupling, and E and B are the
chromoelectric and chromomagnetic fields respectively,
defined as

Ea
i ¼ Ṁia þ ϵabcM0bMic; Ba

i ¼
1

2
ϵijkFa

jk;

Fa
ij ¼ −ϵijkMka þ ϵabcMibMjc: ð2:2Þ

Since the action possesses an SUð2Þ gauge symmetry,
we may use the associated gauge freedom to fix M0a
to zero.
Rewriting the Lagrangian (2.1) in terms of the matrix

variable M, we obtain

LYM ¼ 1

2g2
trðṀTṀÞ − 1

2g2
trðMTMÞ þ 3

g2
detM

−
1

4g2
½trðMTMÞ�2 þ 1

4g2
tr½ðMTMÞ2�: ð2:3Þ

This Lagrangian is invariant under a left Oð3Þ action
(physical rotations plus parity) and a right SOð3Þ action
(gauge transformations). The left and right actions give

rise to two sets of conserved charges—the physical
angular momentum J ¼ ṀMT −MṀT , arising from the
left SOð3Þ action, and the gauge angular momentum
Γ ¼ ṀTM −MTṀ, associated with the action of the
gauge group.
A new set of coordinates ðR;A; SÞ, similar to the

coordinates of singular value decomposition (SVD) [17,18]
will prove to be very convenient. The matrix M decom-
poses asM ¼ RAST with R∈Oð3Þ, S∈ SOð3Þ and A a real
diagonal matrix diagða1; a2; a3Þ. Introducing the angular
velocitiesΩ≡ RTṘ and Λ≡ STṠ, the Lagrangian naturally
separates into a kinetic term T and a potential term U, and
may thus be expressed as

LYM ¼ 1

g2
ðT −UÞ; where ð2:4Þ

T ¼ 1

2
trðȦ2 − A2ðΩ2 þ Λ2Þ þ 2ΩAΛAÞ and ð2:5Þ

U¼Uða1;a2;a3Þ

¼1

2
½ða1−a2a3Þ2þða2−a3a1Þ2þða3−a1a2Þ2�: ð2:6Þ

The Lagrangian is independent of the angular coordinates
R and S, and in particular, the potentialU depends solely on
the variables ða1; a2; a3Þ. With the ðR;A; SÞ coordinates,
the angular momentum J and the gauge angular momentum
Γ take the form

J ¼ RðΩA2 þ A2Ω − 2AΛAÞRT;

Γ ¼ SðΛA2 þ A2Λ − 2AΩAÞST: ð2:7Þ

For the phase space formulation, we begin by defining
the canonical momenta

pA ¼ ∂L

∂Ȧ
¼ 1

g2
Ȧ; pΩ ¼ ∂L

∂Ω
¼ 1

g2
RTJR;

pΛ ¼ ∂L
∂Λ

¼ 1

g2
STΓS: ð2:8Þ

In terms of the (phase space) coordinates
ðR;A; S; pΩ; pA; pΛÞ, the Hamiltonian is

HYM ¼ hpΩ;Ωisoð3Þ þ hpΛ;Λisoð3Þ
þ hpA; Ȧisoð3Þ − L; ð2:9Þ

¼ g2

2
hpA; pAisoð3Þ þ

g2

2
hpΩ;Ωisoð3Þ

þ g2

2
hpΛ;Λisoð3Þ þ

1

g2
UðAÞ;

where hξ; ηisoð3Þ ≡ 1

2
trðξTηÞ: ð2:10Þ
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The Gauss law requires us to fix Γ ¼ 0, i.e., pΛ ¼ 0.
We will thus omit any equations involving these variables.
The equations of motion (EOM) are then

dA
dt

¼ ∂H
∂pA

;
dpA

dt
¼ −

∂H
∂A

; ð2:11Þ

dpΩ

dt
¼ ½pΩ;Ω�; Ω ¼ ∂H

∂pΩ
: ð2:12Þ

Since Ω is an antisymmetric 3 × 3 matrix, it can be
completely specified by a real triplet ðω1;ω2;ω3Þ via

Ω ¼

2
64

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

3
75; ð2:13Þ

with the triplet transforming as a three vector ω under
SOð3Þ rotations. In terms of ωi and ai, we can explicitly
rewrite the Hamiltonian as

HYM ¼ g2

2
ðp2

a1 þ p2
a2 þ p2

a3Þ þ
g2

2

�
a22 þ a23

ða22 − a23Þ2
p2
ω1

þ a23 þ a21
ða23 − a21Þ2

p2
ω2

þ a21 þ a22
ða21 − a22Þ2

p2
ω3

�

þ 1

2g2
ðða1 − a2a3Þ2 þ ða2 − a3a1Þ2 þ ða3 − a1a2Þ2Þ: ð2:14Þ

On canonically rescaling the coordinates and momenta as ai → gai; pai →
pai
g , we obtain

HYM ¼ 1

2
ðp2

a1 þ p2
a2 þ p2

a3Þ þ
1

2

�
a22 þ a23

ða22 − a23Þ2
p2
ω1

þ a23 þ a21
ða23 − a21Þ2

p2
ω2

þ a21 þ a22
ða21 − a22Þ2

p2
ω3

�

þ 1

2
ðða1 − ga2a3Þ2 þ ða2 − ga3a1Þ2 þ ða3 − ga1a2Þ2Þ: ð2:15Þ

With these coordinates, the EOM (2.11), (2.12) become

ȧ1 ¼ pa1 ; ȧ2 ¼ pa2 ; ȧ3 ¼ pa3 ; ð2:16Þ

ṗa1 ¼−
�

a1p2
ω2

ða21−a23Þ2
−
2a1ða21þa23Þp2

ω2

ða21−a23Þ3
þ a1p2

ω3

ða21−a22Þ2
−
2a1ða21þa22Þp2

ω3

ða21−a22Þ3
�
−ðg2a1a22−3ga3a2þg2a1a23þa1Þ; ð2:17Þ

ṗa2 ¼−
�

a2p2
ω1

ða22−a23Þ2
−
2a2ða22þa23Þp2

ω1

ða22−a23Þ3
þ2a2ða21þa22Þp2

ω3

ða21−a22Þ3
þ a2p2

ω3

ða21−a22Þ2
�
−ðg2a2a21−3ga3a1þg2a2a23þa2Þ; ð2:18Þ

ṗa3 ¼−
�
2a3ða22þa23Þp2

ω1

ða22−a23Þ3
þ a3p2

ω1

ða22−a23Þ2
þ2a3ða21þa23Þp2

ω2

ða21−a23Þ3
þ a3p2

ω2

ða21−a23Þ2
�
−ðg2a3a21−3ga2a1þg2a22a3þa3Þ; ð2:19Þ

ṗω1
¼ −

ða22 − a23Þð−3a41 þ ða22 þ a23Þa21 þ a22a
2
3Þg4pω2

pω3

ða21 − a22Þ2ða21 − a23Þ2
; ð2:20Þ

ṗω2
¼ ða21 − a23Þð−3a42 þ a23a

2
2 þ a21ða22 þ a23ÞÞg4pω1

pω3

ða21 − a22Þ2ða22 − a23Þ2
; ð2:21Þ

ṗω3
¼ −

ðða22 þ a23Þa41 − ða42 þ 3a43Þa21 þ 3a22a
4
3 − a42a

2
3Þg4pω1

pω2

ða21 − a23Þ2ða22 − a23Þ2
: ð2:22Þ

From these equations, it is easy to see that we have a consistent set of solutions with pωi
’s set to zero. Physically, this

corresponds to the irrotational sector of the matrix model, and it is these equations that we will study under the name of the
spin-0 sector. Explicitly, the equations governing the dynamics of the spin-0 sector are then

ȧ1ðtÞ ¼ pa1ðtÞ; ȧ2ðtÞ ¼ pa2ðtÞ; ȧ3ðtÞ ¼ pa3ðtÞ; ð2:23Þ
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ṗa1ðtÞ ¼ −ðg2a1ðtÞa2ðtÞ2 − 3ga3ðtÞa2ðtÞ
þ g2a1ðtÞa3ðtÞ2 þ a1ðtÞÞ; ð2:24Þ

ṗa2ðtÞ ¼ −ðg2a2ðtÞa1ðtÞ2 − 3ga3ðtÞa1ðtÞ
þ g2a2ðtÞa3ðtÞ2 þ a2ðtÞÞ; ð2:25Þ

ṗa3ðtÞ ¼ −ðg2a3ðtÞa1ðtÞ2 − 3ga2ðtÞa1ðtÞ
þ g2a3ðtÞa2ðtÞ2 þ a3ðtÞÞ: ð2:26Þ

These equations emerge from the variation of the
Hamiltonian

H0 ¼
1

2
ðp2

a1 þ p2
a2 þ p2

a3Þ þ
1

2
ða21 þ a22 þ a23 − 6ga1a2a3

þ g2ða21a22 þ a22a
2
3 þ a23a

2
1ÞÞ; ð2:27Þ

which is simply the full Hamiltonian (2.15), with the pωi

fixed to zero. For the remainder of this article, we will
always assume zero angular momentum and work exclu-
sively with Eqs. (2.23)–(2.27).

III. SYMMETRIES OF THE SPIN-0 SECTOR

A. The action of the tetrahedral group

Since the Hamiltonian is independent of the angular
coordinates R and S, the nontrivial dynamics is in the
evolution of the ai’s. Remarkably, Hamiltonian (2.27) is
further invariant under the action of a discrete group.
Explicitly, the action of an arbitrary element of this discrete
symmetry group on the phase space variables is given by
compositions of the following
(1) ai → aPðiÞ; pai → paPðiÞ , where P is an element of

the permutation group S3.
(2) ai → siai; pai → sipai , where si is−1 for two values

of i and 1 for the remaining i. For example,
ða1; a2; a3Þ → ða1; −a2; −a3Þ; ðpa1 ; pa2 ; pa3Þ →
ðpa1 ; −pa2 ; −pa3Þ.

Transformations of the second kind form a Z2 × Z2

subgroup of the full symmetry group, while transforma-
tions of the first kind constitute an S3 subgroup. Both sets
of transformations clearly do not commute. The full
symmetry group can in fact be shown to be a semidirect
product of these two subgroups and is isomorphic to the
tetrahedral group Td.
The Hamiltonian further possesses an additional Z2

time-reversal symmetry T∶ pai → −pai. Along with the
time-reversal group T , the full discrete symmetry group
of the spin-0 sector is thus Td × T . We emphasize that
the Td symmetry of Hamiltonian (2.27) is a nontrivial
consequence of the SVD and in particular, bears no relation
to the continuous rotational symmetries of the original
Lagrangian (2.1). This unexpected symmetry will play a
crucial role in understanding the dynamics of the spin-0
sector in several ways, and will in particular hand us
far more analytic control than is usually available in
nonlinear systems.

B. Equipotential surfaces of the spin-0 sector

The tetrahedral symmetry is best seen by looking at the
equipotential surfaces of the Hamiltonian of the spin-0
sector. Equipotential surfaces for various energies have
been displayed in Fig. 1. There are two points of interest
to note:
(1) The tetrahedral symmetry, while present at all

energies, is less visible at intermediate energies
[Fig. 1(c)] and apparently transits to an octahedral
symmetry at high energies [Fig. 1(d)]. This tran-
sition is only approximate, and can be attributed to
the decreasing significance of the cubic term in the
potential at high energies.

(2) The topology of the equipotential surface changes as
we cross a certain critical energy Ec. Equipotentials
at subcritical energies [Fig. 1(a)] are disconnected
and are composed of a central lobe and a set of four
side lobes. Supercritical equipotentials [Fig. 1(d)],
in contrast, are connected surfaces in configuration
space. From the geometry of the equipotentials,

FIG. 1. Configuration space equipotentials of the spin-0 sector Hamiltonian.
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it is clear that the critical energy Ec is simply the
energy E at which the number of solutions of the
equation Vða; a; aÞ ¼ E is exactly one. Solving this,
we obtain Ec ¼ 3

32g2.

Given this topological feature of the potential, it is
natural to partition the dynamics into subcritical and
supercritical regimes, and study each one separately.
Indeed, we will later find that the dynamics of the two
regimes are quite different, with each zone displaying
peculiarities of different kinds.

C. Symmetries and periodic orbits

The EOMs (2.23)–(2.26) are highly nonlinear and, as we
shall see, lead to chaotic dynamics. Chaotic Hamiltonian
systems are frequently studied using techniques closely
associated with the Kolmogorov-Arnold-Moser (KAM)
theorem [6–8]. Such KAM investigations involve splitting
the Hamiltonian into an integrable portion and nonintegr-
able perturbations, and then using perturbative methods to
study the dynamical effects of these corrections.
The Hamiltonian (2.27) governing the dynamics of the

spin-0 sector has a natural interpretation as a perturbed
system of three decoupled simple harmonic oscillators
(SHOs), with g playing the role of a perturbation parameter.
However, it turns out that g is not the ideal candidate for the
perturbation parameter. To see this, we note that if the 6D
phase space vector ða1ðtÞ;a2ðtÞ;a3ðtÞ;pa1ðtÞ;pa2ðtÞ;pa3ðtÞÞ
is a solution to the EOM with g ¼ 1 and energy E, then
ðai; pai

g2 Þ is also a solution to the EOM with coupling g and

energy E
g2. As a result, the qualitative features of solutions—

orbit shapes, time averages, measures of chaos/stability,
to name a few—depend not on the specific values of
energy and coupling, but a particular combination thereof.
The above scaling arguments show that g2E is the
correct choice. Thus we may as well set g to 1 and observe
the entire spread of dynamics by varying just the energy.
It is worth emphasising that with this convention, we
have Ec ¼ 3

32
.

Hamiltonian systems possess periodic orbits sufficiently
close to an integrable limit [5]. Models with tetrahedral
symmetry have been thoroughly studied and their orbits
classified in [9,10]. Similar approaches involving simpli-
fication of periodic orbit analysis by discrete group
symmetries have been applied to the Henon-Heiles
system [19]. In fact, the spin-0 sector of the full matrix
model can itself be regarded as an instance of a specific
class of higher dimensional analogs of the Henon-Heiles
system, first put forward in [10].
The Td × T symmetry of the Hamiltonian of the spin-0

sector implies the existence of multiple families of periodic
orbits. Most of these orbits persist at low energies, but get
destroyed on increasing energy and moving away from the
integrable limit. We will refer to these as nonlinear normal
modes (NLNMs). The NLNMs of the spin-0 sector can be

classified by symmetry properties. More precisely, the
NLNMs may be classified according to their stabilizers G.
They fall into five classes, listed in Table I. (Here
T 2 ¼ f1; C2Tg and T s ¼ f1; CsTg.)
The presence of NLNMs is formally established by

considering a reduced phase space, obtained by quotienting
the full six-dimensional phase space by the orbits of the
decoupled SHO limit. Correspondences can then be drawn
between properties of objects living in the original phase
space and their counterparts residing on the reduced phase
space. In particular, the above NLNMs of (2.27) can be
mapped to critical points of an appropriate Hamiltonian
living in the reduced phase space. Morse theoretic methods
can then be used to demonstrate the existence of fixed
points of the reduced Hamiltonian, or alternately NLNMs
of the full Hamiltonian (2.27). An additional family of
twelve orbits corresponding to noncritical points of the
Hamiltonian, with stabilizer Cs ∧ T 2, can also be shown to
exist for the spin-0 sector. The full details of this procedure
can be found in [10].
Representative plots for each family of orbits have been

shown in Fig. 2.

D. Nested nonlinearity and reduced
dynamical systems

One would definitely expect the larger dimensionality
of the phase space to present difficulties. Once again, the
symmetries of the spin-0 sector come to our aid. They do so
by essentially constraining trajectories to lower dimen-
sional subsets of the full phase space. Trajectories con-
strained in such a manner can then be described by the
dynamics of a reduced system living on a lower dimen-
sional subset of the full phase space. Happily, it turns out
that a thorough study of relevant reduced dynamics is, with
some modifications, enough to reproduce several salient
features of the full six-dimensional model.
As an example of reduced dynamics, let us consider

trajectories with all ai’s initially set to a common value a0
and all pai’s initially equal to a common value pa0 . The
tetrahedral symmetry of the EOM ensures that these
relations will be undisturbed by time evolution. Such
trajectories form a subclass of all the possible orbits
and are solutions of a reduced system nested in the

TABLE I. Periodic orbits of the spin-0 sector.

Conjugacy class
of stabilizer

Shorthand
notation

Number of
modes

D2d × T A4 3
C3v × T A3 4
C2v × T A2 6
S4 ∧ T 2 B4 6
C3 ∧ T s B3 8
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full model. This reduced system is governed by the
dynamical equations

ȧðtÞ¼paðtÞ; ṗaðtÞ¼−aðtÞþ3aðtÞ2−2aðtÞ3; ð3:1Þ

where, a=pa denotes the common value of the coordi-
nates/momenta. This is simply the dynamics of a
particle in the one dimensional double well VDWðaÞ ¼
1
2
ðaða − 1ÞÞ2. Formally, subsets of the phase space which

are mapped to (subsets of) themselves by time evolution
are referred to as invariant sets. We have thus simply
identified a two dimensional invariant subset of our
model—the set of phase space points with all coor-
dinates equal and all momenta equal. Note that the
dynamics in this invariant set is governed by a
Hamiltonian, in fact the Hamiltonian obtained by
setting coordinates and momenta in (2.27) to a common
pair a; pa.
In this case, the resulting reduced dynamics is regular, as

it should be—the reduced Hamiltonian is two-dimensional
and therefore integrable. A far more interesting invariant set
is obtained by setting just two of the coordinates and their
corresponding momenta to common values. Once again,
the Td symmetry of the EOM (2.23)–(2.26) render these
relations time invariant. Assuming, without loss of general-
ity, that a1 serves as the lone coordinate, so that a2¼a3¼a

and pa2 ¼ pa3 ¼ pa, the equations governing the reduced
dynamics are then

ȧ1ðtÞ ¼ pa1ðtÞ;
ṗa1ðtÞ ¼ −a1ðtÞð1þ 2aðtÞ2Þ − 3aðtÞ2; ð3:2Þ

ȧðtÞ ¼ paðtÞ;
ṗaðtÞ ¼ −aðtÞð1þ a1ðtÞ2 þ aðtÞ2Þ − 3a1ðtÞaðtÞ: ð3:3Þ

The reduced dynamics in this case resides on a four
dimensional subset of the phase space, specifically the
subset defined by the relations a2 ¼ a3 and pa2 ¼ pa3 .
We shall henceforth distinguish the full six dimensional

dynamics from these reduced four dimensional subsystems
by referring to the latter as reduced dynamical systems
(RDSs). In particular, we can choose to fix any two
coordinates (and their corresponding momenta) equal to
one another and the resulting reduced dynamics for any
choice will qualify as an RDS. Since any two choices
are related by a symmetry transform, we will fix the
convention a2 ¼ a3 ¼ a and pa2 ¼ pa3 ¼ pa for any
explicit computations hereafter.
As it turns out, several of the NLNMs are constrained to

lie on RDS subspaces. For this reason, a thorough study of

FIG. 2. Configuration space plots of NLNMs.
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the RDSs suffices to explain a good fraction of the full six-
dimensional dynamics. Surprisingly, the RDS dynamics
also have ties to the quantum phases of the spin-0 sector of
the SUð2Þ matrix model, as we shall later see.

IV. PERIODIC ORBITS AND THEIR
CLASSIFICATION

Having built up the kinematical aspects of the model, we
shall now proceed with our analysis in the following three
stage fashion:
(1) Enumerate the periodic orbits and understand their

geometry and dynamics. This requires some quali-
fication, which we do below.

(2) Individually study their stability and destabilization.
(3) Correlate the destabilization of these orbits with the

generically observed chaotic dynamics.
The lack of analytic control inherent to nonlinear systems
makes it impossible to identify all of the periodic orbits.
For our purposes however, it will suffice to confine our
attention to those orbits whose destabilization has notice-
able imprints on the chaotic dynamics. As it turns out, these
sets of orbits are composed of NLNMs and two sets of
orbits that stem from geometric rather than group-theoretic
considerations. These two families of geometric orbits,
along with the NLNMs, can together provide convincing
explanations for all the observed peculiarities of the chaotic
dynamics, and will thus be the focus of our study. We thus
begin with an analysis of the various classes of NLNMs,
following which we shall briefly explore the origins and
properties of the geometric orbits.

A. NLNMs

We find numerically that all but two families of NLNMs
exist only at low energies and are rapidly destroyed as we
move away from the integrable regime. Only the A3 and the
A4 orbits are present at all energies (they are protected by
their high symmetry), and their stability properties display
surprising subtleties. We will elaborate on this in Sec. V.
We will thus devote individual subsections to each of these
classes, and follow this up with an enumeration of the basic
properties of the remaining NLNMs.

1. A4 orbits

While the equations of motion (2.23)–(2.26) are
highly nonlinear, all nonlinear corrections to a given
coordinate’s evolution involve only the remaining two
coordinates—there are no nonlinear self-interactions. As
a result, setting two of the coordinates to zero at some
point in time renders the instantaneous evolution of the
last coordinate purely harmonic. In fact, by setting their
corresponding momenta to zero as well, we can actually
freeze these coordinates at zero and render the dynamics
of the third lone coordinate completely harmonic. Such
trajectories are classified as A4 orbits, and despite

their characterization as NLNMs, evolve harmonically
with time. Mathematically, the A4 orbits evolve as
ðaiðtÞ; paiðtÞÞ ¼ ðA sinðtþ ϕÞ; 0; 0; A cosðtþ ϕÞ; 0; 0Þ, or
suitable permutations thereof. Individual orbits of the A4

type are thus completely specified by an amplitude A
(having energy E ¼ A2

2
) and a phase ϕ. A4 orbits clearly

exist at all energies and, for subcritical energies, are
confined to the central lobe of the allowed configuration
space. A representative orbit is shown in Fig. 2(a).
Since the A4 orbits have two coordinates and their

corresponding momenta set to zero, they lie on RDS
subspaces. More precisely, each RDS possesses harmonic
orbits with the common coordinate and the common
momentum frozen to zero. The projection of an A4 orbit
onto the corresponding RDS is shown alongside the
relevant constant energy RDS hypersurface in Fig. 3.

2. A3 orbits

We have already encountered A3 orbits earlier in
Eq. (3.1). Their dynamics is governed by a double well
potential VDWðaÞ ¼ 1

2
ðaða − 1ÞÞ2. These trajectories and

their images under the Td × T action are collectively
referred to as A3 orbits. Initial conditions depicting
an A3 orbit must thus be of the form ðai; paiÞ ¼
ða0; a0; a0; pa0 ; pa0 ; pa0Þ (or its transform under Td × T ).
As with A4, individual A3 orbits are uniquely specified by
the two parameters a0 and p0 which together fix both the
energy of the orbit and a suitable zero reference.
As solutions to a quartic potential, the A3 orbits are

periodic and their time evolution may be expressed in terms
of elliptic integrals. Additionally, depending on whether or
not the total energy exceeds the well depth 1

2
, trajectories

either spread across both basins of the double well (the
supercritical regime) or lie confined to one of the two
basins (the subcritical case). Correspondingly, the matrix
model possesses subcritical A3 orbits for all E < Ec that

FIG. 3. RDS projected A4 orbit.
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are confined to either the central lobe or one of the side
lobes (Fig. 1) and supercritical orbits for all E > Ec, which
live in both central and side lobes. Symmetry consider-
ations tell us that we have eight A3 orbits for any subcritical
energy and 4 for any supercritical energy. A representative
subcritical orbit is shown in Fig. 2(b).
Once again, these orbits can be embedded in RDSs

with the lone and common coordinates (and momenta) set
equal to one another. The projection of an A3 orbit onto the
corresponding RDS is shown alongside the relevant con-
stant energy RDS hypersurface in Fig. 4.

3. Other NLNMs

Unlike the A4 or A3 orbits, the remaining classes of
NLNMs exist only for low energies and are rapidly
destroyed as we leave the integrable regime. At energies
where they do exist, initial conditions leading to such
orbits can be implicitly specified by relations between the
coordinates and momenta derived from [10]. In the list
below, we enumerate the required relations for each class of
orbits. We also list the numerically obtained energies at
which these orbits cease to exist.
(1) A2: a1 ¼ pa1 ¼ 0; a2 ¼ a3; pa2 ¼ pa3 and Td × T

transformations thereof. These orbits are destroyed
at E ≃ 0.001.

(2) B4: a1 ¼ pa1 ¼ 0; a2 ¼ −pa3 ; a3 ¼ þpa2 and
Td × T transformations thereof. These orbits are
destroyed at E ≃ 0.01.

(3) B3: a2 ¼ 1
2
ð−a1 þ

ffiffiffi
3

p
pa1Þ; a3 ¼ 1

2
ð−a1 −

ffiffiffi
3

p
pa1Þ;

pa2 ¼ 1
2
ð− ffiffiffi

3
p

a1 − pa1Þ; pa3 ¼ 1
2
ð ffiffiffi

3
p

a1 − pa1Þ and
Td × T transformations thereof. These orbits are
destroyed at E ≃ 0.01.

(4) Non-critical NLNMs: a2 ¼ a1; a3 ¼
ffiffiffi
5

p
pa1 ; pa2 ¼

pa1 ; pa3 ¼ −
ffiffiffi
5

p
a1 and Td × T transformations

thereof. These orbits are destroyed at E ≃ 0.006.
Again, individual orbits of each class are uniquely specified
by two parameters, which together fix the energy and

provide a suitable zero-reference. Representative figures
are shown in Figs. 2(f). Among these classes of orbits, only
the A2 and noncritical orbits have two coordinates and their
corresponding momenta set to common values and thus
possess RDS analogs. The B4 and B3 orbits, by contrast, are
genuinely nonplanar NLNMs.

B. Geometric orbits

The methods we will utilize for finding geometric orbits
was first used in the context of the Henon-Heiles system [20].
As stated earlier, the study of the NLNMs alone is not

sufficient for a comprehensive understanding of the dynam-
ics. We also find two families of geometric orbits which do
not arise from stabilizer subgroups of the full Td × T
action. We call them geometric because they emerge from
constraints imposed by the requirement of continuity of
certain phase space observables over equipotentials of the
RDSs. In contrast to the NLNMs, the geometric orbits are
initially defined over the RDSs and then translated to the
full spin-0 sector using a canonical inclusion map. Despite
these differences, both the geometric orbits and the NLNMs
have their origins in the symmetries of their respective
systems. Consequently, we must begin our search for the
former by investigating the symmetries of the RDSs.
The tetrahedral symmetry of the spin-0 sector reduces

to a more modest Z2 symmetry for the RDSs. The sole
nontrivial symmetry transformation induced by the action
of this reduced symmetry group is, in phase space, simply
a1 → a1; a → −a; pa1 → pa1 ; pa → −pa. This abstract
action translates to a geometric symmetry of the RDS
equipotentials about the a1 axis. These equipotentials are
described by contours of the form

p2
a1

2
þp2

aþ
1

2
ða21þ2a2−6a1a2þ2a21a

2þa4Þ¼E; ð4:1Þ

where the LHS is simply the Hamiltonian (2.27) with the
replacements a2; a3 → a and pa2 ; pa3 → pa. The structure
of the equipotentials of the spin-0 sector thus directly
translate to the equipotentials of the RDSs, which therefore
also undergo a topology change at Ec ¼ 3

32
. Representative

equipotentials are shown in Fig. 5. The key to constructing
geometric orbits lies in utilizing the symmetries of the
equipotentials in conjunction with those of the trajectories.
The latter can be neatly formulated in terms of relevant
constructs which we term return maps. The return maps
and the precise algorithms for constructing geometric orbits
are outlined in the following subsections.
Following [20], we will often refer to them as Π1 and Π2

orbits.

1. Π1 orbits

The return map required for constructing a Π1 orbit
of energy E0 is defined over the surface of the E0

FIG. 4. RDS projected A3 orbit.
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equipotential of the RDS. Specifically, given a point
ða01; a0Þ on this equipotential, we consider the unique
trajectory starting from rest at this point, i.e., p0

a1 ¼p0
a¼0.

This trajectory, or more accurately its configuration space
projection, traces out a curve confined to the interior of the
E0 equipotential which (in principle) crosses the a1 axis, at
some time t0. The return map R is defined to output the
angle made by the tangent to the curve at t ¼ t0 with the
a1 axis.
The crucial observation behind constructing Π1 orbits

can be concisely formulated in terms of the return map.
Specifically, points Q on the equipotential satisfying
RðQÞ ¼ � π

2
generate periodic orbits. This follows from

the action of the full symmetry group Z2 × T .
Consequently, the question of generating Π1 orbits reduces
to one of finding solutions to the equation RðQÞ ¼ � π

2
.

Since we have, for each energy, a pair of A3 orbits yielding
return map outputs of π

4
and 3π

4
, the intermediate value

theorem guarantees at least one solution to the above
equation. As it is a trivial task to locate the intersections
of the A3 orbits with the E0 equipotential, we may then use
these as reference points to initiate a binary search
algorithm to obtain solutions to the above equation.
Numerically, we can then establish the existence of a
single Π1 orbit for any energy. These orbits, initially
constructed over the RDS phase space, can be trivially
extended to the full spin-0 sector. Representative pictures
are shown in Fig. 6.

2. Π2 orbits

A second set of geometric orbits can be constructed by
formulating a different type of return map, essentially the
same as our earlier one, but defined over the a1 axis rather
than over equipotential surfaces. More precisely, given an
arbitrary energy E0, we consider generic points on the a1
axis with pa1 set to zero initially and pa fixed by the energy
constraint. As before, this trajectory generates a curve
whose angle with the a1 axis is then captured by this
second return map R2. Once again, solutions to the
equation R2 ¼ � π

2
yield periodic orbits, this time closed

orbits in configuration space, which we categorize as Π2.
Again, we can set up binary search methods for numeri-
cally solving the generating equation, with reference points
being the intersections of the E0 equipotential with the a1
axis. Unlike the Π1 orbits however, there are no continuity

FIG. 5. Equipotential surfaces of an RDS.

FIG. 6. Π1 orbits.
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arguments for justifying the presence of the Π2 orbits.
Indeed, numerical evaluations tell us that the Π2 orbits
cease to exist beyond a threshold energy EΠ2

≃ 26, a second
unexpected energy scale of the spin-0 sector. That said, EΠ2

lies in the far supercritical regime, so that Π2 orbits do
persist over a good range of energies. Representative orbits
are shown in Fig. 7.

V. MONODROMY ANALYSIS
OF PERIODIC ORBITS

Having enumerated the features of relevant periodic
orbits, we will next outline the methods we shall use for
assessing their stability. Our strategy rests on the properties
of a construct known as the monodromy matrix [15], which
we define below.
Consider an n-dimensional non linear system ẋðtÞ ¼

Fðx; tÞ. Let xpðtÞ be a periodic solution of this system with
time period Tp. An infinitesimal fluctuation δxðtÞ about
xpðtÞ can be shown to linearly evolve as

δẋðtÞ ¼ ∇FðxpðtÞÞ · δxðtÞ: ð5:1Þ

∇F is simply the Jacobian J of the transformation
x → FðxÞ.
We may also express this evolution in terms of a linear

time evolution operator UðtÞ that maps an arbitrary initial
fluctuation δxð0Þ to δxðtÞ. U is thus a time dependent
square matrix of dimension n. The monodromy matrix U is
then simply defined as U ≡UðTpÞ. In other words, the
monodromy matrix tells us what happens to an infinitesi-
mal fluctuation as it cycles the periodic orbit once.

The eigenvalues of U yield information on the stability of
the periodic orbits [21]. Since U is a real-valued matrix, its
eigenvalues must come in complex conjugate pairs. A
periodic orbit is unstable iff at least one of its eigenvalues
lies strictly outside the unit circle jzj ¼ 1. For Hamiltonian
systems, the symplectic structure of the function F can be
used to show that the eigenvalues of the corresponding U
come in reciprocal pairs: 1

λ is an eigenvalue if λ is. In
addition, Hamiltonian systems always have at least two
unit eigenvalues [21]. The corresponding eigenvectors are
either directed along the periodic trajectory or connect the
periodic trajectory to one of infinitesimally higher/lower
energy. To summarize, the following properties are inherent
to U’s arising from Hamiltonian systems:
(1) At least two eigenvalues are unity.
(2) If λ is an eigenvalue, then so are 1

λ and λ̄.
Eigenvalues of U are usually computed numerically,

since most periodic orbits can only be found numerically
to begin with. Analytic results may become available
only when we have explicit expressions for the time
evolution of the orbit in question. In our case, it turns out
that the symmetry and the analytically tractable time
evolution of the A3 and A4 orbits simplify monodromy
computations enormously and some analytic statements
can be made.
It is not possible to obtain exact expressions for

the time evolution of any of the remaining NLNMs or
the geometric orbits. Nevertheless, the symmetries of the
latter and their persistence over a large range of energy
endows them with unexpected stability properties which
we explore numerically. In the subsequent subsections,
we will thus extensively analyze the stability of the A3,
A4 and Π orbits.

FIG. 7. Π2 orbits.
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A. A4 orbits

The A4 orbits are the simplest to analyze, since their
harmonic nature leads to a straightforward time depend-
ence. With our chosen conventions, we will work exclu-
sively with A4 orbits that have a2 and a3 frozen to 0, and a1
varying sinusoidally with unit angular frequency. To find U,
we must first set up the equations governing infinitesimal
fluctuations about such A4 orbits. An arbitrary fluctuation
about a generic trajectory may be quantified by a six-
dimensional phase space vector δxðtÞ≡ ðδa1ðtÞ; δpa1ðtÞ;
δa2ðtÞ; δpa2ðtÞ; δa3ðtÞ; δpa3ðtÞÞ. The fluctuation equa-
tions (5.1) and the functional form of the A4 orbits derived
in Sec. IVA 1 then yield

δȧ1ðtÞ¼δpa1ðtÞ; δȧ2ðtÞ¼δpa2ðtÞ; δȧ3ðtÞ¼δpa3ðtÞ;
ð5:2Þ

δṗa1ðtÞ ¼ −δa1ðtÞ; ð5:3Þ

δṗa2ðtÞ ¼ −δa2ðtÞð1þ A2cos2tÞ þ 3A cos t δa3ðtÞ; ð5:4Þ

δṗa3ðtÞ ¼ −δa3ðtÞð1þ A2cos2tÞ þ 3A cos t δa2ðtÞ: ð5:5Þ

A complete decoupling can be achieved by the canonical
rotation a� ≡ a2�a3ffiffi

2
p . The fluctuation equations then read

δȧ1ðtÞ¼δpa1ðtÞ; δȧþðtÞ¼ δpaþðtÞ; δȧ−ðtÞ¼δpa−ðtÞ;
ð5:6Þ

δṗa1ðtÞ ¼ −δa1ðtÞ; ð5:7Þ

δṗaþðtÞ ¼ −ð1þ A2 cos2 t − 3A cos tÞδaþðtÞ; ð5:8Þ

δṗa−ðtÞ ¼ −ð1þ A2 cos2 tþ 3A cos tÞδa−ðtÞ: ð5:9Þ

The geometry of the A4 orbits thus naturally induces
a separation of perturbations into “longitudinal” modes
(δa�; δpa� ¼ 0) and “transverse” modes (δa1; δpa1 ¼ 0).
The fluctuation equations (5.6)–(5.9) pick out the unique
basis in which the two transverse modes decouple from one
another. The (almost) identical forms of the equations
governing the evolution of δaþ and δa− simply confirm
that there is no discernible structural difference between the
two transverse modes.
We must now attempt to make sense of the fluctuation

equations (5.6)–(5.9). In principle, we could do this by
using these equations to obtain formal expressions for U
and then numerically solve for its eigenvalues. As it
turns out, the symmetries of the A4 orbits heavily simplify
the calculations, so that a full computation of U is
not necessary.

It is useful to view the generic fluctuation equations (5.1)
as a single matrix equation δẋðtÞ ¼ JðtÞδxðtÞ. This has the
formal solution

δxðtÞ ¼ Tfe
R

t

0
JðsÞdsgδxð0Þ; ð5:10Þ

where T, the time ordering operator, accounts for the
noncommutativity of J’s evaluated at different times.
Since the A4 orbits are 2π periodic, the monodromy matrix

U is simply Tfe
R

2π

0
JðsÞdsg.

We can obtain explicit expressions for J by reading
off its matrix elements from the fluctuation equations (5.6)–
(5.9). The J matrix splits as a direct sum JðtÞ ¼ J1ðtÞ ⊕
JþðtÞ ⊕ J−ðtÞ in the fa1; pa1 ; aþ; paþ ; a−; pa−g basis,
where

J1ðtÞ ¼
�

0 1

−1 0

�
; ð5:11Þ

JþðtÞ ¼
�

0 1

−ð1þ A2cos2t − 3A cos tÞ 0

�
; ð5:12Þ

J−ðtÞ ¼
�

0 1

−ð1þ A2 cos2 tþ 3A cos tÞ 0

�
ð5:13Þ

Since the matrices J1; Jþ; J− lie on different blocks
of J, U also splits as U ¼ U1 ⊕ Uþ ⊕ U−, where

U1=þ=− ¼ Tfe
R

2π

0
J1=þ=−ðtÞdtg. Since J1 is just i times the

Pauli matrix σ2, we obtain U1 ¼ I2.
In fact, we could have arrived at this result without

any calculation whatsoever. Since the spin-0 sector is a
Hamiltonian system, the A4 monodromy matrix must have
two eigenvectors of unit eigenvalue, one describing time-
translations along a single A4 orbit, and the other connect-
ing the A4 orbit in question to one with infinitesimally
higher/lower energy. It is not hard to see that the required
eigenvectors are precisely the longitudinal modes: longi-
tudinal fluctuations with δpa1 ¼ 0 clearly just shift one’s
position along a given orbit, while longitudinal fluctuations
with δa1 ¼ 0 simply changes the momentum slightly. This
alters the energy of the trajectory while retaining its identity
as an A4 orbit.
Thus the nontrivial features of the stability of the A4

orbits reside in the U� matrices. We can further
simplify using the symmetry between δaþ and δa−.
Since J−ðtþ πÞ ¼ JþðtÞ and the integral of a periodic
function over a single period is independent of the lower
limit of integration, we have

Uþ ¼ T
n
e
R

2π

0
JþðtÞdt

o
¼ T

n
e
R

3π

π
JþðtÞdt

o
¼ T

n
e
R

3π

π
J−ðtþπÞdt

o
¼ T

n
e
R

2π

0
J−ðtÞdt

o
¼ U−: ð5:14Þ
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The last equality makes use of the substitution t → tþ π.
Thus, while the blocks JþðtÞ and J−ðtÞ differ in form,
their time ordered integrals are exactly the same. As a
result, we may confine our attention to either one of the
transverse modes.
There exists a final simplification. Since Uþ ¼ U− and

eigenvalues of U must come in conjugate pairs and
reciprocal pairs, we can constrain its spectrum to be of
the form f1; 1; μ; λ; μ; λg, where μ and λ, the eigenvalues of
Uþ (or U−), must satisfy either of the two following
conditions:
(1) μ and λ are real: In this case, we have μ ¼ 1

λ. Barring
the trivial cases μ ¼ λ ¼ �1, either μ or λ will lie
outside the unit circle, leading to an unstable orbit.
So jλþ μj ¼ jλþ 1

λ j > 2.
(2) μ and λ are complex conjugates: Now we have

λ ¼ 1
μ ¼ μ̄, so that jμj ¼ jλj ¼ 1. Barring the trivial

cases μ ¼ λ ¼ �1, μ and λ are thus complex con-
jugates lying on the unit circle, resulting in a stable
orbit. In this case, we may represent the pair fμ; λg
as feiθ; e−iθg for some θ in ð0; 2πÞ so that
jμþ λj ¼ 2j cos θj < 2.

Thus, we see that the (in)stability of any A4 orbit is
beautifully captured by a single number: γ ≡ μþ λ.
Explicitly, the orbit is stable (unstable) depending on
whether jγj < 2ð> 2Þ with transitions occurring when
jγj ¼ 2. Note that in terms of U, we have γ ¼ TrU−2

2
.

The stability of a periodic orbit is thus captured by
trace of U, rather than its full spectrum. This is a standard
feature of four-dimensional Hamiltonian systems [22].
No such simplifications exist for higher dimensional
systems. We again emphasise that it is the special
symmetries of the A4 orbits (and more generically the
Hamiltonian of the spin-0 sector) (2.27) that have
produced this extreme simplification.
Having substantially simplified our computations, we

now turn to numerics. We compute γ as a function of energy
in the range E∈ ð0; 500Þ. Figure 8 depicts γ as a function of
energy E in the region 0 < E < Ec. The key takeaway is
that γ never dips below 2, so that subcritical A4 orbits are
unstable without exception. Additionally, the increase of γ
with E suggests an increase in the amount of instability.
This notion is indeed true, and can be precisely quantified
by chaos theory measures, such as Lyapunov exponents,
which we will analyze in Sec. VI B.
Our results for subcritical A4 orbits are not surprising, as

one would expect heightened instabilities with increasing
energies. The supercritical regime displays a much more
surprising behavior, as is clear from Fig. 9. From these
plots, we see that the stability of supercritical A4 orbits
is characterized by oscillations between stability and
instability with a monotonically decreasing frequency.
These transitions seem to repeat ad infinitum. Curiously,
stability plots of a very similar nature have been observed

in literature, albeit in the seemingly unrelated context
of solitonic solutions of the nonlinear Schrödinger equation
[23]. The connections between such themes and our gauge
matrix model need to be better understood.
Before seeking analytic explanations for these transi-

tions, it must be noted that the γ-E plots are just one of
many signatures of these stability flips. Indeed, we shall
encounter more signatures as we proceed with our analysis.
One particular signature, however, is worthy of immediate
attention. Since the ai’s are after all the fundamental
observables of our theory, it is natural to look for the
imprints of these stability flips on their time evolution.
Parametric plots of trajectories in configuration space
provide a beautiful way to illustrate these effects. We
construct configuration space parametric plots at energies
marginally above and marginally below a transition energy,
with initial conditions deviating very slightly from the
initial conditions required for relevant A4 orbits. The results
are displayed for the first transition point E ¼ 3

2
(we will

derive this value later) in Fig. 10. We see that energies
marginally above E ¼ 3

2
yield perfectly regular trajectories

barely distinguishable from their A4 parent orbits, while
energies marginally below the transition point yield chaotic
trajectories which rapidly fill a sizeable fraction of the
available configuration space. Figure 11 shows an analo-
gous flip in stability in the opposite direction (stable below
the transition energy, unstable above it). Note, in this case,
that the transition point is approximate.
We shall now use the fluctuation equations (5.2) to better

understand the stability and establish some quantitative
results. It is useful to eliminate the δp’s from the fluctua-
tions equations and regard them as second order in δa’s.
The equivalence of aþ and a− fluctuations means that we
may restrict our studies to just one of these modes. Without
loss of generality, we choose to work with the aþ modes,
whose fluctuation equation reads

δäþðtÞ þ ð1 − 3A cos tþ A2cos2tÞδaþðtÞ ¼ 0 ð5:15Þ

FIG. 8. γ vs E for subcritical A4 orbits.
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Rescaling t ¼ 2s, we obtain

δäþðsÞ þ ðηþ 2α cos 2sþ 2β cos 4sÞδaþðsÞ ¼ 0; ð5:16Þ

with α ¼ −6A; β ¼ A2 and η ¼ 4þ 2A2, which is the
standard form of the Whittaker-Hill (WH) equation (see
Ref. [24] for example).

This WH equation has exactly the form of a Schrodinger
equation with a periodic potential, typically encountered
in Bloch theory of solids. Hence we expect to see a
band structure with bands and band gaps corresponding
to stability and instability.
Floquet theory tells us that any solution to the WH

equation can be expressed in the form epxgðxÞ for some

FIG. 9. γ vs E for supercritical A4 orbits.

FIG. 10. Unstable to stable flip for A4.
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complex number p and a periodic function gðxÞ. This is
usually about as far as we can go, as closed form
expressions are generally not available. However, we can
make progress toward finding the locations of transition
points, as this requires a study of only the periodic
solutions to the WH equation. This is because jγj ¼ 2
corresponds to U� being �I2 which in turn leads to
periodic behavior of the fluctuations.
The WH equation is usually solved by an expansion into

a sine or cosine series followed by solving recursion
relations that emerge between the Fourier coefficients.
As such an approach no doubt reminds the reader of the
more common Frobenius methods, it is natural to question
whether we can carry over techniques from power series
expansions to our case. In particular, since Frobenius type
problems often have parameter choices that lead to finite
termination of the recursion series, we may naturally
wonder whether such truncations are possible for the
WH equation too. This is unfortunately not the case as
the pertinent recurrence relations involve five coefficients
at a time. However, a remarkable transformation, δzðsÞ≡
δaþðsÞe

ffiffi
β

p
cos 2s, of our WH equation yields the differential

equation [24,25]

δ̈zðsÞ þ 4
ffiffiffi
β

p
sin 2sδżðsÞ

þ ½ηþ 2β þ ð2αþ 4
ffiffiffi
β

p
Þ cos 2s�δzðsÞ ¼ 0; ð5:17Þ

the Ince equation, which can be solved by three term
recursions. If β ¼ α2

4ðpþ1Þ2 for some p∈Zþ, η can be chosen
in order to make the recursion relation eventually terminate.
In such situations, the Ince equation possesses finite series

solutions, known as Ince polynomials, which can then be
recast, via the δz → δaþ transform, to closed periodic
solutions (though not polynomial solutions) of the WH
equation. In our case, the coefficients α, β and η are
additionally constrained to be related to one another via the
amplitude A. It turns out that α and β indeed satisfy the
necessary relations for finite solutions, with p ¼ 2.
However, the restrictions on η only grant us finite solutions
for one value: A ¼ ffiffiffi

3
p

. This corresponds to a stability flip
at E ¼ A2

2
¼ 3

2
. The corresponding Ince polynomial can be

worked out to be 1þ 2ffiffi
3

p cos 2s. Reverting to the WH

equation, we obtain

δaþðsÞ ¼
�
1þ 2ffiffiffi

3
p cos 2s

�
e−
ffiffi
3

p
cos 2s: ð5:18Þ

A second, linearly independent periodic solution for this
equation for the WH equation can be obtained using the
well-known variation of parameters method. Suitably
applied to our case, this method tells us that if w1ðsÞ is
a solution to the WH equation at E ¼ 3

2
, then so is

w1ðsÞ
R
s
0 ð1=w1ðtÞ2Þdt. We may thus write a second inde-

pendent solution to the WH equation at E ¼ 3
2
in quadrature

form as

δaþðsÞ¼
�
1þ 2ffiffiffi

3
p cos2s

�
e−
ffiffi
3

p
cos2s

Z
s

0

e2
ffiffi
3

p
cos2s

ð1þ 2ffiffi
3

p cos2sÞ2ds

ð5:19Þ

This integral unfortunately cannot be evaluated in terms
of elementary functions, but we nevertheless have a

FIG. 11. Stable to unstable flip for A4.
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passable inventory of the solutions of the WH equation at
this energy. The numerically obtained γ − E plots confirm
that E ¼ 3

2
is indeed a transition point.

While we cannot evaluate the precise locations of any
other transition points, it is possible to ascertain their
asymptotic behavior. We see that at large enough energies,
the coefficient of cos 2s in (5.16) dies out far more rapidly
(as a function of A) than either of the other two coefficients.
So we can derive asymptotic expressions for transition
points by neglecting this term in the large A limit. Reverting
back to t ¼ 2s, we then see that theWH equation reduces to
the far simpler Mathieu equation

δäþðtÞ þ
�
1þ A2

2
þ A2

2
cos 2t

�
δaþðtÞ ¼ 0: ð5:20Þ

Our problem now simplifies to studying the periodic
solutions of the Mathieu equation (see Ref. [24] for
example). While still nontrivial, this is at least a well
documented problem with at least a few known simple
analytical results. In general, the Mathieu equation in its
standard form

ÿðxÞ þ ða − 2q cos 2xÞyðxÞ ¼ 0 ð5:21Þ

has periodic solutions only for special set of parameter
values ða; qÞ. These sets are described by two Mathieu
characteristic functions, a pair of functions defined from
Z ×R toR that take in a pair ðn; qÞ and yield a unique value
for a that in turn gives the nth (odd/even) Mathieu function
as a periodic solution to theMathieu equation with parameter
set ða; qÞ. Given that ða; qÞ ¼ ð1þ A2

2
;− A2

4
Þ for us, we see

that the locations of the nth family of transition points are
asymptotically given by solutions to the equations

ξ1

�
n;−

A2

4

�
¼ 1þ A2

2
ð5:22Þ

and

ξ2

�
n;−

A2

4

�
¼ 1þ A2

2
ð5:23Þ

where ξ1;2 are the Mathieu characteristic functions of the
first/second kind. Recasting the above equations in terms of
the energy E, we obtain

ξ1

�
n;−

E
2

�
¼ 1þ E ð5:24Þ

and

ξ2

�
n;−

E
2

�
¼ 1þ E ð5:25Þ

Transition points computed in this manner can be
compared with numerically obtained results (see Tables II
and III in the Appendix), and we observe excellent agree-
ment between the two sets of values.

B. A3 orbits

We consider the A3 orbits specified by initial conditions
of the form ða0; a0; a0; pa0 ; pa0 ; pa0Þ. The fluctuation
equations for A3 orbits are

δȧ1ðtÞ¼ δpa1ðtÞ; δȧ2ðtÞ¼δpa2ðtÞ; δȧ3ðtÞ¼δpa3ðtÞ;
ð5:26Þ

δṗa1ðtÞ ¼ −δa1ðtÞð1þ 2aðtÞ2Þ
þ ð3aðtÞ − 2aðtÞ2Þðδa2ðtÞ þ δa3ðtÞÞ; ð5:27Þ

δṗa2ðtÞ ¼ −δa2ðtÞð1þ 2aðtÞ2Þ
þ ð3aðtÞ − 2aðtÞ2Þðδa3ðtÞ þ δa1ðtÞÞ; ð5:28Þ

δṗa3ðtÞ ¼ −δa3ðtÞð1þ 2a2Þ
þ ð3aðtÞ − 2aðtÞ2Þðδa1ðtÞ þ δa2ðtÞÞ; ð5:29Þ

which decouple in the canonical basis fb1; b2; b3g ¼
fa1þa2þa3ffiffi

3
p ; a1−a2ffiffi

2
p ; a2−a3ffiffi

2
p g into three pairs of independent

equations:

δḃ1ðtÞ¼ δpb1ðtÞ; δḃ2ðtÞ¼δpb2ðtÞ; δḃ3ðtÞ¼δpb3ðtÞ;
ð5:30Þ

δṗb1ðtÞ ¼ −ð1þ 6aðtÞ2 − 6aðtÞÞδb1ðtÞ; ð5:31Þ

δṗb2ðtÞ ¼ −ð1þ 3aðtÞÞδb2ðtÞ; ð5:32Þ

δṗb3ðtÞ ¼ −ð1þ 3aðtÞÞδb3ðtÞ: ð5:33Þ

We thus obtain once more a block decomposition of the
full monodromy matrix U into three blocks U1=2=3.
Denoting the matrices corresponding to the b variables
by J1=2=3, we see that J1 (and consequently U1) describes
the evolution of fluctuations along the orbit. We therefore
do not expect any non trivial results from this sector. The
J2 and J3 matrices are manifestly equal. As a result, the
full simplification of the previous subsection carries
through for the A3 orbits as well. We need only study
γ, the trace of the U2ð¼ U3Þ matrix.
From a physical standpoint, we thus expect the same

trends as were observed for the A4 orbits. Since our
perturbations once again take the form of time-independent
Schrodinger equation characterized by a periodic potential
(in this case an elliptic integral), we anticipate alternating
bands of stability and instability. Indeed, we find that we
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have oscillations between stability and instability, with the
separation between adjacent transition points varying
geometrically as we approach the critical energy Ec from
either side.
Specifically, we will show that
(1) For subcritical energies, the quantities 1 − E1

n
Ec

and

1 − E2
n

Ec
where E1

nðE2
nÞ are the energies corresponding

to the nth transition of γ from 2þ to 2− (2− to 2þ)
form a geometric series, with common ratio
δ1 ¼ e

π
2
ffiffi
5

p
as we approach Ec from below.

(2) For supercritical energies, the quantities 1 − E1
n

Ec
and

1 − E2
n

Ec
where E1

nðE2
nÞ are the energies corresponding

to the nth transition of γ from 2þ to 2− (2− to 2þ)
form a geometric series, with common ratio δ2 ¼ e

πffiffi
5

p

as we approach Ec from above.
The plots of γ vs E thus exhibit a self-similar structure
as shown in Figs. 12 and 13. Analogous phenomena,
studied in [22], were described as Feigenbaum-like.
While such self-similar structures and Feigenbaum like
oscillations have been previously observed for Hamiltonian
systems [22], the spin-0 sector is, to our knowledge unique,
as it contains not one, but two independent self-similar
cascades, one for the supercritical and one for subcritical
regimes. Furthermore, these ratios are distinct (albeit
simply related).
We now present a rigorous derivation of the preceding

results, following extensively the methods adopted
in [22]. Eliminating the p’s from the fluctuation equa-
tions (5.30)–(5.33), we are left with a single nontrivial
second order fluctuation equation

δäðtÞ þ ð1þ 3aðtÞÞδaðtÞ ¼ 0: ð5:34Þ

The a appearing in the above equation describes the
periodic time evolution along the A3 orbits, and can
be explicitly expressed in terms of elliptic integrals, with
time period

TpðEÞ¼

8>><
>>:
�
6
E

�
1=4

F

�
sec−1

�
1þηffiffiffiffiffiffiffi
η2−1

p
�
;
ffiffiffiffiffiffi
1þη
2

q �
; if E<Ec

2
�
6
E

�
1=4

K
� ffiffiffiffiffiffi

1þη
2

q �
; if E>Ec

9>>=
>>;:

ð5:35Þ

Here F and K are the incomplete and complete elliptic
integrals of the first kind respectively, and η≡ ffiffiffiffiffiffiffiffiffiffiffi

Ec=E
p

.
These time periods diverge at Ec, i.e. η ¼ 1. The near
critical behavior of γ depends on the nature of the
divergence of TpðEÞ. This is best brought out using the
integral representation of F:

Fðα; kÞ ¼
Z

sinðαÞ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p : ð5:36Þ

We are interested in the singular behavior of the integral as
α → π=2 and k → 1. The latter portion of the denominator
splits as ð1 − kxÞð1þ kxÞ so that when k ∼ 1, the diver-
gence of the integral stems solely from the 1 − kx and the
additional 1 − x term from the first term under the square
root. We thus immediately see that (A) The 1þ kx term can
simply be replaced by 1þ x as it contributes nothing to the

FIG. 12. γ vs E for subcritical A3 orbits.
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divergence and (B) since 1 − kx ∼ 1 − x when k ∼ 1 and since the product of these terms is nested under a square root, we
see that we should naively expect the integral to diverge as logð1 − sinðαÞÞ. Replacing the non singular 1þ kx term by
1þ x leads to the analytically tractable integral

Fðα; kÞ ∼
Z

sinðαÞ

0

dx

ð1þ xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞð1 − kxÞp : ð5:37Þ

The series of substitutions x → y≡ 1
1þx ; y → z≡ 2y − 1 and use of standard integrals then also us to evaluate this

integral as

Fðα; kÞ ∼
 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ kÞp ln

"
zþ 1 − k

2ð1þ kÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
zþ 1 − k

2ð1þ kÞ
�

2

−
1

4

�
1 − k
1þ k

�
2

s #!�����
1

1−sinðαÞ
1þsinðαÞ

: ð5:38Þ

It is easy to see that only the lower limit contributes to the divergence, so that we may further write

Fðα; kÞ ∼ −

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ kÞp ln

 
zþ 1 − k

2ð1þ kÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
zþ 1 − k

2ð1þ kÞ
�

2

−
1

4

�
1 − k
1þ k

�
2

s !#����
1−sinðαÞ
1þsinðαÞ

: ð5:39Þ

We now apply the above to (5.35):
(1) Supercritical: Setting α to π

2
and k to

ffiffiffiffiffiffi
1þη
2

q
, we obtain

TpðEÞ ∼ 2
ffiffiffi
2

p
ln

1

1 − η

∼ 2
ffiffiffi
2

p
ln

1

1 − η2
¼ 2

ffiffiffi
2

p
ln

1

1 − Ec
E

: ð5:40Þ

as η → 1−.

(2) Subcritical: Setting α to sec−1ð 1þηffiffiffiffiffiffiffi
η2−1

p Þ and k to
ffiffiffiffiffiffi
1þη
2

q
,

we obtain

TpðEÞ ∼
ffiffiffi
2

p
ln

1

η − 1

∼
ffiffiffi
2

p
ln

1

η2 − 1
¼

ffiffiffi
2

p
ln

1
Ec
E − 1

ð5:41Þ

as η → 1þ.

FIG. 13. γ vs E for supercritical A3 orbits.
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We next study the variation of γ with the time period.
Following [22], we see that γ can be expressed as a
trigonometric Fourier series in Tp, with the leading Fourier
coefficient yielding the only nontrivial contribution in the
limit of η → 1. We thus have

γðTpÞ ∼ 2 cosωTp ð5:42Þ

where ω can be worked out as follows: since in the limit of
η → 1, a spends an increasingly large amount of time near
the saddle point 1

2
, we may estimate the asymptotic period by

simply replacing a by 1
2
in (5.26)–(5.29). Then the dynamical

equations (5.34) simply reduce to those of an oscillator with

period ΔT ¼ 2
ffiffi
2
5

q
π. Thus, we have ω ¼

ffiffi
5
2

q
.

We can now compute the geometric ratios for the A3

oscillations. From (5.42), we see that the transition points
are evenly spaced in intervals of ΔT when viewed as
functions of the time period Tp. The logarithmic depend-
ence of Tp with j1 − ηj, captured by (5.40) and (5.41) tells
us that the locations of the transition points, as measured by
the quantity 1 − η, must asymptotically form a geometric
series. It is also easily seen from (5.40) and (5.41) that the

relevant common ratios are e
ΔT
2
ffiffi
2

p ¼ e
πffiffi
5

p
for the supercritical

oscillations and e
ΔTffiffi
2

p ¼ e
π

2
ffiffi
5

p
for the subcritical oscillations.

Figures 14 and 15 demonstrate the flip from stability to
instability and vice versa as the energy is varied across a
transition point.

C. Π1 orbits

The wealth of results obtained for A3 and A4 ultimately
traces back to the high symmetry of these orbits. These
symmetries are enough to completely decouple the fluc-
tuation equations, which eventually lead to a significant
simplification. Since the geometric orbits do not originate
from Weinstein’s theorem, they are less symmetric and the
fluctuation equations remain partially coupled. As a result, a
single spectral invariant (like γ) is not enough to capture the
stability properties of the geometric orbits. Nevertheless, as
the geometric orbits reside on RDS phase spaces, a partial
decoupling of the fluctuations can indeed be accomplished,
with twomodes spanning fluctuations confined to the relevant
RDS subspace, and the third mode generating fluctuations
orthogonal to this subspace. Consequently, some simplifica-
tions can be made before reverting to numerics.

The equations describing fluctuations about Π1 orbits are given by

δȧ1ðtÞ ¼ δpa1ðtÞ; δȧ2ðtÞ ¼ δpa2ðtÞ; δȧ3ðtÞ ¼ δpa3ðtÞ; ð5:43Þ

δṗa1ðtÞ ¼ −δa1ðtÞ½1þ 2aðtÞ2� þ 3aðtÞ½δa3ðtÞ þ δa2ðtÞ� − 2a1ðtÞaðtÞ½δa2ðtÞ þ δa3ðtÞ�; ð5:44Þ

δṗa2ðtÞ ¼ −δa2ðtÞ½1þ aðtÞ2 þ a1ðtÞ2� þ 3aðtÞδa1ðtÞ þ 3a1ðtÞδa3ðtÞ − 2aðtÞ½aðtÞδa3ðtÞ þ a1ðtÞδa1ðtÞ�; ð5:45Þ

δṗa3ðtÞ ¼ −δa3ðtÞ½1þ a1ðtÞ2 þ a2ðtÞ� þ 3a1ðtÞδa2ðtÞ þ 3aðtÞδa1ðtÞ − 2aðtÞ½a1ðtÞδa1ðtÞ þ aðtÞδa2ðtÞ�; ð5:46Þ

FIG. 14. Stable to unstable flip for A3.
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where aðtÞ; a1ðtÞ and their momenta describe time evolution along the unperturbed Π1 orbit. Using the canonical rotation,
a� ¼ a2�a3ffiffi

2
p , as before, we may restate these equations as

δȧ1ðtÞ ¼ δpa1ðtÞ; δȧþðtÞ ¼ δpaþðtÞ; δȧ−ðtÞ ¼ δpa−ðtÞ; ð5:47Þ

δṗa1ðtÞ ¼ −δa1ðtÞð1þ 2aðtÞ2Þ þ 3aðtÞðδa3ðtÞ þ δa2ðtÞÞ − 2a1ðtÞaðtÞðδa2ðtÞ þ δa3ðtÞÞ; ð5:48Þ

δṗaþðtÞ¼−δaþðtÞð1þaðtÞ2þa1ðtÞ2Þþ3
ffiffiffi
2

p
aðtÞδa1ðtÞþ3a1ðtÞδaþðtÞ−2

ffiffiffi
2

p
aðtÞða1ðtÞδa1ðtÞÞ−2aðtÞ2δaþðtÞ; ð5:49Þ

δṗa−ðtÞ ¼ −δa−ðtÞð1þ aðtÞ2 þ a1ðtÞ2Þ − 3a1ðtÞδa−ðtÞ þ 2aðtÞ2δa−ðtÞ; ð5:50Þ

Since we had earlier restricted ourselves to a concrete
instance of an RDS (see Sec. III D) by fixing a2 to a3,
and pa2 ¼ pa3 , it is evident that fluctuations with δa− ¼
δpa− ¼ 0 yield trajectories that deviate from the Π1 orbit,
but are confined to the phase space of the RDS. On the other
hand, fluctuations with δa− ≠ 0 destroy the equality of a2
and a3. Such fluctuations lead to trajectories that are not
confined to the RDS, but span the full six-dimensional
phase space of the spin-0 sector. In short, an arbitrary
fluctuation can be split into an orthogonal mode perpendi-
cular to the RDS phase space, and a pair of coupled
tangential modes living in the RDS phase space. The
independence of the orthogonal modes from the tangential
modes results in the factorization of the monodromy matrix
into a 2þ 4 block diagonal form. Unlike with the NLNMs,
no further simplifications can be made at this point and
numerical evaluations are the only way forward.
As before, the fluctuation equations (5.47)–(5.50) retain

the form of a Schrödinger equation, albeit with a two-

component wave function unlike the previous two instances.

Numerics once again reveal the presence of bands: there
exist energy bands displaying regular behavior, with chaos
ensuing outside these bands. However it turns out that the
bands are finite in number, as opposed to the cases of A4

and A3. Specifically, we find that Π1 orbits are always
unstable for subcritical energies and undergo just four
stability flips, with two bands of stability from 2≲ E≲ 3
and 5≲ E≲ 10. Note that since TrU does not directly
correlate with stability as it did for A3=4, stability can only
be ascertained by looking at the full spectrum of the
monodromy matrix. The requisite numerics is not very
illuminating, so we do not present the full calculations here.
Graphical evidence for these flips (demonstrated in Figs. 16
and 17) comes from the Lyapunov exponent plots, which
we will display in Sec. VI B.

D. Π2 orbits

Π2 orbits are investigated using the same methodology as
Π1 orbits. We shall not go over our procedures again, and
will simply state the results of our numerics. We find that

FIG. 15. Unstable to stable flip for A3.
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subcritical Π2 orbits are always stable under generic
fluctuations. Supercritically, we find two stable but small
bands, the first near E ∼ 3 and the second near E ∼ 4.
These results will be corroborated by plots of Lyapunov
exponents in Sec. VI B.

VI. PROGRESSION TO CHAOS

In the previous section, we analyzed the stability of
several sets of orbits by drawing information from their
monodromy matrices. Here, we will pursue another

traditional tool to study chaos, utilising the standard
techniques of Poincaré sections and Lyapunov exponents.
In so doing, we will come across numerous novel and
peculiar features which, using our prior monodromy
analysis, will correlate beautifully to the periodic orbits
and ultimately the symmetries of the spin-0 sector.

A. Poincaré sections

Asdefined in [26], a Poincaré section for anN-dimensional
Hamiltonian system is a 2N − 2 dimensional slice through a

FIG. 16. Unstable to stable flip for Π1 orbits.

FIG. 17. Stable to unstable flip for Π1 orbits.
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2N − 1 dimensional constant energy hypersurface. Poincaré
sections are thus most effective for four dimensional
Hamiltonian systems, and are in general not useful for
higher-dimensional systems.
However, we find that a simple variation of the usual

construction can serve as an excellent visual aid.
Specifically, we locate points on a given trajectory where
a particular coordinate/momentum is zero. We then project
the collection of such points onto a hyperplane spanned by
three of the five remaining coordinates/momenta. With this
construct (which we continue to refer to as a Poincaré
section), the usual rules for distinguishing regular trajecto-
ries from chaotic ones no longer hold. In particular, regular
orbits could yield (our version of) Poincaré sections that are
a collection of randomly scattered points. This is not a
matter of concern for us since our current aim is to study
only chaotic trajectories, having carried out an extensive
study of regular solutions earlier. We will work exclusively
with trajectories that monodromy computations certify as
unstable. We consider small fluctuations about periodic
orbits and construct Poincaré sections at various energies
by projecting points on these trajectories having pa1 ¼ 0

onto the hyperplane spanned by the ai’s.
Since the A4 and Π1 orbits are always unstable at

subcritical energies, we expect the Poincaré sections to
be sets of randomly scattered points. While we do find that
the sections are indeed scattered and locally random, there
are large scale patterns. These patterns depend solely on the
parent orbit. Poincaré sections for subcritical A4 and Π1

orbits are shown in Fig. 18.
We thus conclude that we have a set of coexisting chaotic

basins, one for each family of unstable orbits.
To illustrate a second peculiar feature of the dynamics,

we recall that in addition to the chaotic dynamics of the full
spin-0 sector, unstable trajectories confined to RDS phase
spaces may well display chaotic dynamics of their own.
This leads to chaotic basins embedded in a four-
dimensional subset nested within the full six-dimensional
chaotic dynamics! This extraordinary feature of the dynam-
ics is the combined result of the large dimensionality and
the tetrahedral symmetry. This nested chaos, as part of a
genuine four-dimensional system, can be analyzed using
Poincaré sections in the usual sense.
We thus generate Poincaré sections for chaotic trajecto-

ries of the RDS, both to study the nested chaos and to look
for similarities to the full six-dimensional dynamics. In
particular, since most of the interesting orbits of the full
spin-0 sector have RDS analogs, we would naturally expect
a similar substructure of multiple chaotic basins, one for
each class of orbit. This substructure is indeed replicated in
the RDSs, as evidenced by Fig. 19.
Next, we see that the supercritical regime appears to

comprise of just a single chaotic basin (Fig. 20). The
mechanism responsible for separating chaotic subsectors
in the subcritical regions is no longer operative, so that

fluctuations about unstable periodic orbits rapidly grow and
eventually cover the entire available phase space, losing
memory of their initial conditions. Analogous results hold
for the supercritical regimes of the RDSs, as is seen from
the Poincaré sections of Fig. 21.
We now turn to Lyapunov exponents which will provide

additional confirmation for our already established results.

B. Lyapunov exponents

Recall that the maximal Lyapunov exponent (LE) at a
phase point P is defined as

λP ≡ lim
T→∞

lim
kδxð0Þk→0

1

T
log

�kδxðTÞk
kδxð0Þk

�
; ð6:1Þ

where δx is a small fluctuation about a given trajectory xðtÞ
starting at P.
We compute the LEs for the A4 and Π1 basins separately

by considering arbitrary fluctuations about these orbits.
The results for the subcritical zone are shown in Fig. 22.
Consistent with our interpretation as coexisting chaotic
basins, we see that the exponents of the Π1 and A4 orbits
differ from one another. The stability of all other periodic
orbits at nearly all subcritical energies means that we may
confine our analysis to these two families of orbits.
Since the Π2 and A3 orbits can destabilize for E > Ec,

the supercritical analysis must include these orbits as well.
The LEs for the basins corresponding to each of these orbits
have been shown in Figs. 23–26. There are three features of
interest here.
(1) The exponents for each basin frequently alternate

between regions of steady concave growth and
regions where the exponent is identically zero. A
comparison with the monodromy matrix computa-
tions shows that the regions of zero exponents
precisely correspond to the stable bands of the
relevant periodic orbits.

(2) The nonzero portions of each of the four curves fit
nicely onto one another. Chaotic trajectories are thus
characterized by a single Lyapunov exponent at
large enough supercritical energies. Barring stabil-
ity-instability transitions of the periodic orbits, this
agrees with our earlier assertion of a single chaotic
basin at sufficiently high supercritical energies.

(3) The nonzero sectors of the exponent plots are neatly
captured by a E

1
4 fit. The exponents thus steadily

develop an algebraic dependence on E, at least to the
leading order. The same scaling has been observed
in [27].

VII. CLASSICAL PHASES OF THE
MATRIX MODEL

We have investigated the dynamical behavior of a large
number of subsectors of our model in different regimes
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FIG. 18. Poincaré sections at subcritical energies.
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using two techniques. We note that the unusual diversity
in dynamics—subsectors, nested dynamics and ergodic-
ity breaking—is highly reminiscent of an underlying
phase structure and associated phase transitions. In fact,
ordered and chaotic regimes have indeed been identified
as distinct classical phases, particularly in the context of
matrix models [1,27]. Additionally, the exotic dynamics
uncovered here hints at an uncommonly rich phase
structure. There is an even more suggestive reason to
believe that a phase study is the way to go, which we shall
outline later on. In this section, we will just press forward
with this viewpoint and outline the phase structure of the
matrix model.
Phases are usually identified by regions in an appropriate

phase diagram, labeled by a set of independent variables.

Taking the quintessential example of ice-water-steam phase
diagram, pressure, volume and temperature serve as the
distinguishing parameters. The most obvious parameter
that we could utilise for the matrix model is, of course, the
energy. Although slightly unusual in a more physical sense
(where temperature is the natural choice), energy is a
natural variable to use in the more abstract context of
nonlinear systems. Alternatively, our stand simply reflects
the microcanonical nature of our setup.
Generally, energy is sufficient to capture the phase

structure, with low energies yielding regular behavior
and chaos taking over later on. As we have seen however,
the matrix model may display several distinct types of
dynamics even at a given energy. An exact characterization
using just the energy is therefore incomplete. Furthermore,

FIG. 19. Poincaré sections at subcritical energies.
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there is no precise list of variables which, together with
the energy, do completely characterize the phase structure.
Our previous analysis tells us that the symmetries of the
Hamiltonian are the key players, but that is about as far as
we can go. Nevertheless, the absence of such a list does not
prevent us from enumerating the numerous existing phases,
following the generic methodology of identifying ordered
and chaotic regimes as distinct classical phases.
With this viewpoint, we see that the multiple chaotic

subsectors in the subcritical range (and their regular
counterparts) have a natural interpretation as coexisting
classical phases. The disjoint Poincaré sections of Fig. 18
neatly illustrate the chaotic A4 phase and the chaotic Π1

coexisting with the Π2 phase and the A3 phase (not shown
in the figure). The phenomenon of coexisting phases is a
fairly well-known one, with water-steam-ice [28] serving as
a well documented example. As phases are typically
distinguished by differing expectations of certain interest-
ing observables, it is natural to list out such observables for
our model as well. Since the Poincaré sections of the A4

sector are more concentrated near the edges of the allowed

configuration space, while those of theΠ1 sector group near
the centre, it is reasonable to expect that the squares of the
ai ’s (the second moments, so to speak) serve as distin-
guishing observables. Indeed computing the time average
of these observables for Π1 based trajectories and A4 based
trajectories of equal energy yield noticeably different
results. A more sophisticated distinguishing observable
is, of course, the Lyapunov exponent. The computations of
Sec. VI B indeed corroborate this view, with the exponents
of the A4 sector being marginally lower than their Π1

counterparts. Additionally, as seen from the monodromy
plots (see Fig. 12), the A3 orbits describe chaotic bands of
their own at suitable subcritical energies, implying that we
can have three chaotic phases intermixing with one another
at certain E < Ec.
Next, translating the phenomenon of nested chaos to our

phase centered viewpoint implies the existence of yet
another collection of phases, this time dimensionally
distinct from our earlier sets. Since the RDSs inherit nearly
all of the peculiarities of the full dynamics, the structure
of this lower dimensional collection of phases is just as

FIG. 21. Poincaré sections at supercritical energies (E ¼ 1).

FIG. 20. Poincaré sections at supercritical energies.
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intricate as the full 6D phase structure. Indeed, one can
draw correspondences between the RDS phases and those
of the full model. The notion of lower-dimensional phases
in a physical system is rather unusual, though not unheard
of, with edge states in topological physics serving as a good
example. It is therefore interesting to see such themes
emerge naturally in the context of a gauge matrix model.
Much like the subcritical regime, nested phases are also a

feature of the supercritical regime, with supercritical nested

phases appropriately inheriting the phase structure of their
parent 6D phases. It is interesting to note that the notion
of symmetry breaking persists in this model despite the
symmetries of the RDS only encompassing a small sub-
group of the full tetrahedral group.
Fascinating as this game of coexistence and mergers is,

it involves only the chaotic phases of the model. The
transitions between ordered and chaotic phases are no less
interesting. We have already encountered numerous sig-
natures of these transitions, via monodromy plots and
Lyapunov exponents. These analyses neatly corroborate
one another and clearly indicate alternations between
ordered and chaotic regimes, and thus, between ordered
and chaotic phases. Specifically, the phase structure
involves an alternation between individual regular phases
and the global chaotic phase. These alternations happen at
energies that are specific to the parent orbit in question.
As regards the (breaking of) the symmetries of the

system, we thus see that the symmetry of the parent orbits
is after all not completely lost at high energies, but is
retained solely by the ordered phases, insofar as they exist
at high energies. As we have seen, symmetries bifurcate the
dynamics into a host of basins, one each for the A3, A4, Π1

and the Π2 orbits. The transitions for the first two of this set

FIG. 22. LEs for subcritical A4 and Π1 orbits.

FIG. 23. LEs and fits for A4 orbits.

FIG. 24. LEs and fits for A3 orbits.
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continue ad infinitum, implying that these symmetry
classes persist at arbitrarily high energies. In contrast,
the Π1 and Π2 orbits cease to alternate in stability at high
enough energies, so that any memory of these symmetry
classes is erased at suitably high energies. As before, the
nested dynamics presents the same systematics, despite its
reduced symmetries. Curiously enough, we will see later
that this notion of finite versus infinite alternations has
some ties to the quantum dynamics of the model.

VIII. QUANTUM CONNECTIONS

While the previous sections have firmly established the
SUð2Þ QCD matrix model as a classical nonlinear system
of great interest, its primary usage as a tool, is in a quantum
setting. From a pure gauge theory point of view, what then
do we learn about the quantum theory from perusing its
classical aspects? Given that we know of certain features of
the quantum theory [16], it is thus worth investigating how
the memory of these quantum features is retained in the
classical limit. On the flip side, one might also be interested
in using the above classical analysis to search for more
elusive quantum features.
Some quantum aspects of the SUð2Þ matrix model

coupled to massless quarks have already been studied in

the Born-Oppenheimer limit of the theory: in this limit,
the quarks are the fast degrees of freedom, and the gauge
field the slow mode. The quarks are quantized in the
background of the classical gauge field, and the gauge
field is then quantized. The quarks produce an emergent
Berry connection (a vector potential) as well as a scalar
potential on the gauge configuration space. The gauge
field is then quantized taking these additional emergent
potentials into account.
Inclusion of the quark leads to an unexpected

benefit even for investigations of the pure gauge
theory: it provides for a much more refined understanding
of the gauge configuration space. One can show that in
terms of

x ¼ TrðMTMÞ; y ¼ detM;

z ¼ 1

16
ð2TrðMTMMTMÞ − ½TrðMTMÞ�2Þ ð8:1Þ

the function FðMÞ ¼ Fðx; y; zÞ obeys the inequality

FðMÞ ¼ 1

2
ð2x4zþ x3y2 − 64x2z2 − 144xy2z − 54y4

þ 512z3Þ ≥ 0: ð8:2Þ

With

g3 ≡ detM

ð1
3
TrðMTMÞÞ3=2 ; g4 ≡ 1

16

�
2TrðMTMÞ2
ð1
3
TrðMTMÞÞ2 − 9

	
;

ð8:3Þ

the condition F ≥ 0 becomes

Δ ¼ 1

2
ð27g2

3 − 54g4
3 þ 162g4 − 432g2

3g4 − 576g2
4

þ 512g3
4Þ ≥ 0: ð8:4Þ

FIG. 25. LEs and fits for Π1 orbits.

FIG. 26. LEs for Π2 orbits.
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In other words, F ≥ 0 (or equivalently Δ ≥ 0) gives us the
set of all gauge-invariant spin-zero gauge field configura-
tions. This parametrization of the gauge configuration
space explicitly brings out the fact that it has corners
(A, B, and C) and edges (AB;BC, and AC).
We can plot the region bounded by the above inequality

(Fig. 27). This g3 − g4 plot is an “arrowhead” curve
consisting of configuration space points satisfying Δ ≥ 0.

In terms of the coordinates ðR;A; SÞ, the functions g3
and g4 take a rather simple form

g3ða1; a2; a3Þ≡ a1a2a3�
a2
1
þa2

2
þa2

3

3

�3
2

ð8:5Þ

and

g4ða1; a2; a3Þ≡ 9ða1 − a2 þ a3Þða2 − a3 þ a1Þða3 − a1 þ a2Þða1 þ a2 þ a3Þ
16ða21 þ a22 þ a23Þ2

: ð8:6Þ

It was argued in [4] that quarks condense at these
corners and edges, leading to quantum phases. These
phases, obtained via superselection sectors can be distin-
guished using two scale invariant configuration space
functions g3 and g4 defined as above.
Figures 28 and 29 provide a graphical depiction of the

quantum phases. The quantum phases are distinguished by
their relative positions on the g3 − g4 plot, with the interior
of the arrowhead depicting a bulk phase while the sides of
the arrowhead model edge phases. The three tips of the
arrowhead also represent distinct phases, with the phases

corresponding to the two lower tips of the arrowhead
related to one another by a parity transform.
While the g3 − g4 plot and relevant machinery concerned

were developed in a purely quantum setting, it turns out to
be very useful for discussing aspects of classical dynamics
as well. Specifically, we may associate each classical
trajectory with a given trajectory traversing the boundary
and interior of the arrowhead. Identifications between
classical and quantum phases can then be made by
comparing classically generated g3 − g4 plots with the
pictorial hierarchy of quantum phases mentioned in the

FIG. 27. (Scaled) Configuration space of SUð2Þ gauge matrix model.
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above paragraph. For instance, a general chaotic trajectory
unsurprisingly covers the bulk of the g3 − g4 plot and thus
is evidently in loose correspondence with the bulk quantum
phase. On the other hand, the “2 equal a’s” trajectories that
make up the 4-dimensional RDS are, from the definition
of the Δ function, confined to lie on the edges of the
arrowhead and thus are in loose correspondence with the
edge phases of the model. That the correspondence is not
exact is obvious as, for instance, generic trajectories may
have, at some points of times, two equal as thereby landing
themselves on the edges of the g3 − g4 rather than the bulk.
Additionally, as we have mentioned, the arrowhead com-
prises numerous disconnected edge phases in addition
to three point phases, while generic trajectories in the
4-dimensional RDS span the entire arrowhead, so that they
mix the edge phases and cross over the point phases at least
partly. The 4D restrained Π1 orbits for instance cover only
the right half (or only the left half, in case of parity reversal)
of the g3 − g4 plots although even they encompass four
quantum phases. While far from perfect, such correspond-
ences are about as much as we may expect from a
preliminary analysis and nevertheless have some semblance
to a deeper correspondence, telling us that we are after all
on the right track.
There is also a reasonably clear correspondence between

the A3 and A4 orbits (or more precisely the phases they map
to) and the “point phases” of the quantum model. Indeed,
g3 − g4 plots of the exact A3 and A4 trajectories are
perfectly confined to the top tip (A4) and lower right/left
tips (A3) of the arrowhead. Chaotic dynamics about these

orbits is associated with space filling g3g4 plots while band
gaps are only associated with minor spillovers from the tips
of the arrowhead. The A4 and the A3 orbits are, at least at
first glance, the apparent classical remnants of the quantum
point phases. Interestingly enough, these are the only two
periodic orbits whose phases underwent an infinite cascade
of flips. On conjecture at least, this cascade has something
to do with quantum properties of the matrix model.

IX. CONCLUSIONS

In this article, we pursued a detailed study of the classical
dynamics of the spin-0 sector of an SUð2Þ gauge-matrix
model. The presence of an unexpected tetrahedral sym-
metry greatly enriched the resulting dynamics, endowing
the system with several distinctive features such as coex-
isting chaotic basins, ergodicity breaking and nested chaos.
The tetrahedral symmetry also allowed us to better adapt
standard techniques to bring out the salient features of the
model. We utilized a two-pronged approach comprising
monodromy analysis and chaos-theoretic studies. The
intricacies of the classical dynamics translated into a rich
phase structure consisting of coexisting chaotic phases
protected by their respective symmetries at subcritical
energies. The underlying protective mechanism seemed
to degrade at suitably high supercritical energies, culmi-
nating with a merger into a single supercritical chaotic
phase. Also observed were quasiperiodic transitions
between ordered and chaotic phases and a collection of
lower dimensional nested phases. Surprisingly, a selection

FIG. 28. g3 − g4 plots for the A3 orbits.

FIG. 29. g3 − g4 plots for the A4 orbits.

ORDER AND CHAOS IN THE SUð2Þ MATRIX MODEL: … PHYS. REV. D 110, 054023 (2024)

054023-29



of classical phases bore tantalizing resemblances to quan-
tum phases stemming from superselection sectors. This
correspondence had benefits for both sides. In one direc-
tion, the quantum sector naturally yielded refined tools
(i.e., the g3 − g4 plots) for identifying classical phases. In
the other direction, the classical phase structure could
potentially give signatures for further investigations of
the quantum phase structure of the matrix model.
Broadly speaking, the questions we aim to answer going

forward fall into three categories, the first of which involves
investigating the classical dynamics of the spin-0 sector in
even more depth. From a nonlinear dynamical standpoint,
several features of the dynamics beg for deeper explora-
tions. For one, we are yet to understand the mechanism
behind the localization of the coexisting chaotic subsectors
for subcritical energies. It is also unclear why this mecha-
nism ceases to work at sufficiently high energies. Relevant
thermodynamic problems include a better enumeration of
the properties of the classical phases, via appropriately
chosen observables, and a detailed study of the transitions
between these phases. In particular, given that ergodicity
breaking is a key ingredient for the emergence of the
intricate phase structure of the model, it would be interest-
ing to search for connections to color glasses in non-
Abelian gauge theories [29].
The second class of questions we wish to explore center

around the relations between the classical and quantum
phases. Our current understanding of the correlations
between the classical phases generated by the A3=4 orbits
and their quantum counterparts is rather heuristic. A more

rigorous study of their connections, possibly via the
Gutzweiller trace formula, is thus called for. Another
interesting pathway involves searching for quantum ana-
logs of the phases generated by the remaining NLNMs or
the geometric orbits.
Lastly, as illuminating as the spin-0 sector is, its study

is only the first half of a broader endeavor. After all,
a complete study of the classical dynamics of the full
matrix model requires including the effects of angular
momentum. We plan to add back the rotational degrees of
freedom and analyze the resulting dynamics in a future
work. A natural follow up would be to probe the
connections between the full classical dynamics and
the corresponding quantum analog.
Although our present discussion has centred on the

SUð2Þmatrix model, it seems unlikely that the peculiarities
of the dynamics will disappear as we go over to the SUð3Þ
model. We expect at least some of these features to persist
for SUð3Þ models, with interesting consequences for real-
world QCD.
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APPENDIX: ASYMPTOTIC LOCATIONS OF A4
STABILITY TRANSITION POINTS

TABLE II. A4 Transition points: Stable to unstable.

N Mathieu index Type (A=B)
Analytically computed

transition energy
Numerically computed

transition energy

9 10 B 117.163 118.55
10 11 A 142.451 143.85
11 12 B 170.206 171.65
12 13 A 200.429 201.85
13 14 B 233.12 234.65
14 15 A 268.278 269.75
15 16 B 305.904 307.45
16 17 A 345.998 347.55
17 18 B 388.558 390.15
18 19 A 433.587 435.15
19 20 B 481.083 482.65
20 21 A 531.046 532.65
21 22 B 583.477 585.15
22 23 A 638.375 640.05
23 24 B 695.741 697.45
24 25 A 755.574 757.25
25 26 B 817.875 819.55
26 27 A 882.643 884.35
27 28 B 949.878 951.55

(Table continued)
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