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ABSTRACT

The explicit filtering method for large eddy simulation (LES), which comprises integration of the governing equations without any added
terms for sub-grid-scale modeling, and the application of a low-pass filter to transported fields, is discussed. The shapes of filter response
functions of numerical schemes for spatial derivatives and the explicit filter that have been used for several LES are examined. Generally, these
are flat (no filtering) over a range of low wavenumbers and then fall off over a small range of the highest represented wavenumbers. It is
argued that this high wavenumber part can be viewed as a spectral buffer analogous to physical buffer (or sponge) zones used near outflow
boundaries. With grid refinement, this buffer moves to higher wavenumbers and solutions are obtained with little change over a range of low
wavenumbers but with added, correct, high wavenumber content. Examples show LES solutions to converge toward direct numerical simula-

tions monotonically. Connections to other widely used methods are also explained.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0222335

I. INTRODUCTION

Large eddy simulation (LES) connotes a numerical simulation
that is restricted to a range of the largest scales of a turbulent flow. The
approximation is useful when the solution is qualitatively correct, and
typical quantities of interest, such as flow statistics, are obtained with
acceptable accuracy. The error is acceptable because of the great reduc-
tion in computing effort (grid size and computation time) compared
with that required for a direct numerical simulation (DNS) that con-
tains the full range of dynamically significant scales. Many techniques,
both turbulence models and numerical methods, have been proposed
to address shortcomings revealed as LES began to be applied to wider
classes of problems. A comprehensive presentation of techniques and
sample results can be found in Sagaut." Much of the effort had been
directed at finding the best sub-grid-scale (SGS) model, which must
capture the effect of the omitted small scales on the computed large
scales. It cannot be said that any one approach has emerged as a sole
best method. Instead, practitioners adopt a particular method (numeri-
cal scheme and SGS model), which has proved successful for their
studies, whose requirements for each class of flows (free shear flows
and wall-bounded flows) are known from experience. This paper dis-
cusses some aspects of an explicit filtering approach, introduced in
Mathew et al.,” that have since become clearer from its application to a
variety of problems.

In the literature, explicit filtering can also refer to filtering nonlin-
ear terms alone as proposed by Lund” to control numerical error; nota-
bly, it was not an SGS model. Moreover, a response to reading about
steps in the explicit filtering method considered here has been to con-
clude that it is a procedure for “cleaning” small scales, or that it is
for de-aliasing. To emphasize that it is not a part of a numerical
method, but is an SGS model, the derivation is repeated below.
Further, hereafter this method will be termed EFLES to distinguish
from others that incorporate explicit filtering operations. Filtering and
filters used in our LES are discussed in Sec. [T A, leading to the idea of
EFLES as use of a spectral buffer, analogous to physical buffers or
sponge regions that have been used, typically, near outflow boundaries.
Arguments implied by the shape of the energy spectrum of turbulent
flows, that support the use of filters with a flat response function over a
range of low wavenumbers, as prescribed by EFLES, follow. Support
for these ideas is provided from two examples that show the presence
and effects of this buffer at different grid resolutions, filter cutoffs, and
Reynolds numbers. Connections to other SGS models are discussed in
Sec. IV.

A. Approximate deconvolution model

The explicit filtering method of Mathew et al.” was derived from
the approximate deconvolution model (ADM)." Salient aspects are
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summarized below. Consider the one-dimensional evolution equation
for a field u(x, 1),

Oou 0

o T ax! W =0 =
where f(u) is a nonlinear function. An LES can be interpreted as either
obtaining an approximation i (x, t) that contains a large scale part of
u(x, t), or the approximation that can be obtained on a coarse grid,
which implicitly limits the range of wavenumbers in the solution. The
LES field is 1 = G+ u = [ G(x — x’) u(x’) dx’, where G is a low-pass
filter. The evolution equation for #(x, t) is obtained by applying the fil-
ter to Eq. (1) to get

on 0
E+G*af(u):0. (2)

Equation (2) can be written in the form of the original equation with a
remainder %,

ou 0

§+a () =2, (3)
@) of(w
A= " e

Z # 0 when f(u) is nonlinear. Since u is not known when solving for
i, # must be replaced with a model %, (%) for closure. In ADM,

@) . ofw)
Im =g~ T @

where u*(x, t) = Q * & is an approximation to u(x, t) obtained by the
deconvolution of the filtered variable %. The equation solved when
using ADM is

on of (Q=u)

o O T o
During the early development of ADM, when the method was applied
to different types of problems, filters were obtained from implicit for-
mulas [Padé-type filters G(o), with different values of the filter param-
eter o.” These filters are discussed in Sec. IT A.]. Explicit formulas have
also been used.” The approximate deconvolution Q * % was performed
by applying the filter G several times according to an expansion of the
operator Q in terms of G. In all cases, excellent results for LES were
presented. Around the same time, Geurts’ examined a similar de-
filtering, taking the primary filter to be a top-hat function in physical
space and inversion to be exact for polynomials. It was not understood
whether there was a best convolution-deconvolution pair G and Q, or
that all pairs that satisfied some property would be suitable. As will be
shown below, the derivation of EFLES revealed that the solution
depends on the effective filter E = Q * G only, rather than indepen-
dently on both a filter G and a deconvolution operator Q.

=0. 5)

B. Explicit filtering implementation of ADM
The implementation of ADM by solving Eq. (5) involves the fol-
lowing steps to obtain i(x, t"™!) at the n + 1 time step given (x, t"):

1. Deconvolution: u* = Q * u(x, t").
2. Integration of Eq. (5): ut(x, t") — u(x, t"*1).

pubs.aip.org/aip/pof

This integration step by the Euler forward formula is

ﬁ(x, tn_H) = ﬁ(x7 t") —AtG * (?f(u*)

Ox
and can be evaluated in two steps,
a(x) = u*(x,t") — At afa(z ) , (6)
0, ) = Gra(x) + [0(x, ) — G’ (")) ()

The quantity within the square brackets in Eq. (7) is small and can be
neglected, because the essential requirement for the deconvolved field
is that u* ~ u over a range of large scales; then, # = G* u ~ G * u*.
The intermediate field a(x) can also be written as u*(x, t"™1). This
alternate implementation comprises the following three steps:

1. Deconvolution: u*(x, t") = Q * u(x, t").

2. Integration of Eq. (1) with u* instead of w: u*(x,t")
— u*(x, ") [evaluating a(x) of Eq. (6)].

3. Filtering: #(x, ") = G * u*(x, t"*!) [Eq. (7)].

Mathew et al.” observed that, in this latter form, the simulation
proceeds by repeating the following two steps: an integration of the
original evolution Eq. (1), followed by filtering and deconvolution that
can be combined into an (explicit) filtering of the evolving field with a
resultant filter E = G * Q (step 3 of a time step is combined with step
1 of the following time step). Since Q is an approximate inverse of G
over a range of large scales, by definition, E = I over that range of large
scales. Beyond that range, we shall require E to filter out content.

In ADM [Egq. (5)], operators G and Q, and their parameters, were
assumed, and an estimate u* was found. Thus, it is a structural model
closure for SGS Sagaut." Although it is a procedure and not obtained by
adding terms for SGS closure, it is nevertheless an SGS model. It is not a
procedure to provide stability for a numerical scheme, or to clean up
small scales. However, ADM provided no guidelines on what G ought to
be, and different operators Q could be obtained for the same G. Another
criticism was that ADM does not account explicitly for the effect of small
scales omitted from the computation because the operator Q only
amplifies content within the represented range of scales—the estimate
u* has no dependence on the small scales that are not computed. In Sec.
11 B 1, it is argued why such effects are not significant. The derivation of
the explicit filtering method for implementing ADM revealed a principle
for LES: a structural SGS model for LES is realized by integrating the gov-
erning equations without adding any model terms and applying a flat,
low-pass filter to the transported variables after every time step; consis-
tently, discretization formulas for spatial operations must be high-
resolution ones that have little error over a range of large scales.

Il. EFLES FOR TURBULENT FLOW

For LES of a turbulent flow, the model Eq. (1) is replaced by the
Navier-Stokes equations. For incompressible flow, the steps at each
time step comprise integrating the momentum equation to obtain a
velocity field, solving a Poisson equation for the pressure field, and cor-
recting the velocity field to be divergence-free as for a DNS.
Additionally, an explicit filter E should be applied to this velocity field.
Since these are three-dimensional fields, spatial filters E should be
applied in the three directions. For compressible flow, there are two
other transport equations for, say, density and energy, and these fields
would also be filtered after every time step. Other fields, like
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temperature or pressure, that appear in the equations need not be fil-
tered; their spectral content gets limited by their dependence on trans-
ported fields, even if, in a single step, nonlinear relations like the
equation of state extend their spectral range. Incidentally, it is not nec-
essary to use filters that commute with differentiation, since commuta-
tion is not invoked at any stage in deriving this method.

When the momentum equation is written in terms of the LES
velocity, u(x, t), the remainder Z is termed the SGS stress, which
requires an SGS model. SGS modeling can be classified broadly into
structural and functional models." A structural model is obtained by
replacing the full-spectrum fields in SGS terms with an approximation
obtained from the computable partial spectrum fields. ADM is an
example that replaces the velocity field u(x, ¢) with the approximation
u”*(x, t) that has been obtained by the deconvolution of the LES field
u(x, t). A velocity estimation model is another kind where an approxi-
mation to u(x, t) is obtained by an integration of the governing equa-
tions (or an approximation that makes computations economical)
with a slightly larger spectral content and for short durations.” An
example of a functional model is the Smagorinsky model. A well-
known feature of turbulent flow is the net transfer of energy from
larger scales to smaller scales where most of the viscous occurs. In an
LES, only a large scale part of the flow is computed, and dissipation
scales are not present. Although energy cascades down to the smallest
computed scales, since physical dissipation is insufficient, we observe
energy growth at high wavenumbers in the form of wiggles in the solu-
tion in physical space; soon the solution will diverge unless an SGS
model is employed. An SGS model that prevents this growth of high
wavenumber content is a functional model. The Smagorinsky model
dissipates spectral content at all scales but increasingly at the highest
wavenumbers and is thus a functional model. By dissipating in the
computed scale range itself, solution divergence is prevented. The coef-
ficient of the model term controls the magnitude of dissipation, and
when it is determined dynamically from the evolving fields them-
selves,” the model has been found to be more generally useful, since
the analyst does not need to specify a flow-dependent coefficient.
Although EFLES was derived as a structural model, it also serves as a
functional model—to be explained below after discussing filters.

A large number of studies have appeared that use the AFRL-
FDL3DI code, which combines an explicit filtering step with high-
resolution, compact difference schemes. The method was first described
in Visbal and Gaitonde.'” Examples of LES were reported subse-
quently.'""* Derivatives were computed with fourth and sixth-order
compact differences, and conserved variables were filtered with eighth
and tenth-order Padé filters; there were no added SGS model terms in
the equations that were solved. The numerical scheme and the explicit
filter have flat response functions with a smooth falloff near the high
wavenumber end. Bogey and Bailly'* proposed high-order explicit dif-
ference schemes (eighth-, tenth-, and 12th-order) with optimized coef-
ficients that have good resolution characteristics like compact schemes.
They also devised a selective filter with response functions similar to
that shown in Fig. 1 (see Fig. 3 in their paper'”). They have used this
method for LES of round jets and computed turbulence profiles and the
radiated sound. Both are de facto EFLES methods.

Marinc and Foysi'* used an optimized sixth-order finite differ-
ence scheme for spatial derivatives and an optimized tenth-order
explicit filter for their LES for control of aeroacoustics of plane jets.
EFLES was applied successfully to a reacting plane jet injected into a
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compressible channel flow."” Foysi and Sarkar'® added a dynamic
Smagorinsky term and applied explicit filtering for their LES of round
jets in the manner of mixed models; filtering was considered to provide
a reconstruction and the Smagorinsky term to provide stabilization. As
will be shown in the following, it has been possible to perform LES of
compressible round jets without the need for any additional terms.

A. Filter characteristics

Although derived as a structural model, the explicit filtering
model of Mathew et al.” is a functional model. Before elaborating, let
us consider examples of G, Q, and E= QG. Let u; denote values of the
function on a uniform grid of N points x; = jh (j=0,1,...,N).
When combined with end point formulas, the following implicit for-
mula provides a filtered field #;:

1 1
061711;1 + Ijlj + dﬁj+1 = (OC + E) (uj -+ E (Llj,1 + Mj+1)) . (8)

The sole free parameter o controls the shape of the filter response func-
tion. We write # = G * u. For simplicity, suppose u to be periodic,
with period 27. Then, Fourier coefficients of wavenumber k are related
as 1 (k) = G(k) i1(k), where variables with carets are coefficients of
the appropriate Fourier series. Figure 1 shows G (k) with o= 0. Note
that there is significant filtering at all wavenumbers: this filter will dis-
tort a function such that high wavenumber content is suppressed and
the filtered function will be smoother. Owing to the restriction of the
function u to the grid of N intervals, the spectral content of the filtered
field is restricted to 0 < k < kyax, Where kp.x = N/2. An exact
inverse is not possible because content with k > N/2 is not available.
An obvious filter for an approximate inverse is

~-1_ [1/G  (0<k<N/2),
G *{0 (k=N/2).

Formally then, the deconvolution filter Q = G{,l. The explicit filter
E=GQ=1(0<k<N/2) and vanishes for k = N/2. LES with
these filters amounts to integrating the transport equation without any
explicit filtering. The explicit filtering SGS model is then inactive and
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will prove inadequate, and the code will diverge, unless the filtering
due to other operations, such as numerical differentiation, provides the
expected functionality.

The approximate deconvolution operator proposed by Stolz and
Adams" is the truncated series,

J .
Qapm =I+Z(I*G)]7

j=1

where I is the identity operator. Figure 1 shows the filter response
function for Qpy( = 0) when J=5. Also shown are the implied
explicit filters E = GQapy for o = —0.2,0,0.2. The explicit filter E is
flat (essentially, no filtering) over a range of low wavenumbers and
then falls smoothly to zero over a small part of the highest represented
wavenumbers. As o increases, the cutoff wavenumber ko increases.
An operational definition of ko could be that E (keyofr) = 0.9.

LES with the AFRL code FDL3DI is like EFLES because the code
implements high resolution numerical methods (fourth- or sixth-order
compact differences) combined with filters with response functions
similar to those in Fig. 1. Examples may be found in Rizzetta et al.'”
The difference formulas may be viewed as providing a spectrally accu-
rate derivative combined with low-pass filtering. The implied filter is
k/k, where k(k) is the modified wavenumber'” of the difference for-
mula. For symmetric, implicit difference formulas or high-order
explicit difference formulas, this implied filter is nearly flat over a range
of low wavenumbers and then falls off to zero (see, for example, modi-
fied wavenumber formulas in Lele."”

Chakravorty'® performed LES of incompressible and variable
density (low-Mach number) flows using compact difference formulas.
For the staggered grid algorithm, the needed interpolations were also
performed using a high-resolution, implicit formula.'” The implied fil-
ters of all numerical procedures were designed to be flat over a range of
low wavenumbers and to fall off at high wavenumbers, like the explicit
filter E shown in Fig. 1. Five-point stencils were taken and constrained
at two or three wavenumbers to design derivative and interpolation for-
mulas with a large range of wavenumbers over which near-spectral
accuracy would be obtained. Truncation error was fourth-order for all
formulas. The explicit filter, defined on a five-point stencil, has one free
parameter and is fourth-order. The filter response functions for the
explicit filter, the implied filters for the first derivative, and interpolation
are shown in Fig. 2. Note that there is a clear separation between the
cutoff wavenumbers of procedures in the numerical scheme and the
explicit filter. The cutoff is at a smaller wavenumber for the explicit filter
(keutoft = 0.7kmax). Below the cutoff, spectral accuracy is maintained. A
similar relation between cutoffs of explicit filter and numerical scheme
was used in Mathew et al.” for LES of supersonic channel flow.

The earlier papers””” had advocated that the cutoff wavenumber
of the explicit filter should be smaller than that of the numerical
method. The operations in Chakravorty'® have also followed this prin-
ciple. However, it is not necessary because it is the combination that is
effective in a simulation. For the LES of Visbal and Rizzetta,'' when the
tenth-order filter is applied with a high value for the filter parameter of
0.49, the cutoff of the filter is very close to the maximum wavenumber
and clearly larger than that of the derivative operations. We have a simi-
lar experience in other LES. Figure 3 shows response functions of the
implied filter of the standard sixth-order compact difference formula
[Eq. (2.1.7) in Lele'’] and a tenth-order Padé filter (filter F10 in Table
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1 . —=
0.8F v
g V]
S o6l e
=
P |
£ 04r H
:
& |
g 0.2r i
=
0 1 L 1 L | L 1 L
0 02 04 06 08 1
K /Kinax

FIG. 3. Filtering of standard sixth-order compact difference formula (—) and
tenth-order filter F10 with o = 0.498 (blue dotted-dashed line).

IV of Visbal and Rizzetta'' with parameter o = 0.498). The implied fil-
ter of the difference formula has a smaller cutoff than the optimized
schemes shown in Fig. 2. So it has been sufficient to use an explicit filter
with a higher cutoff than that of the difference formula.”"”” This strat-
egy has been used for the round jet simulations discussed in Sec. II1.

A criticism of EFLES may be that the method does not prescribe
a cutoff wavenumber, or even a relation between cutoffs of the implied
filtering of the numerical method and the explicit filter. In the overall
process of obtaining an LES, this has not been a failing. Typically, all
computations will begin with a level of discretization, and then, spectra
and convergence of large scale quantities with refinement should be
examined. If one is able to use a larger cutoff for filter E, the solution
on a given grid may be better, but refinement can provide a signifi-
cantly better result—evident in Sec. IT1, Fig. 4. So, determining an opti-
mum cutoff, which would be universal, has not seemed to be a useful
direction to pursue.

B. Functional modeling in EFLES and the spectral
buffer

For simulations of unsteady, spatially developing flows, it is a
widespread practice to have a buffer zone adjacent to, and immediately
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FIG. 4. Compensated energy spectrum from forced homogeneous, isotropic turbu-
lence simulations of Chakravorty.® LES grid sizes are 32°, 48°, and 64°, and DNS
is with 192% points. For each group of LES, there are four curves corresponding to
simulations with four filter cutoff values.

upstream of, the outflow boundary. Within the buffer zone, the solu-
tion will not have the same accuracy as that in the region of interest. It
may even be quite wrong. In some treatments, the grid in the buffer
zone is coarsened aggressively, and smaller scale motions that convect
into the buffer zone become damped numerically because they can no
longer be represented in coarse regions. Damping can also be effected
by adding a term to the differential equations that takes the solution to
a smoother profile. Then, at the outflow boundary, a simple convective
condition with a uniform convection velocity, or the more detailed
treatment based on characteristics”** can be applied. In such cases,
there is an expectation that any significant error due to the buffer zone
treatment will be restricted to the buffer zone, and to a smaller extent
upstream of the buffer, to about the width of the outgoing shear layers.

There are two reasons why the effect of the buffer zone should
not affect the upstream solution significantly. First, near such outflow
regions, the flow is constantly convecting flow properties, including
errors, out of the domain. For incompressible flow, pressure is
obtained from a Poisson equation whose source terms are functions of
the erroneous velocity field in the buffer zone; their effect on the solu-
tion, and the error, decays radially outward from such points.

Our studies with EFLES indicate that the result of filtering is anal-
ogous to using a buffer zone in spectral space. The spectral buffer spans
a small range of the represented high wavenumbers (ko < k
< kmax) and the corresponding range of represented high frequencies.
Though the relatively small scale motions in this range are also com-
puted, the filter E damps the energy contained in this range, smoothly
and increasingly toward k. For all wavenumbers smaller than those
of the spectral buffer, all spatial operations are performed with spec-
trally accurate schemes. The notion of a spectral buffer is suggested
strongly by the shape of the filter response functions of the numerical
schemes and the explicit filter. In all computations employing this
approach, these functions have an essentially flat portion over a signifi-
cant range of represented wavenumbers, and a smooth falloff beyond.
For the two kinds of computations represented in Figs. 2 and 3, the
spectral buffer spans the approximate range of 0.7 < k/kmax < 1. In
this range, the numerical schemes have significant errors. Errors in the

ARTICLE pubs.aip.org/aip/pof

solution that would cause divergence begin to appear because the
physical (and mathematical) requirement of energy transfer to smaller
scales (k > kmax) and physical dissipation at these scales is not met in
an LES. A spectral buffer is a range of scales that are computed and
wherein energy is suppressed by filtering. The advantage over SGS
models like the Smagorinsky is that in EFLES there is no suppression,
or numerical dissipation over a range of low wavenumbers. Of course,
physical dissipation over this range is simulated accurately. Just as one
is not concerned about what happens within and beyond a physical
buffer layer, one should not be concerned about what happens within
and beyond the spectral buffer. However, all effects of the buffer zone
on the low wavenumber content should be understood.

High resolution numerical methods and flat low-pass filters pro-
vide for a small spectral buffer—one that spans a small fraction of the
computed scale range only. When low-order schemes are used, there is
significant filtering even of low wavenumber content, making the
method less efficient: then, a relatively finer grid would be needed for
the same level of accuracy over a fixed range of large scales. This is the
improved functional modeling provided by explicit filtering as an SGS
model, though it was derived as a structural model.

The analogy between the spectral buffer of explicit filtering and
physical outflow buffers provides a guideline for the shape of filter
response function. Outflow buffer zone treatments are designed to
suppress fluctuations so that simple boundary conditions applied to a
smoothed flow prove to be effective. If the change is abrupt at the
interface between the region of interest and the buffer, problems
appear at the interface. Filter response functions of explicit filters used
in all the cases cited here fall off smoothly near the high wavenumber
end as in Figs. 1-3. If the explicit filter had a sharp cutoff at some
keutoft < Kmax> there would be energy accumulation near keyoff and the
computations would diverge.

The term “spectral buffer” appears in Adams” as the range of
represented scales that are not resolved by the numerical method. He
explains that ADM was intended to “amplify scales in this buffer” and
a “relaxation term was introduced as a dissipative mechanism on this
buffer range.” So the term was used to label the range of scales where
additional procedures were applied. In this paper, the term spectral
buffer is used as an analog of outflow buffers in physical space, as a
way to understand the functional modeling being effected, and not just
as a name for a scale range where some procedures were to be applied.

1. Interscale energy transfer in EFLES

Sources of error in LES can be understood by dividing the energy
spectrum of a turbulent flow into three wavenumber ranges with labels
R: k < kp; B: kf < k < kg and U: k > kg. kg is the maximum wave-
number represented in the LES and is determined by the grid spacing.
Wavenumbers larger than ky are not represented in the computations.
So “U” is the unrepresented range. Wavenumber k; lies in the inertial
range and corresponds to the lower of the cutoffs of the numerical
method (implied filter) or explicit filter. When using a high-resolution
scheme and filter, response functions are flat for smaller wavenumbers.
So “R” is the resolved range, and “B” is the buffer range of wavenum-
bers that are represented in the computation, but where the solution is
not computed correctly (unresolved).

For incompressible flow, the nonlinear terms in the Navier—
Stokes equations are quadratic. So we should consider triad interac-
tions between wavenumbers k; and k, giving rise to energy at
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wavenumber k3 = k; *k;. Let the amplitudes of the interacting struc-
tures be Ap, Ap, and Ay to denote amplitudes in the three ranges.
Owing to the energy cascade, Ar > Ap > Ay. Table I lists the different
types of interactions when k; and k; are in the three ranges. All inter-
actions that result in wavenumber k; in the resolved range are impor-
tant. Cases 1 and 2 are computed correctly by EFLES. Cases 3, 5, 7,
and 9 result in content in the buffer or unresolved range and will be
suppressed by the filtering. Note also that due to the fall in the energy
spectrum, the amplitudes of the resulting structures are small com-
pared to what is computed correctly (cases 1 and 2). Case 4 can be a
source of significant error when k; is small. Case 6 results in smaller
errors when the amplitude in the buffer range is small compared to the
peak amplitude in the resolved range. Cases 8 and 10 imply errors in
the resolved range from interactions that are not accounted for, but
may be neglected due to the small amplitudes of the interacting pairs.
This is a guideline for estimating the extent of the error due to the
unrepresented range from the solution spectra. A conservative upper
bound would be case 6, which is an erroneous underestimate of the
contribution from buffer scale interactions on the large scales. This is
the most significant backscatter error in this method. Of course, back-
scatter from wavenumbers in the resolved range (case 2) is captured
correctly. As a general guideline, the cutoff wavenumber needs to be
large enough so that the effect of small scales on the dynamics of the
large scales is no longer significant, hence the need for judicious grid
refinement. Implicit in the discussion above is the model energy spec-
trum, which has a peak at some small wavenumber, a k53 fall
through the inertial range and a rapid falloff near the Kolmogorov
scale. In nearwall regions, the solution is dependent on the dynamics
of thin elongated structures—the alternating streaks—which have
widths and spacing that scale on wall units. Thus, the backscatter from
their interactions to larger scales is important, and grids spacing must
be small enough to resolve these interactions. Thus, the spacing in
wall-normal and spanwise directions in LES is comparable to those for
a DNS, in the nearwall region.

The discussion of interscale interactions provides a further con-
nection to a physical buffer. The turbulence energy cascade implies a
net transfer of energy from large scales to small scales, like convection
to a physical outflow buffer. If the spectral buffer is at suitably large
enough wavenumbers, the incorrect backscatter may be ignored
because the amplitudes are relatively small. The response function of

TABLE . Interscale interactions. “+” and “—" in column 1 denote sum and difference
interactions, respectively.

Case Type ki | k, ks Amplitude of k;  Effect on LES
1 + R|{ R |RBU ARAg Important
2 — R| R R ARAg Important
3 + R| B B, U ARAp Unimportant
4 — R| B R ARAp Important
5 + B| B B, U AgAg Unimportant
6 — B | B R ApAp Important
7 + B| U U AgAy Unimportant
8 — B| U R, B AgAy Important
9 + U| U U AyAy Unimportant
10 — U| U R, B AyAy Important

ARTICLE pubs.aip.org/aip/pof

the explicit filter vanishes at k,,, analogous to a nonreflecting outflow
boundary condition at the end of the physical buffer.

Ill. LES EXAMPLES

When there is a clear separation between cutoff wavenumbers of
the numerical scheme and the explicit filter, it is possible to examine
the effect of changing the cutoff wavenumber of the explicit filter alone.
With LES of supersonic channel flow, Mathew et al” had shown
monotonic convergence toward the DNS solution as the LES grid was
refined, or as filter cutoff was increased. An even more compelling
demonstration was obtained by Chakravorty'® by performing several
LES and a DNS of forced homogeneous, isotropic turbulence. Figure 4
shows the compensated energy spectrum as a function of wavenumber
k scaled with the Kolmogorov length scale #. The DNS was on a grid
of 192 x 192 x 192 points, and the Taylor Reynolds number was
about 80. LES was conducted on grids of 323, 48° and 64° points, with
four different values of cutoff wavenumbers of the explicit filter.
Clearly, (a) LES solutions converge monotonically to the DNS with
grid refinement and toward DNS when the filter cutoff is increased on
a given grid, and (b) the changes are to high wavenumber content
only. As the grid size increases, there is essentially no change to low
wavenumber content even as the spectral range increases. If one com-
pares the DNS with any one of the LES, say, on the 32° grid and with
the smallest filter cutoff wavenumber, one infers that explicit filtering
provides a spectral buffer beyond scaled wavelength ki ~ 0.1 (1 is the
Kolmogorov length scale). The falloff of the spectrum is due to the fil-
ter since the numerical differentiation is spectrally accurate over a
larger range. On a given grid, as the filter cutoff wavenumber is
increased, the spectral buffer zone becomes thinner. Solutions on dif-
ferent grids demonstrate a complementary feature: on a finer grid, the
buffer zone has moved to a range of larger wavenumbers. Significant
errors remain confined to this buffer zone. While it not a priori evident
that errors would be confined to wavenumbers larger than the scheme
cutoff, these results show no significant contamination of smaller
wavenumber content.

The results from forced, homogeneous, isotropic turbulence sim-
ulations of Patel” on larger grids are shown in Fig. 5. Taylor Reynolds
number was 108. The same conclusions apply: As the grid is refined
and the spectral range increases, the range of wavenumbers over which

1 10 L 100

FIG. 5. Energy spectrum from forced homogeneous, isotropic turbulence simula-
tions of Patel.® Simulations in cubes of size 27° spanned by 64-512 gridpoints in
each direction.
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an inertial range occurs increases with little change to the content at
lower wavenumbers. Solutions tend almost monotonically to the DNS
(512° box) as the grid is refined. The spectra fall off rapidly in a buffer
range of wavenumbers.

A second example is that of spatially developing, compressible
round jets at very high Reynolds numbers. Simulation parameters are
listed in Table II. The Reynolds number Re = UpD/v is based on jet
diameter D and its centerline velocity U, at the nozzle exit plane.
Inflow plane Mach number M is 0.9. A near top-hat velocity profile
with a tanh bounding shear layer was specified at the inflow plane.
Small-amplitude, random fluctuations were imposed on the shear layer
alone. Simulations A and B are at Re=11000, but for different
domain sizes—axial distances of 30D and 70D, with approximately the
same grid spacing. Bogey and Bailly'’ have simulated a round jet for
75D at these conditions (Re =11 000 and M = 0.9). Cases C and D are
at the much higher Reynolds number of 1.1 x 10°. Spatial differences
were obtained with a sixth-order compact scheme, and a tenth-order
filter was applied to conserved variables after every time step. Filter
response functions are those in Fig. 3. Time-stepping is with a second-
order, explicit, Runge-Kutta scheme. Nonreflecting boundary condi-
tions”* were applied at the downstream and lateral boundary surfaces.
The numerical method has been discussed elsewhere,”” and the details
of the solution are in Patel.”®

The Cartesian reference frame used is shown in Fig. 6; the x-axis
was aligned with the jet, and the origin is at the center of the jet on the
inflow plane. The domain of interest is 0<x <Ly,
—L,/2<y<L,/2,-L;/2 <z < L./2. The numbers of gridpoints
in this region are also given in Table II. Within this region, the grids
were stretched in lateral directions outside a central square of side
1.5D; grid spacing was increased in geometric progression by 1%. For
cases B and D, the grid was stretched axially as well at 0.7%. The actual
computational region was larger because physical buffer zones were
used near the downstream and lateral boundaries where the grid was
stretched aggressively at 10%. The additional gridpoints in these buffer
zones were 30 in the axial and 20 in the lateral directions. Fine scale
structures disappear in the buffer zone as they cannot be represented
on the coarser grid.

An impression of the scale range is conveyed by iso-surfaces of
vorticity magnitude from cases A and D in Fig. 6. The larger scale
range at the higher Reynolds number is evident. A sensitive test of the
correctness of these solutions is the development of the inverse of the
centerline velocity and the level of velocity fluctuations. The inverse of
the centerline velocity U,(x) is shown in Fig. 7. For clarity, the curves
for cases C and D have been offset upward by three units. The change
in slope at x/D = 10 is the beginning of the turbulent portion. In all
cases, there is a clear linear range following breakdown. The curved
portion near the downstream end is from the outflow buffer region.

TABLE II. Round jet simulation parameters. L, =L, and N, = N,.

Case Re L./D L,/D N, N, B,
A 1.1 x 10* 30 10 263 253 6.01
B 1.1 x 104 70 40 426 473 5.92
C 1.1 x 10° 30 10 263 253 7.04
D 1.1 x 10° 30 10 406 387 6.03

ARTICLE pubs.aip.org/aip/pof

(b) Re = 1,100,000, case D

FIG. 6. Isosurfaces of vorticity magnitude wD/Uy = 7.8, 15.6.

Comparing cases A and B, we observe that when the simulation
domain was extended, the slopes of these curves remained essentially
the same. Linear fits for case B over the portion 10 < x/D < 60 and
over 10 < x/D < 30 for case D have been included. The reciprocal of
the slope of the linear fits, B, is listed in Table II. The values for cases
A and B are close to each other and agree closely with values from
experiments (5.8-6.06; Table 5.1 in Pope”). Incidentally, the curves
for cases A and B also illustrate the correct effect of using a physical
buffer layer: Only within its buffer layer does the solution for case A
depart from the solution for case B. For the coarse grid case C, we do
not obtain a linear variation, but one which curves slightly. The grid
and domain were identical to those for case A. With a fourfold increase
in the number of gridpoints for case D, we recover a linear variation
and slope parameter B, = 6.03 in the correct range. A small increase
in the number of gridpoints sufficed for a 100-fold increase in the
Reynolds number because this is an LES.
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0 20 40 60 80

FIG. 7. Centerline mean velocity Uy/Ue. Curves for cases C and D have been verti-
cally offset by 3 units for clarity. Case A (blue filled circle with dashed line), case B
(—), case C (green long-dashed line), and case D (orange filled circle with dashed
line). Linear fit over turbulent region for case B (pink long-dashed line) and for case
D (orange long-dashed line).

Figure 8 shows the development of velocity fluctuations along the
centerline, scaled with the local centerline mean velocity. For cases A,
B, and D, the axial component s/ U, tends to 0.24, as in experi-
ments.”*”” Fluctuation levels are smaller for the coarse grid case C and
is consistent with the weaker decay rate of the centerline velocity
(Fig. 7). The grid employed for case C is inadequate, but on refinement
(case D), an acceptable LES has been obtained. Also, as in experiment,
both cross-stream components Vyys/Ue and Wi/ U, were found to
tend to 0.18 (not shown here).

Time series of velocity components at many stations on lines y =
0,z = 0 (jet centerline) and y = D/2,z = 0 (jet boundary shear layer
at inflow plane) were stored. Frequency spectra were calculated using
the PWELCH function in MATLAB 8.6. Figure 9 shows the frequency
spectra of the streamwise velocity component, scaled with the local
mean centerline velocity, E(u)/ Uf, at x/D = 4.99, 745, 9.96, 12.56,
and 14.94 from case A. Frequency f has been scaled with the jet half-
radius r/, and U.. Close to the inflow plane, the spectral range is small
and solution field is fully represented and accurately computed on the

B r"‘».,«,-.~\ N ~ - 10.25
r | e “-\,-_,7&\

o F A\ 40.20

SH RY ]

) | .\ |

E _ ....\\\ _0.15
= '-.:ﬁ\\io.w
- 410.05

L | L | s I \

0 10 20 30 40

x/D

FIG. 8. Centerline velocity fluctuations. u,,,s/Us: case A (blue filled circle with
dashed line), B (—), C (green filled circle), and D (orange dashed line).
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FIG. 9. Scaled power spectra, case A. x/D =4.99 (°), 7.45 (), 9.96 (—), 12.56
(blue dashed line), and 14.94 (orange dotted-dashed line).

chosen grid. Regular oscillations due to the vortex rings upstream of
breakdown (see Fig. 6) can be observed as a low frequency peak in the
spectrum at x/D = 4.99. Downstream, this peak disappears as the
flow breaks down to turbulence, and the spectrum broadens. Spectra
collapse on these local scales to show self-preserving development for
x/D > 9.96.

Figure 10 shows spectra from cases A, C, and D at x/D ~ 12.
When the Reynolds number alone is changed, the spectra should
extend to smaller frequencies as the inertial range extends, while the
content at low frequencies should remain approximately the same
(cases A and D). Clearly, the simulations support this expectation.
When the grid is refined, the spectrum extends as smaller lengths and
frequencies can be represented and computed accurately (cases C and
D). Again, the changes are to the high frequency end of the spectrum,
while the low frequency part of the solutions remains essentially the
same.

Recall the discussion of interscale interactions in Sec. ITB I:
Interaction cases 4 and 6 that contribute to large scale content can be
in error if the spectral range of the buffer begins at too small a wave-
number. Power spectra from cases A, C, and D in Fig. 10 show that a
small shift to higher wavenumbers of the spectral buffer sufficed to
obtain a solution with slope parameter in the correct range.

sl L PR | s PR,
0.1 1 10
fD/Uy

FIG. 10. Power spectra at x/D ~ 12. Case A (°), case C (blue long-dashed line),
and case D (red filled circle).

Phys. Fluids 36, 085181 (2024); doi: 10.1063/5.0222335
Published under an exclusive license by AIP Publishing

36, 085181-8

61:1L:¥0 ¥20Z Joquiaidas z|


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

IV. OTHER SGS MODELS

With this understanding, we can consider SGS models.

The Smagorinsky SGS model is implemented as a term added to
the momentum equations by setting the SGS stress tensor,

1:?]35 = V&S,

where Sj; is the strain rate tensor and *¥ is the eddy viscosity. The
effect of this term is to damp all scales. Briefly, consider the 1-d Eq. (3)
for the “LES” variable . A Smagorinsky-type model for % would
appear as

on 0 Pu
- — f() = 18—
o Tl =" 52 ©)

Here, for ease of illustration, let ¥ be a constant, though in the
Smagorinsky model, it is proportional to a measure of the local strain
rate tensor. On taking the Fourier transform of Eq. (9), and Euler for-
ward time-stepping, we can write

ik, t + At) = i (k,t) — At(ikf ) — At ¥k (k, t).

Combining the first and third terms on the right hand side shows that
the integration is equivalent to applying a filter with response function
Gs = 1 — At **k? to the solution at ¢ before time-stepping. This fil-
tering provides the SGS modeling. Although high wavenumber con-
tent is damped more (increases as k%), all content is damped. This is
not to be considered a wrong model, because the damping of any fixed
range of low wavenumber content will reduce as the grid is refined,
but is, therefore, a less efficient model.

An earlier method called MILES had also been characterized as
an implicit large eddy simulation (ILES). Boris™ had explained the
effectiveness of MILES by stating, “monotone convection algorithms
designed for positivity and causality, in effect have a minimal LES filter
and matching subgrid model already built in. [This ensures] efficient
transfer of the residual subgrid motions, [...] off the resolved grid with
minimal contamination of the well-resolved scales by the numerical fil-
ter.” These features turn out to be requirements that appear in the deri-
vation of EFLES. A variety of experiences with MILES, including a
historical account, was discussed by Grinstein et al”' One way to
understand the success of MILES is to recall that in the flux-corrected-
transport (FCT) algorithm, the anti-diffusive step is constructed from
the local solution, and limited, to ensure that no new extrema are cre-
ated. The FCT algorithm was designed to obtain higher-order flow
fields, capturing shocks without oscillations. It proves effective as an
algorithm for LES because it suppresses oscillations that will appear as
nonlinear terms generate content at wavenumbers larger than the ones
that can be represented on the chosen grid. In its treatment of the diffi-
culty at the high wavenumber end, the algorithm is also optimal
because it is designed to just prevent the appearance of new extrema
based on the local state. Away from locations where the integration
would not produce a new extremum, there is no modification of the
solution. The implied filter is then active in a high wavenumber spec-
tral buffer. Since MILES was found to be useful for LES without any
explicit SGS model terms, the basic numerical method remained of rel-
atively low order—FCT is second-order in space. On discovering that
a compact scheme with a high-order filter delivers useful LES without
adding SGS model terms, Visbal et al*” have termed their method an
ILES also. The explicit filtering methods cited here no longer attempt

pubs.aip.org/aip/pof

to provide any kind of dynamic, optimal filtering. Attempts in this
direction did not reveal any significant benefit by changing the filter
cutoff, or by reducing the frequency of its application.

A. Secondary filtering

Adams™ had added a low-order relaxation regularization term
to the differential equation for the LES field. In Stolz and Adams,”
this was briefly mentioned as the use of a secondary filter that
improved the solution, but results were not included pending further
investigation. It has been added and discussed in detail subse-
quently.””* When this term is added, the model Eq. (5) would be mod-
ified to read

ou If(Qxu)

ot G Ox
Here, y is a free parameter. Stolz et al.” found solutions to have but a
weak dependence on . Mean velocity profiles showed very little differ-
ence as y was changed by a factor of 8. As stated in Stolz ef al.,’ the
effect of adding this relaxation term can be realized by integrating
without the additional term and filtering the field u with filter QG
every 1/(yAt) timesteps. Or, that applying the filter QG to field u
every m timesteps while integrating Eq. (5) is equivalent to integrating
Eq. (10) with y = 1/(mAt). If m = 1, relaxation regularization is real-
ized by applying the resultant filter E'E=G"Q"G"Q to the evolving
field. For flat filters of the type shown in Figs. 1 or 2, E(o;) * E(o;) can
be approximated by applying filter E(o,), with o, slightly less than ;.
So, a formal secondary filtering step is not indicated since the distin-
guishable benefit that would accrue is not evident.

V. CONCLUSIONS

The explicit filtering method for LES comprises integration of the
governing transport equations without any added SGS terms, and the
application of a flat low-pass filter to the transported fields after every
integration step. The effective spatial filtering of several such LES,
including the filtering implied by the spatial operations of the numeri-
cal schemes, was examined. A common feature of these implementa-
tions is a spectral buffer over a small part of the high wavenumber end
of the range of represented scales, analogous to buffer or sponge zones
near outflow boundaries. Since there is essentially no filtering of a
range of large scales, and, as expected for LES, the smallest represented
scales are in the inertial range where the amplitudes are small, when
the scale range is increased, solutions converge monotonically to the
full spectrum (DNS), without any significant changes to the large scale
parts. The monotonic convergence of gross quantities (means and low
order moments) is a consequence of adding content at the high wave-
number end only when the grid is refined. Any LES should converge
to the DNS with grid refinement, but monotonic convergence allows
one to use an LES from modest-sized grids with the expectation that it
is qualitatively correct, and that grid refinement will provide quantita-
tive improvements. Although it is not surprising that the procedure
has been seen as an example of an implicit LES (ILES), as a clean-up
operation, or, as a numerical operation to suppress (undefined) insta-
bilities, it ought to be clear from the discussion above that the explicit
filtering method provides an SGS model for obtaining an LES. The
principle revealed herein is quite general and can be used to under-
stand the observed or potential effectiveness of other methods for LES
as well.

=—yI—-QxG)xu. (10)
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