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Non-Hermitian topology and flat bands via an exact real-space decimation scheme
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In recent years, non-Hermitian phases in classical and quantum systems have garnered significant attention.
In particular, their intriguing band geometry offers a platform for exploring unique topological states and
unconventional quantum dynamics. However, their topological characterization becomes particularly interesting
and challenging in complex multiband systems. Here we propose a decimation framework, which leverages
real-space renormalization group to streamline the analysis of complex multiband non-Hermitian systems. Our
systematic approach allows us to probe different phases and transitions, analyze bulk-boundary correspondence,
formulate generalized Brillouin zones, investigate open boundary spectra, survey non-Bloch van Hove singu-
larities, study disorder-induced effects, and explore tunable non-Hermitian flat-band physics. Additionally, our
framework allows proposing a hypothesis about quasi-one-dimensional bipartite non-Hermitian systems with
flat bands, demonstrating their decoupling into Su-Schrieffer-Heeger chains and compact localized states across
various models. Our paper presents a powerful and comprehensive framework for understanding the intricate
properties of non-Hermitian multiband systems, offering insights into the evolving landscape of non-Hermitian
topological physics.
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I. INTRODUCTION

The exploration of non-Hermitian phases in open classical
and quantum systems has gained significant traction in both
theoretical and experimental realms [1–5]. Non-Hermiticity
enriches and offers unique topological phases considering the
interplay between ramified symmetries and topology [6,7].
The presence of exceptional degeneracies in non-Hermitian
systems leads to intriguing spectral topology, facilitating non-
Hermitian phase transitions and introducing the notion of
“point” and “line” gap topologies in the complex plane [8,9].
The spectral topology and its extreme sensitivity to boundary
conditions give rise to interesting phenomena such as the non-
Hermitian skin effect (NHSE) [10,11]. This, in turn, has led to
exciting applications such as enhanced lasing [12], topolog-
ical funnelling of light [13], unique unidirectional transport
[14,15], among several others. Non-Hermitian flat bands,
characterized by their peculiar properties and correlations,
offer a rich platform for exploring intriguing phenomena
such as unique topological states, nonreciprocal transport, and
unconventional quantum dynamics, challenging conventional
band structures and expanding our understanding of correlated
physics [15–17]. On the other hand, the spectral topology
and concomitant topological characterization in terms of an
appropriate topological invariant become more interesting as
well as challenging when the system has enhanced degrees
of freedom and multiple (n � 3) number of energy bands
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[18,19]. Recent progress in both theoretical and experimental
activities that explore the physics of non-Hermitian multi-
band systems are quickly altering the research landscape
[16,20–22]. Given the recent developments, there is a need for
a general approach that can offer a more profound theoretical
understanding of these complex multiband systems.

In this paper, we propose a complementary non-Hermitian
framework based on a decimation scheme [23–25], which
serves as a backbone of the scale transformation in the real-
space renormalization group (RSRG) framework [26–29].
More specifically, our formalism is exact and utilizes the
power of renormalization group theory to integrate out the
chosen degrees of freedom, resulting in the downfolding of a
complex Hamiltonian. In other words, our method efficiently
maps the original system to a smaller, simplified yet self-
contained system, which retains the information regarding the
band theoretic and associated topological properties through
its coarse-grained renormalized parameters.

The formalism proposed here is a powerful tool for stream-
lining the analysis of complex multiband non-Hermitian
systems. Our systematic approach has yielded intriguing
results, including: (i) Probing different phases and phase tran-
sitions of generalized non-Hermitian multiband models; (ii)
analyzing the bulk-boundary correspondence (BBC) using
a transfer matrix approach; (iii) formulating a generalized
Brillouin zone (GBZ) for a complex multiband system; (iv)
investigating open boundary spectra and skin modes; (v) sur-
veying non-Bloch van Hove singularities; (vi) studying the
effect of impurity and disorder in transport properties; and
(vii) exploring tunable non-Hermitian flat-band physics us-
ing a general prescription. Additionally, our approach also
sheds light on the qualitative understanding of compact
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localized states (CLS) in non-Hermitian systems. In partic-
ular, we hypothesize that any quasi-one-dimensional (Q1D)
bipartite non-Hermitian system exhibiting a flat band can be
decoupled into a non-Hermitian Su-Schrieffer-Heeger (SSH)
chain and periodically arranged isolated sites. The non-
Hermitian SSH chain enables the band topology, while the
latter manifests the nondispersive band. Our hypothesis is
tested for different Q1D non-Hermitian lattice models. Fur-
thermore, we demonstrate the versatility of the real-space
decimation strategy across diverse models, including higher-
order topological insulators, interfaces between Hermitian
and non-Hermitian systems, and systems with long-range
hopping. We show that by calculating the density of states
using the Green’s function formalism for large systems
with long-range hopping, the decimation approach is com-
putationally much less expensive than using the original
Hamiltonian, as the renormalized Hamiltonian is significantly
smaller. Similarly, for transport property calculations, such as
transmittance, the decimation scheme proves to be a com-
putationally efficient tool. Therefore, the decimation scheme
is an exact transformation that is highly advantageous for
exploring the underlying physics of various interesting and
unique properties of non-Hermitian systems through analyti-
cal descriptions. Its field of application is broad, and for some
complex, large multiband systems, the downfolding method
is also found to be computationally less expensive compared
to the original Hamiltonian. Overall, our formalism offers a
comprehensive framework for studying and understanding the
properties of complex multiband non-Hermitian systems.

II. FORMALISM

The tight-binding Hamiltonian for a noninteracting
fermionic system can be expressed in the tight-binding rep-
resentation as

Ĥ =
∑

n

|n〉ε̃n〈n| +
∑
n �=m

|n〉Ṽnm〈m|, (1)

where the complex variables ε̃n represent the on-site energies,
while Ṽnm denote the transfer (hopping) energy between the
orbitals |n〉 and |m〉. Furthermore, the equation of motion
for the Green’s function can be derived using the tight-
binding Hamiltonian provided and is expressed as

∑
l (Eδnl −

Hnl )Glm(E ) = δnm. In the case of non-Hermitian systems,
the retarded electronic Green’s function GR has the form
GR(E ) = [E + iη − H0 − �(E )]−1, where H0 and � repre-
sent the bare single-particle Hamiltonian and the impact of
non-Hermiticity on the system, respectively [30]. Further,
� can characterize the self-energy in a many-body scenario
where the quasiparticles have a finite lifetime [30]. Addi-
tionally, it can capture the presence of gain and loss terms
in an effective non-Hermitian Hamiltonian, particularly when
describing an open system coupled to a bath with appropriate
time dynamics [31].

For a lattice model, a preferred subset of “degrees of free-
dom” (or variables) can be eliminated from the original set
of linear equations for the Green’s function. In principle, the
decimation process can be an iterative process that system-
atically coarse grains the parameter space; however, it yields
the exact full density of states (DOS) [23]. In a similar vein,

FIG. 1. Application of the decimation scheme in non-Hermitian
physics. Schematic representation of the real-space decimation
scheme to down-fold a non-Hermitian Hamiltonian. Initially, dif-
ferent blocks of lattice sites (np/q, where n = 1, 2, 3, ...N) are
interconnected by nonreciprocal hopping matrices marked by solid
and dashed arrows. Each block can include both gain and loss terms
and nonreciprocal intrablock hopping matrices. Each decimation step
invariably reduces the number of blocks but at the expense of renor-
malized tight-binding parameters. The modified parameters are also
shown for a general ith step decimation process. The downfolded
lattice precisely mimics both the real and imaginary spectra of the
original non-Hermitian model. The potential application of this tech-
nique in revealing numerous properties of a non-Hermitian system
are also highlighted.

here, we shall explore how the degree of complexity of any
non-Hermitian multiband system can be substantially reduced
by downfolding the corresponding Hamiltonian matrix. For
a comprehensive understanding of the approach, let us con-
sider a linear chain comprising a total of Np + Nq blocks, as
depicted in Fig. 1, containing information about the nonrecip-
rocal hopping and on-site gain and loss terms. These blocks
can correspond to either a single site or a collection of sites for
which the tight-binding analog of the Schrödinger equation
can be written as

(E − εi )φi =
∑

j

ti jφ j, (2)

where E I, εi, φi. and ti j matrices represent the eigenenergy,
on-site potential and probability amplitude at the ith block,
and hopping parameter between ith and jth block, respec-
tively.

In the case of a linear tight-binding chain, as given in Fig. 1,
the difference equations given in Eq. (2) can be written
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as

(E − ε1p)ψ1p = t1p,1qψ1q + t1p,2pψ2p,

(E − ε1q )ψ1q = t1q,1pψ1p + t1q,2qψ2q,

(E − ε2p)ψ2p = t2p,1pψ1p + t2p,3pψ3p,

(E − ε2q)ψ2q = t2q,1qψ1q + t2q,3qψ3q. (3)

Using the first two equations in Eq. (3), we obtain

(E − ε1p)ψ1p = t1p,1q

[
t1q,1p

E − ε1q
ψ1p + t1q,2q

E − ε1q
ψ2q

]

+ t1p,2pψ2,p (4)

In other words,

(E − ε′
1p)ψ1p = t ′

1p,2qψ2q + t1p,2pψ2p. (5)

Here ε′
1p = ε1p + t1p,1q.t1q,1p

E−ε1q
and t ′

1p,2q = t1p,1q.t1q,2q

E−ε1q
.

Similarly, the difference equation for ψ1,q takes the form

(E − ε′
1q )ψ1q = t ′

1q,2pψ2p + t1q,2qψ2q, (6)

where, ε′
1q = ε1q + t1q,1p.t1p,1q

E−ε1p
and t ′

1q,2p = t1q,1p.t1p,2p

E−ε1p
.

Next, we substitute Eqs. (5) and (6) in the third and fourth
equations of Eq. (3), obtaining

(E − ε′
2p)ψ2p = t ′

2p,2qψ2q + t2p,3pψ3p,

(E − ε′
2q)ψ2q = t ′

2q,2pψ2p + t2q,3qψ3q, (7)

where ε′
2p = ε2p + t2p,1p.t1p,2q

E−ε′
1p

, t ′
2p,2q = t2p,1p.t ′

1p,2p

E−ε′
1p

, ε′
2q = ε2q +

t2q,1q.t1q,2p

E−ε′
1q

, and t ′
2q,2p = t2q,1q.t ′

1q,2p

E−ε′
1q

.

In effect, we have decimated the information of 1p/q sites
into the remaining tight-binding parameters. Furthermore, we
have downfolded the system to a one-step decimated version
of the extensive system with difference equations for 2p/q in
terms of renormalized coupling parameters. This scheme is
an iterative process that can be performed for any number of
decimation steps. The flow equation to obtain the transformed
tight-binding parameters (ε̃k , t̃kl ) in order to derive the renor-
malized parameters can be written as follows:

ε̃i = εi + ti,(i−1)t(i−1),i

E − ε(i−1) − t(i−1),(i−1)′ t(i−1)′,(i−1)

E−ε(i−1)′

,

t̃i,i′ = ti,(i−1) t(i−1),(i−1)′ t(i−1)′,i′

(E − ε(i−1)′ )
[
E − ε(i−1) − t(i−1),(i−1)′ t(i−1)′ ,(i−1)

E−ε(i−1)′

] . (8)

In the above Eq. (8), the p and q sites are represented by
primed and unprimed parameters and should be interchanged
for p ↔ q. This decimation scheme is an iterative process, and
the non-Hermitian Green’s function can readily be calculated
from the renormalized Hamiltonian at each decimation step.
In other words, the entire system information can be encoded
into an effective two-site problem containing decimated on-
site parameters of Np and Nq and hopping parameters between
the same. However, in this case, the most pertinent question
remains—Can the real-space decimation scheme capture the
complete complex multiband topology? Next, we present a
comprehensive resolution to this question at hand.

III. NON-HERMITIAN BAND TOPOLOGY
THROUGH DECIMATION

To answer the aforementioned question, we consider a
non-Hermitian four-band model featuring both nonreciprocal
hopping and inversion symmetric imaginary potentials, as
illustrated in Fig. 2. The Hamiltonian is H = Hhop + Hpot,
where the individual terms are given by [32]

Hhop = −
∑

j

[t1(c†
j,Ac j,B + H.c.) + t2(c†

j+1,Ac j,B + H.c.)]

+
∑

j

τ (c†
j,Bc j,A − c†

j,Ac j,B),

Hpot = iγ
∑

j

(c†
2 j−1,Ac2 j−1,A + c†

2 j,Bc2 j,B − c†
2 j,Ac2 j,A

−c†
2 j−1,Bc2 j−1,B), (9)

where c†
j,α (c j,α ) are the fermionic creation (annihilation) op-

erators for the sublattice α = A, B, and the lattice site is
indexed by j [see Fig. 2(a)]. The term Hhop with nonrecipro-
cal intra-unit-cell hopping t1 ± τ and inter-unit-cell coupling
t2 describes the two sublattices in the non-Hermitian Su-
Schrieffer-Heeger (SSH) model. Additionally, we introduce
Hpot, i.e., the imaginary staggered potential that respects in-
version symmetry. The system Hamiltonian of the lattice in
Bloch space is obtained as

Hk =

⎛
⎜⎜⎝

iγ t1 − τ 0 t2e−ik

t1 + τ −iγ t2 0
0 t2 −iγ t1 − τ

t2eik 0 t1 + τ iγ

⎞
⎟⎟⎠. (10)

The selection of the generalized non-Hermitian SSH model
as our focus is particularly appropriate, considering the ex-
tensive research dedicated to both Hhop and Hpot individually.
This choice allows us to leverage the substantial body of
knowledge on these models [33–40] and explore its intriguing
physics within the context of the RSRG decimation scheme.
The system described by the Hamiltonian, H = Hhop + Hpot,
has a discrete translational symmetry. Furthermore, the Bloch
Hamiltonian, Hk , in the momentum space respects the ram-
ified particle-hole symmetry (PHS†) denoted by the unitary
matrix Ŝ− [6]. The PHS† operator is defined by: Ŝ−H∗

k Ŝ−1
− =

−H−k , where Ŝ− = σ0 ⊗ σz.
We move on to the real space and employ the decimation

scheme to decimate the four-band model to obtain an ef-
fective two-band model with renormalized energy-dependent
coupling and on-site (gain/loss) terms. We will show that
this two-band model can precisely mimic the original system,
capturing all its essential physics, and also decipher the known
phase diagram for τ = 0 as a special case (see Appendix A for
details). Next, we present a systematic study of the decimated
model and the underlying non-Hermitian phase transitions as
a function of nonreciprocity, τ , and gain-and-loss coefficient,
γ .

We have judiciously integrated out the middle two (green)
sites from the original lattice [see Fig. 2(a)]. In particular, we
have obtained the following coupled equations, [E − ε′′]φa =
φd + t2φ′

d and [E − ε′′]φd = ′φa + t2φ′
a. This yields an ef-

fective two-band model with energy-dependent renormalized
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FIG. 2. Analysis of NH spectral topology in a generalized SSH
chain through decimation scheme. (a) Illustration of the decimation
scheme for the generalized SSH chain [see Eq. (9)] to obtain a
downfolded two-site model, which encodes the essential topologi-
cal information of the NH spectral topology of the original model.
(b) Phase diagram of the model illustrating four phases undergoing
Lifshitz transition with distinct point and line gap topology. (c) The
phase boundaries are the locus of the exceptional points character-
ized by phase rigidity. The comparison of phase rigidity (based on
eigenvector scaling) obtained from the decimated model (blue dots)
and the parent model (solid-red line) is also shown, which reveals a
striking resemblance. (d) At the τ = 0 limit, the system encounters
an SSH-like (Hermitian) topological phase transition governed by
real-energy gap closing. The topological real-energy zero modes
under the low energy approximation can be traced out by IPR from
the decimated model. For instance, we plot the IPR corresponding to
real-energy zero mode, and the finite jump in the IPR around γc in-
dicates trivial to topological phase transitions giving rise to localized
zero-energy modes under open boundary conditions. Furthermore,
the orbital character evaluated from the decimated model demarcates
the trivial (e) and nontrivial phases (f) of the system with a charac-
teristic twist around k = 0, which further reveals the SSH-like phase
transitions with the gap closing at γc. We characterize the second-
order exceptional points along the phase transition lines using (g)
tropical geometric framework and (h) Newton polygon formalism
discussed in Appendix D. In the tropical geometric framework, the
bend locus of tropicalization indicates the square root dispersion,
whereas the Newton polygon formalism illustrates the same through
its negative slope shown in the red-dotted line. We set t1 = 1.0 and
t2 = 0.75.

couplings and gain and loss terms.

Hd =
(

ε′′  + t2e−ika

′ + t2eika ε′′

)
, (11)

where ε′′ = iγ + (t1 − τ )(t1 + τ )/(E − ε′), ε′ = −iγ +
t2
2 /(E + iγ ),  = (t1 − τ )2t2/[(E + iγ )(E − ε′)], and ′ =
(t1 + τ )2t2/[(E + iγ )(E − ε′)].

Here, we note that the renormalized parameters given
above for the four-band system, depicted in Fig. 2(a), can
also be achieved using the general transformation relation
given in Eq. (8). We consider a system, which comprises
of a unit cell consisting of four sites, where the site indices
can be represented by a = 2q, b = 1q, c = 1p, and d = 2p.
We decimate the information of site b and d in terms of the
renormalized parameters. For instance, by considering i = 2,
it is straightforward from Eq. (8) to obtain

ε̃2 = ε2 + t2,1t1,2

E − ε1 − t1,1′ t1′,1
E−ε1′

,

t̃2,2′ = t2,1 t1,1′ t1′,2′

(E − ε1′ )
[
E − ε1 − t1,1′ t1′,1

E−ε1′

] . (12)

We choose ε1,2 = ±iγ , t2,1 = (t1 − τ ), t1,2 = (t1 + τ ),
and t1,1′ = t1′,1 = t2 to map the system parameters as
obtained in above discussion. For instance, ε̃2 becomes
ε′′ = iγ + (t1 − τ )(t1 + τ )/(E − ε′), where ε′ = −iγ +
t2
2 /(E + iγ ), and t̃2,2′ and t̃2′,2 take the form, t̃2,2′ =
 = (t1 − τ )2t2/[(E + iγ )(E − ε′)] also t̃2′,2 = ′ =
(t1 + τ )2t2/[(E + iγ )(E − ε′)]. We note that the choice
of degrees of freedom to decimate is inherently flexible.
For instance, since no spectral information from the original
Hamiltonian is lost in this transformation, one option among
several is to decimate the b and c sites to achieve a reduced
renormalized lattice. We present a discussion illustrating
a comparison between different decimation schemes in
Appendix E.

The phase diagram as a function of τ and γ for this
effective two-band model is shown in Fig. 2(b) (see also
Appendices B and C for the band dispersion). The dispersion
exactly matches the original four-band model. This alignment
persists across the entire parameter range, showcasing notable
phenomena such as the presence of exceptional points and
topological phase transitions, which we discuss next.

The single-particle spectrum shows gap closings for abso-
lute values of energies for lines ±t2 ±

√
t2
1 − γ 2 as well as

for real energies t1 = γ dividing the phase diagram into four
regions [see Fig. 2(b)]. We discuss various phases and their
transitions as well as characterize the spectral topology using
the non-Hermitian winding number in corroboration with the
nondecaying chiral modes (for details, see Appendix C).

The exceptional physics occurring around the phase tran-
sition lines can be effectively characterized through a tropical
geometric structure [41] and Newton polygons [42], despite
the presence of energy-dependent tight-binding parameters
[see Figs. 2(g) and 2(h) for the illustration and for more
details see Appendix D]. To fully characterize the eigen-
functions using the decimated model, it is essential to solve
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the following eigenvalue equation, Hd (t1, t2, γ , τ, E )ψd =
Ed (t1, t2, γ , τ, E )ψd . We solve for the eigenvalues and eigen-
states numerically. This process entails assuming different
trial values of complex energy and subsequently checking
which of these satisfies the characteristic equation. By system-
atically iterating through these trials, we are able to identify
the complex energy values that correspond to the eigenvalues
of interest. Thereby, we also obtain the eigenfunctions for
our decimated system. In Fig. 2(c), we show the scaling of

the phase rigidity, rd = 〈ψL
d |ψR

d 〉
〈ψR

d |ψR
d 〉 [43], near a phase transition

line. The phase rigidity, which is solely a function of the
eigenvectors, correctly reproduces the behavior of our original
model [see Fig. 2(c) for a comparison with the parent model].
This further confirms the existence of an exceptional locus
featuring the coalescence of eigenvectors.

At this point, it is interesting to note that in the limit
τ → 0, the model corresponds to the BDI† class of the 38-fold
topological classification of non-Hermitian systems, which
in turn suggests that the topological phase transition of the
system is governed by the closure of the real part of the
energy band gaps [6,34]. To corroborate this, we analyze
the low-energy limit of the decimated model and demon-
strate the orbital character associated with it. The absence
(presence) of characteristic twists around k = 0 confirms
the distinction of the trivial (nontrivial) phase, as well as
the existence of a critical point (γc) where the real en-
ergy gap closes. The closing of energy at this critical point
signifies a topological phase transition [see Figs. 2(e) and
2(f); for more details, see Appendix A]. The inverse partic-
ipation ratio, IPR= ∑

α |ψα (x)|4/(
∑

α |ψα (x)|2)
2
, based on

eigenfunction characteristics, which quantitatively measures
state localization under open boundary conditions, allows
us to identify and analyze the presence of localized edge
modes within the system, as shown in Fig. 2(d). Even when
the system is subjected to open boundary conditions, our
approach begins with a simplified two-band model that incor-
porates energy-dependent renormalized coupling parameters.
Through iterative solutions, we obtain both the eigenvalues
and eigenvector structures in real space. Analyzing these
eigenvectors allows us to interpret the open boundary spectra
and unveil the underlying spectral topology. For example, by
plotting the IPR corresponding to the zero-energy mode, we
observe a distinct jump in the IPR around the critical value
of γc =

√
t2
1 − t2

2 . This abrupt change signifies a transition
from a trivial to a topological phase, leading to the emergence
of localized zero-energy modes under open boundary condi-
tions. Non-Hermitian systems exhibit remarkable sensitivity
to boundary conditions, resulting in a significant dispar-
ity between spectra under periodic (PBC) and open (OBC)
boundary conditions. This broken BBC challenges conven-
tional understanding within the Hermitian paradigm [44–46].

To investigate the effect of boundary conditions on the
BBC, we consider the one-dimensional real-space tight-
binding chain corresponding to the momentum-space Hamil-
tonian in Eq. (11). Next, we invoke OBC and evaluate the
transfer matrix (T ) through the singular value decomposi-
tion of the hopping matrix [47], and in terms of the on-site
Green’s function (see Appendix F for details). The transfer
matrix approach smoothly connects the OBC and PBC regime

and characterizes the BBC through the unimodularity condi-
tion, detT = 1. The corresponding analysis of our decimated
model gives rise to detT = (t1+τ )2

(t1−τ )2 (see Appendix F for the
details of the calculation), which immediately suggests that
in the reciprocal hopping limit (τ → 0), the BBC is restored,
with identical OBC and PBC spectra. In contrast, the nonre-
ciprocal hopping limit leads to a non-unimodular condition,
indicating a disparity between OBC and PBC spectra, thus
invalidating the BBC. These results align with the generalized
transfer matrix approach introduced by Kunst et al. [47] and
correspond to a special case of their method. At the vanish-
ing determinant condition, detT = 0, the real-space spectrum
gives rise to higher-order exceptional points with an algebraic
multiplicity commensurate with the system size, whereas the
geometric multiplicity remains one indicating the presence of
NHSE.

To delve deeper into the physics of the skin effect in the
decimated system, we adopt the non-Bloch theory with the
GBZ scheme [10,48]. Here, the conventional Bloch phase
factor eik is replaced by β = |β|eik in the Hamiltonian, en-
abling a direct mapping between non-Bloch topology and
open boundary spectra. This framework based on the deci-
mated model also captures the NHSE [48,49]. The real-space
eigenequation corresponding to Eq. (11) leads to the con-
ditions, ′ψa,n + t2ψa,n+1 + ε′′ψb,n = Eψb,n and ψb,n +
t2ψb,n−1 + ε′′ψa,n = Eψa,n. Analogous to Ref. [48], we con-
sider the ansatz governed by the spatial periodicity of the
system (ψa,n, ψb,n) = βn(ψa, ψb) and we obtain the cou-
pled equations ′ψa + t2βψa + (ε′′ − E )ψb = 0 and ψb +
t2β−1ψb + (ε′′ − E )ψa = 0. This leads to the condition

g(E , β ) = β2t2+β
{
′ + t2

2 − (ε′′ − E )2}+t2
′ = 0,

(13)

from which β can be estimated with two solutions, β1

and β2, which satisfy β1β2 = ′/. It can be shown
that the bulk states of a long chain demand the condi-
tion, |β1| = |β2|, which eventually leads to the solution
|β| = |β1| = |β2| = √|′/| =

√
|(t1 + τ )2/(t1 − τ )2|. Fur-

thermore, |β| < 1(|β| > 1) corresponds to states localized at
the left (right) end of the chain. We refer to Figs. 3(a) and 3(b)
for an illustration of both conditions with parameter depen-
dence τ < 0 (τ > 0) exhibiting the left (right) localized bulk
modes. Interestingly, the occurrence of the skin effect in the
different phases is evinced by the finite-spectral area (closed
curves) in the complex energy plane of the decimated model
under PBC (see also Appendix C) [9]. We want to point out
a complementary framework that outlines general conditions
for the NHSE within a non-Hermitian multiband unit cell [50].
This approach focuses on the nature of overall localization of
eigenmodes, determined by the by the geometric mean of the
cumulative contributions of all coupling segments. Moreover,
it does not require estimating the non-Bloch band factor β,
offering a straightforward approach to studying NHSE.

Next, we discuss zero-mode solutions in the low-energy
approximation (E = ε′′), when Eq. (13) leads to the solutions
β1,2 = −′/t2, −t2/′. The zero-energy solutions, where the
bulk bands touch the zero energy, can be obtained by equating
|β| = |β1,2|, leading to the condition t2

2 = t2
1 − τ 2. We can

thereby determine the GBZ, which gives rise to continuum
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(a) (b)

(c) (d)

FIG. 3. Demonstration of chiral skin effect, BBC, and van Hove
singularity through GBZ formulation within decimation scheme.
Localization of bulk wavefunctions at (a) left (τ < 0) and (b) right
(τ > 0) edge illustrating the NHSE. The insets show GBZ (red) and
BZ (dotted black), depicting a non-unit and unit circle, respectively,
in the complex plane. The radius of the GBZ greater (lesser) than
unity indicates the right (left) localized states and skin effect. The
GBZ becomes a unit circle with τ = 0, the system restores conven-
tional BBC. (c) t1 = τ is the locus of the PT -symmetry breaking
point with a higher order exceptional point. At this critical parameter
value, the two saddle points (indicated by blue arrows) in the GBZ
coalesce. Consequently, a van Hove singularity is observed in the
DOS as a function of real energy.

bands under the condition |β1| = |β2| with open boundaries.
Considering Eq. (13) as the kernel of non-Bloch band theory,
the continuum bands can be given by solution to g(E , β ) with
zGBZ = β = |β|eik/2 and k ∈ [0, 2π ) (see Appendices G and
H). The GBZ in the complex plane describes the OBC spec-
trum in non-Hermitian systems with complex deformation
of the momentum k → k + iκ . Further, κ = ln |β| indicates
the inverse localization length of skin modes. We next cal-
culate the saddle points and their energies, which satisfy the
condition g(E , β ) = 0 and ∂βg(E , β ) = 0 simultaneously (see
Appendix H). The saddle points [βs(1,2) = ±(t1 + τ )/(t1 −
τ )], and their coalescence leads to t1 = |τ | and detT = 0,
which in turn, gives rise to interesting consequences [51],
which we explore in terms of the decimated model. We
present a discussion of GBZ formulation in the presence
of generalized next-nearest-neighbor hopping in Appendix I.
The study includes cases where the GBZ deviates from the
simple circular shape seen in Fig. 3, highlighting the utility of
our approach in these scenarios.

In the present scenario, detT = 0 indicates a higher-order
exceptional point encountering a PT (parity-time) symmetry
transition point where the purely real energy spectra bifurcate
in the complex plane [3,52]. Interestingly, the merging of
saddle points corroborated by the PT transition is stipulated
by a singularity in the DOS along the real axis. To substantiate
this, as a byproduct of our formalism, we calculate the DOS in
terms of Green’s function at t1 = τ , which is the PT breaking
point [see Fig. 3(c)]. The saddle point coalescence on the GBZ
manifests a divergence in the DOS [see Fig. 3(d)], leading to
a non-Bloch van Hove singularity [51].

FIG. 4. Analysis of long-range power-law hopping model
through decimation scheme. (a) Schematic showing a long-range
model with power-law 1/lα couplings. We employ our decimation
scheme to reduce the system to a two-level system with renormal-
ized parameters and estimate the DOS using the Green’s function
formalism for decimated and original systems. (b) The computational
time required as a function of system size. The plot reveals that the
decimation scheme does not only provide conceptual simplifications
but also offers computational advantages. Calculations are performed
in serial mode (single processor) using 11th Gen Intel(R) Core(TM)
i7-11700 @ 2.50 GHz system.

Furthermore, we delve into a more intricate scenario in-
volving generalized long-range power-law coupling to test our
scheme [see Fig. 4(a) see below]. We start by considering a
tight-binding model with long-range couplings under OBC.
The Hamiltonian reads

H =
L−1∑
j=1

L− j∑
l=2

(
t

lα
c†

j c j+l + H.c.

)
. (14)

Here c†
j (c j ) represents the fermionic creation (annihilation)

operator, L is the number of sites and the power-law decaying
exponent α signifies the strength of nonlocality. We have
chosen α = 2. In order words, each site of our system is con-
nected to all the other sites. However, the strength of coupling
between two sites decay fast with the distance between them.
We employ our decimation scheme to reduce this to a two-
level system with renormalized parameters and estimate the
DOS using the Green’s function formalism for both decimated
and original systems. We have encoded the information from
the central L − 2 sites of a long-range chain with L into the
remaining two terminal atomic sites. Consequently, the on-site
energies and the renormalized coupling between the termi-
nal atomic sites become energy dependent. The renormalized
hopping parameter is added to the original long-range hop-
ping between the first and Lth sites. The decimation method
introduced here can also be applied to long-range systems
without power-law hopping strengths. We note that the DOS
of the original and the decimated systems exactly matches.
Furthermore, to explore the advantages of the decimation
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(a)

(c)(b)

FIG. 5. Transmission probability for original and decimated sys-
tems in presence of a defect. (a) Schematic of the model for
calculating the transmission probability of the non-Hermitian four-
site chain. The blue (red) arrow indicates the nonreciprocal hopping
t1 ± γ along the right (left) direction. Ideal lossless metallic leads
are used as electrodes, with source and drain with self-energy ma-
trices �S and �D, respectively. The orange-solid circle represents
the defect in the system. The transmission probability of the system
(b) without and (c) with defect, when the system is tuned near the
exceptional points. The presence of the defect invariably suppresses
the transmission probability. The probability obtained from the dec-
imated scheme (shown with blue dots) exactly matches the original
model (red-solid line). Here we set t1 = 0.5, t2 = 1.0, γ = 0.5, τ =
−1.0, and δd = 1.

scheme, the computational time required as a function of
system size is shown in Fig. 4(b) below. The plot reveals
that the decimation scheme does not only provide conceptual
simplifications but also offers computational advantages. This
analysis underscores the efficacy of our decimation strategy,
providing both conceptual clarity and practical computational
advantages.

Furthermore, we have investigated the transmission prob-
ability T (E ) through the non-Hermitian system placed
between two ideal metallic electrodes, i.e., source and drain.
The transmission probability can be evaluated as T (E ) =
Tr[�SG(E )�DG(E )†] within the Landauer-Buttiker formal-
ism [53,54]. In the above equation, �S and �D can be
estimated from the self-energy matrices �S(D) = i[�S(D) −
�

†
S(D)] and therefore depend on the coupling between the

electrodes and the system. In particular, we have considered
the above-mentioned non-Hermitian chain having a total of
2n + 1 unit cells (here, n = 50) and the parameters are so
chosen that we reside near an exceptional point, i.e., τ =
−t2 ±

√
t2
1 − γ 2 , as schematically represented in Fig. 5(a). It

is fascinating to note that the transmission probability of the
original system is precisely in line with that of the decimated
system [Fig. 5(b)]. The nature of the transmission probabil-
ity near the exceptional point agrees well with the previous
reports [55,56].

Needless to mention, the downfolding of the Hamiltonian
is indeed an iterative process, and the transmission probability
will be exactly the same for any decimated system size, even
in the presence of any defect. To establish this, we have
incorporated a defect with on-site energy δd , which could
be present at any random lattice site. Let us consider the

defect site is in the (n + 1)th unit cell of the system with
2n + 1 lattice sites. As we expect, the transmission probability
reduces with the strength of the defect potential, which is
entirely captured by both the full and decimated Hamiltonians
as shown in Fig. 5(c). In the present case, the lattice sites of the
remaining 2n unit cells have been decimated to half; however,
the same methodology can be applied iteratively to reduce the
lattice sites further, similar to the above case. We discussed
the central features of non-Hermitian topological systems in
light of the decimation scheme, and the crux of the analysis is
that the complete non-Hermitian spectral topology can be en-
capsulated in the downfolded version of an extensive system.

IV. NON-HERMITIAN FLAT BAND
THROUGH DECIMATION

Now, we discuss how the real-space decimation technique
can describe the fascinating flat-band physics and emergence
of compact localized states (CLSs) in non-Hermitian lattice
models. As a test bed, we consider a Q1D Lieb lattice with
five sites per unit cell and incorporate non-Hermiticity through
on-site gain and loss [57–59]. We note that the downfolding
approach presented here can be efficiently extended to any
other lattice type with a flat band, where the non-Hermiticity
can be of any kind, including nonreciprocal hopping. One of
the realistic pathways to achieve such a non-Hermitian Lieb
(nH-Lieb) lattice is to construct a photonic crystal by employ-
ing periodically arranged evanescently coupled waveguides
[60]. The Hamiltonian for this five-site nH-Lieb lattice model
can be written as follows:

H =
∑

ν={a,b,c,d,e}
ενν

†
nνn +

∑
n

[a†
n(t̃1bn + t̃2bn−1 + tcn)

+e†
n(t̃2dn + t̃1dn−1 + tcn) + H.c.], (15)

where a†
n(an), b†

n(bn), c†
n(cn), d†

n (dn), and e†
n(en) are the

fermionic creation (annihilation) operator at nth unit cell for
five distinct sublattices A, B, C, D and E [see Fig. 6(a)]. The
parameters t, t1, and t2 are the coupling coefficients between
different neighboring sites. Note that the lattice sites A and E
are triply coordinated while the rest (B, C, and D) have coor-
dination number two. Similar to the previous discussion, here,
we aim to reduce the degree of complexity by decimating the
five-site lattice to an equivalent two-level problem. For this
purpose, we have first eliminated the triply coordinated sites
A and E by substituting the corresponding eigenvectors φa and
φe using

(E − εa/e)φa/e = t1φb/dr + t2φbr/d + tφc, (16)

into the following expressions

(E − εc)φc = tφa + tφ e,

(E − εb/b/d/d )φb/br/d/dr = t1φa/ar/el/e + t2φal/a/e/er . (17)

The subscripts l and r signify the sites of the nearest left
and right unit cell, respectively. Figure 6(a) illustrates that
this decimation process leads to an effective three-level lattice
comprising of B, C, and D sites with renormalized hopping
parameters given as λa1 = tt1/(E − εa), λa2 = tt2/(E − εa),
λe1 = tt1/(E − εe), λe2 = tt2/(E − εe), λa12 = t1t2/(E − εa),
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FIG. 6. Non-Hermitian flat bands through decimation. (a) Q1D
Lieb lattice model with two triply coordinated (A and E ) and three
doubly coordinated (B, C, and D) sites. The same sites of the nearest
unit cells are denoted by subscripts l and r for the left and right
directions, respectively. Non-Hermiticity in the model has been in-
corporated through on-site gain and loss following the conditions
εA = −εB = −εc = −εD = εE . The real-space decimation process
reduces the lattice to an equivalent two-level non-Hermitian ladder
system in two steps. First, the triply coordinated sites A and E are
decimated, followed by the elimination of the C site. Finally, the
ladder network is decoupled into a massive non-Hermitian SSH chain
that carries the information about the topological band inversion and
an array of isolated lattice sites with localized orbitals that constitute
a flat band at E = εc. (b) The emergence of a flat band at a complex
energy value (0.2 + 0.125i) along with the massive non-Hermitian
SSH-like dispersive band structure. The corresponding CLS are in-
dicated by the gray regions in the original lattice. Note that the
localization of electronic states is caused by the zero-probability
amplitude of the atomic sites A and E . The parameters used here
are εc = 0.2 + 0.125i and t1 = t2 = t = 1.0.

and λe12 = t1t2/(E − εe). In addition, we also need to con-
sider the renormalized values for the on-site energies of C, B,
and D, which are ε′

c = εc + t2/(E − εa) + t2/(E − εe), ε′
b =

εb + (t2
1 + t2

2 )/(E − εa), and ε′
d = εd + (t2

1 + t2
2 )/(E − εe). It

is evident that, as per our expectation, the new set of renor-
malized hopping integrals and on-site potentials depend on
the decimated parameters of the original lattice. Addition-
ally, the energy dependency of the tight-binding parameters
protects the order of the characteristic equation. Now, one
can execute another decimation step for further renormalizing
the three-site lattice with energy-dependent parameters to an
equivalent two-level system. The convenient approach, in this
regard, is to choose a scheme that dissolves the information
carried by the wavefunction φc into the ladder like network
made up of B and D sites [Fig. 6(a)]. The final renormalized
lattice contains only two types of on-site energy terms and five
distinct hopping parameters given by

ε′′
b = ε′

b + (
λ2

a1
+ λ2

a2

)
/(E − ε′

c),

ε′′
d = ε′

d + (
λ2

e1
+ λ2

e2

)
/(E − ε′

c),

h1 = λa12 + (
λa1λa2

)
/(E − ε′

c),

h2 = λe12 + (
λe1λe2

)
/(E − ε′

c),

d1 = λa1λe1/(E − ε′
c),

d2 = λa2λe2/(E − ε′
c),

v = (
λa1λe2 + λa2λe1

)
/(E − ε′

c). (18)

Therefore, the decimation process downfolds the tight-
binding Hamiltonian to a 2 × 2 matrix at the expense of
allowing new types of energy-dependent hoppings terms and
on-site potentials.

In order to facilitate the understanding of the flat-band
physics in this nH-Lieb lattice, let us focus on the following
case, εb = εd = ε̃ and εa = εe = −ε̃ that further leads to the
relations ε′′

b = ε′′
d = � (say), h1 = h2 = h, and v2 = 4d1d2.

The above relations simplify the eigenvalues of the final
Hamiltonian in the following form:

E± = [� + 2h cos(k)] ± [d1 + d2 + v cos(k)]. (19)

The above Eq. (19) apparently indicates that the coefficient
(v + 2h) causes the solution E+ to be dispersive. However, by
substituting all the energy-dependent parameters in the above
expression and simplifying, we can show that the effective
value of (v + 2h) is zero. Therefore, the solution is essentially
nondispersive, and the position of the flat band lies at an
energy value E = � + d1 + d2. In other words, the particular
choice of on-site potentials εa = −εb = −εd = εe = −εc al-
ways provides a flat band at the complex energy value E = εc,
as depicted in Fig. 6(b). This eigenenergy solution is equiva-
lent to that of periodically arranged isolated sites with energy
εc where there is no orbital overlap between neighboring sites.
The corresponding single-particle real-space eigenfunctions
constitute the CLS, which can be analytically obtained using
our method. In particular, solving the difference equations for
a particular eigenvalue that offers a flat band will manifest
the probability distribution for the CLS. In the present case
of nH-Lieb lattice, probability amplitudes of different sites
that manifest the CLSs are evaluated as φa = φe = 0, φb =
φd = −1/(t1 + t2) φc, when E = εc and t = 1 as illustrated
in Fig. 6(a). The missing amplitudes at sites A and E are
caused by a destructive interference that yields trapping of the
particles by strictly restricting the wavefunction to a particular
region.

Our analytical approach reveals a fascinating
consequence—the appearance of a zero-energy flat band
when εc = 0. This can be further understood using the
rank-nullity theorem in linear algebra [61], which states that,
if T : V → W is a linear map between two finite-dimensional
vector spaces, then dim(im(T )) + dim(ker(T )) = dim(V ),
where “im” and “ker” denote the image and the kernel,
respectively. In other words, any matrix M of order m × n
invariably satisfies the relation rank(M ) + nullity(M ) = n.
Now, the system Hamiltonian H with two distinct sublattices
α and β can be expressed as

H =
(

0Nα×Nα
M†

Nα×Nβ

MNβ×Nα
0Nβ×Nβ

)
. (20)

Here, Nα and Nβ denote the number of α-type and β-type
sites in each unit cell, respectively. The five-site lattice [given
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in Eq. (15)] consists of two triply coordinated sites (A and E )
and three doubly coordinated sites (B, C, and D). Hence, in
our case, Nα = 2 and Nβ = 3. Based on the above discussion,
we can immediately write down the following set of equa-
tions relating rank R, and nullity �, [62]

R(M) + �(M) = Nα = 2,

R(H) + �(H) = Nα + Nβ = 5,

R(H) = R(M) + R(M†). (21)

Using Eq. (21) and the relation R(M) = R(M†), it is
straightforward to obtain �(H) = 2 �(M) + 1. Additionally,
the nullity of the nonsingular matrix M is zero [i.e., �(M) =
0], which leads to �(H) = 1. This shows the emergence of a
single zero-energy flat band, which remains pinned to sublat-
tice β. In the present case, the above discussion leads to the
amplitude distribution of the CLS, and the nonzero values are
obtained only on sublattices (B, C, and D) [Fig. 6(a)].

In contrast, the other solution E− given in Eq. (19) offers
a quadratic dispersion relation from which two low-energy
bands can be obtained using the relation |E2 − ε2

c |/t2 << 1.
The expression for the dispersion relation of the two low-
energy bands is E = ±[ε2

c + t2
1 + t2

2 + 2t1t2 cos(k)]1/2. We
note that the above expression resembles the band dispersion
of a massive SSH chain with a complex mass term ±εc.
Moreover, through an appropriate choice of the momentum-
dependent on-site potential (εc = i

√
γ 2 + 2iγ sin k), one can

simply map it to a nonreciprocal SSH model that features
rich nonequilibrium topological phases and interesting many-
body physics [63]. It is important to note that this decimation
scheme is not a unique choice for mapping the five-site
system to an identical two-level lattice. To establish this,
we have alternatively eliminated all the doubly coordinated
sites B, C, and D, resulting in an equivalent two-level ladder
system consisting of only the originally triply coordinated
A and E sites. Similar to the previous case, the decimated
ladder network can be decoupled into a massive SSH chain
where alternating sites have the on-site energies +εc and
−εc, and an array of isolated lattice sites with locally pinned
eigenfunctions (see Appendix K for a detailed analysis).
Therefore, the decimation scheme validates our hypothesis—
in the low-energy limit, any quasi-one-dimensional bipartite
non-Hermitian system exhibiting a flat band can be decoupled
into a non-Hermitian SSH chain and periodically arranged
isolated sites. The non-Hermitian SSH chain accounts for the
band topology of the original lattice model, while the chain
of isolated atoms manifests as a flat band and CLS. We have
further verified the above hypothesis for other non-Hermitian
lattice systems with flat bands, namely, stub and diamond
lattices (see Appendix J for detailed analysis).

V. ANALYSIS OF HIGHER-ORDER TOPOLOGICAL
INSULATING PHASES THROUGH THE LENS OF

REAL-SPACE DECIMATION SCHEME

In this section, we comprehensively analyze the topo-
logical characteristics exhibited by second-order topological
insulators (SOTIs) through the lens of the decimation
scheme. Specifically, we focus on the celebrated Benalcazar–
Bernevig–Hughes (BBH) model [64,65] and delve into the

SOTI phase through its decimated rendition [see Fig. 7(a)].
The BBH model is formulated based on a four-band Bloch
Hamiltonian,

HBBH(k) = [t1 + t2 cos kx]τxσ0 − t2 sin kxτyσz

− [t1 + t2 cos kx]τyσy − t2 sin kyτyσx, (22)

where the Pauli matrices τ and σ act on distinct
pseudospin/orbital degrees of freedom. Here, t1 and t2 denote
the intra- and intercell hopping amplitudes, respectively. The
model admits time-reversal symmetry (TRS), charge conju-
gation, chiral symmetry, and mirror symmetry along the x
and y directions. Notably, the model showcases corner modes
indicative of a second-order topological phase, as evident
from Fig. 7, where four zero-energy eigenvalues (E = 0) are
discernible.

To delineate the topological region within the parameter
space of the Hamiltonian, we compare the eigenvalue spectra
of the BBH model Hamiltonian and its decimated version
under OBC as a function of the intracell hopping amplitude
t1 in Fig. 7(b). The comparison resembles striking corre-
spondence harbouring localized zero-energy corner modes
when the inter-cell hopping amplitude t2 dominates over the
intra-cell hopping, i.e., |t2/t1| > 1. Furthermore, the localized
nature of these corner modes can be captured by computing
the density of states of the decimated model in the nontrivial
phase, as shown in Fig. 7(c), which shows robust localized
states at E = 0 for |t2/t1| > 1.

VI. ANALYSIS OF HETEROSYSTEM INTERFACE
CONSISTING OF HERMITIAN AND NON-HERMITIAN SSH
CHAINS THROUGH REAL SPACE DECIMATION SCHEME

In this section, we consider a heterosystem interface con-
sisting of Hermitian and non-Hermitian SSH chains [1], to test
the generality and robustness of our formalism in understand-
ing the topology of an interface system. The non-Hermitian
SSH domain is represented by a top half circle with lat-
tice sites in green and blue, while a bottom half circle with
sites in red and yellow hues signifies the Hermitian region
(see Fig. 8). The nearest-neighbor-hopping parameters for the
non-Hermitian SSH chain are characterized by t1 ± γ and t2,
whereas for the Hermitian part, they are denoted as t ′

1 and t ′
2.

We employ our decimation scheme to integrate a large number
of degrees of freedom and decimate it to a smaller system,
resulting in identical topological features.

For our numerical simulations we choose t2 = 1.0, γ =
1.5, t ′

2 = 0.5, and N = 18 unit cells in both chains. Notably,
the spectrum in the Hermitian SSH chain exhibits distinct
features, being (b) gapped and (c) gapless as a function of
t ′
1 (see Fig. 8). In this case, we have decimated all the bulk

sites of the Hermitian and non-Hermitian SSH chains to obtain
a renormalized lattice made of two pairs of interface sites
only with energy dependent on-site and hopping matrices.
The spectrum of the complete interface system is reliably
reproduced using the decimation scheme.

VII. SUMMARY AND OUTLOOK

In conclusion, we have demonstrated the utility of the
real-space decimation scheme in elucidating various aspects
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FIG. 7. Analysis of higher (second)-order topological phases through decimation scheme. (a) Schematic illustration of the BBH lattice
model, with the unit cell consisting of four pseudo-spin/orbital degrees of freedom. The intracell (intercell) hopping is denoted by t1(t2).
Dashed lines indicate a negative hopping value. We have considered a 40 × 40 (here, 3 × 3 is shown for convenience), i.e., 6400 site BBH
lattice in real space under open boundary conditions. Using the decimation scheme, we have eliminated all the internal atoms except for the
four corner sites, as highlighted in green. (b) Similar to the original lattice, the decimated lattice gives rise to the topologically protected
zero-energy corner modes in the nontrivial topological phase |t1/t2| < 1. (c) The appearance of the zero-energy corner modes has also been
shown in the density of states spectra of the decimated model. Here we used the parameters t1 = 1.0 and t2 = 2.0.

of non-Hermitian spectral topology and emergent flat-band
physics. Obtaining the band spectra of a non-Hermitian sys-
tem is not an inherent advantage of this method, as these
spectra can also be derived from the original Hamiltonian.
However, the decimated model essentially offers several
significant advantages, as highlighted earlier, to deal with
the complex multiband non-Hermitian systems. For exam-
ple, our study showcases the versatility of the decimation
scheme, revealing not only an exact transformation reproduc-
ing the original system’s band dispersion but also uncovering

FIG. 8. Analysis of heterosystem interface through decimation
scheme. (a) Schematic of interface system consisting of the Hermi-
tian and non-Hermitian SSH chains. The coupling between them is
t ′
2. We reduce the system to a two-level problem with renormalized

energy-dependent parameters (η, S1, and S2) in order to study the
spectral topology. (b) For the Hermitian chain with a large gap (t ′

1 =
3.0), the zero mode of the non-Hermitian chain cannot leak into the
Hermitian chain. (c) For a sufficiently small gap and finally when it is
gapless (t ′

1 = 0.5), the zero-energy mode tends to tunnel through the
Hermitian chain, and the zero-energy band starts to deviate from the
EPs of the open system. We have chosen t2 = 1.0, γ = 1.5, t ′

2 = 0.5,
and N = 18 unit cells in both chains.

underlying physics governing various Hamiltonian features.
Specifically, we show that the rich phase diagram of our
four-level system, particularly the parameter-driven topo-
logical phase transitions, is underpinned by a simple SSH
model, as evident from the decimation strategy. Hence, our
demonstration underscores the potency of the decimation
scheme in delving into the fundamental physics of seemingly
simple non-Hermitian Hamiltonians, which are otherwise
challenging to analyze. Additionally, the decimation approach
facilitates deriving the analytical form of the dispersion
relation, faithfully replicating the original Hamiltonian’s in-
tricate band structure. In particular, our systematic approach
efficiently characterizes non-Hermitian phases and their tran-
sitions in complex multiband systems. Moreover, given the
formidable challenge of constructing a GBZ for multi-
band non-Hermitian systems, our decimated two-level system
offers an efficient solution pathway for this crucial task. Fur-
thermore, we employ our formalism to study the skin mode
physics, van Hove singularities using GBZ formulation and
transmittance properties in disordered/defect-induced non-
Hermitian chains. With the characteristic polynomial from
the decimated Hamiltonian, we can leverage diverse analyt-
ical frameworks like Newton polygons and tropical geometry
to delve into inherent properties such as higher-order EPs.
Our approach has also shed light on CLSs in non-Hermitian
systems, suggesting a hypothesis that quasi-one-dimensional
non-Hermitian systems with flat bands can be decoupled into
a non-Hermitian SSH chain and periodically arranged iso-
lated sites. We elegantly showcase the adaptability of the
real-space decimation method across a spectrum of mod-
els, spanning from higher-order topological insulators to the
intricate interfaces between Hermitian and non-Hermitian
systems, as well as systems featuring long-range hopping
dynamics. Through our exploration, we unveil that employ-
ing Green’s function formalism to compute the density of
states in extensive systems with long-range hopping renders
the decimation technique remarkably more computationally
economical compared to utilizing the original Hamiltonian,
owing to the considerably diminished size of the renormal-
ized Hamiltonian. Similarly, the decimation strategy emerges
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as a commendably efficient computational tool when evalu-
ating transport properties such as transmittance. Hence, the
decimation scheme stands as an exact transformation, offer-
ing significant advantages in elucidating the nuanced physics
behind a plethora of intriguing and distinctive properties in-
herent to both Hermitian and non-Hermitian systems through
analytical descriptions. We note that, in a very recent paper,
the notion of biorthogonal polarization has been used to char-
acterize the nontrivial topology of these systems [66].

We note that, in Ref. [67], the author presented a novel
approach grounded in interface states across a broad spectrum
of Hermitian and non-Hermitian models. This approach un-
veils a realm of interface physics governed by the dynamic
interplay of microscopic interface parameters. The character-
istics of the interface state intricately tie into the fixed-point
topology of this dynamic flow. In contrast, our real-space
decimation scheme provides a generalized approach to treat
non-Hermitian complex multiband systems. While we have
illustrated the decimation scheme for one-dimensional non-
Hermitian problems, we envisage that it should be possible
to generalize this to higher-dimensional cases, including the
study of dislocation-induced skin and antiskin effects in two
dimensions [68–71]. Since our approach allows treating the
disorder in an efficient way, we also expect our analytical
approach to be useful in studying the scale invariance and
flat-band physics in non-Hermitian fractal networks [72,73].
It may also be interesting to employ our approach to use
the renormalization flow equations to characterize critical
phenomena and non-Hermitian phase transitions [74–77].
Our paper, bridging the realms of real-space renormalization
schemes and non-Hermitian phenomena, is particularly timely
given the surge of interest in non-Hermitian systems. We hope
that our framework enables further work in this arena.
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APPENDIX A: ANTI PT -SYMMETRIC SSH MODEL

In this Appendix, we consider the special case of our model
with τ = 0, leading to the anti-parity-time (APT ) symmetric
non-Hermitian SSH model introduced by Wu et al. [34]. The
system features a four-band model with an even number of
gain and loss pairs with intact inversion symmetry, unlike the
PT -symmetric model. Before we proceed to the topological
characterization of the model through the decimation scheme,
we briefly discuss the salient features of the system. Inter-
estingly, in this model, the spectral topology of the system
can be controllably tuned by non-Hermitian coupling and
non-Hermiticity coefficient, γ . The Bloch Hamiltonian of the
system reads

Hk =

⎛
⎜⎜⎝

iγ t1 0 t2e−ik

t1 −iγ t2 0
0 t2 −iγ t1

t2eik 0 t1 iγ

⎞
⎟⎟⎠. (A1)

The Hamiltonian describes a one-dimensional lattice with
hopping strengths t1 and t2. Furthermore, we introduce
inversion-symmetric gain-loss pairs into the four-site unit cell,
which incorporates APT in the system. The APT is defined by
PT Hk (PT )−1 = −Hk , where P = iσx ⊗ σy and T = K is the
complex conjugation operation. Additionally, the system also
admits TRS†, PHS†, and chiral symmetries [6]. The model
corresponds to BDI† symmetry class in the 38-fold topo-
logical classification of non-Hermitian systems. Interestingly,
the topological phase transitions of the system can captured
by a gap closing of real energy [6]. The model exhibits an
interesting phase diagram and exhibits topological phase tran-
sitions from trivial phase to nontrivial topological phase with
a pair of degenerated edge modes with net gain via excep-
tional points as a function of non-Hermiticity co-efficient.
The system could be potentially useful for tunable topological
lasing because of the positive gain rate of edge modes in the
nontrivial regime [34].

APPENDIX B: DECIMATION SCHEME TO REVEAL THE
GEOMETRIC PICTURE OF BAND TOPOLOGY

Next, we employ our formalism to decimate the four-band
model to an effective two-band model with renormalized
energy-dependent coupling, and gain and loss. We show that
this effective two-band model can mimic the original model
and capture all the essential physics of the system, as well
as translate the known phase diagram with topological phase
transitions, as discussed in the main text. The formalism is
based on the finite difference method, which we illustrated in
the formalism section.

We consider a chain of atoms and use the real-space dec-
imation method to integrate out specific subsets of atomic
sites. For instance, we integrate out two atoms out of four
atoms in the four-site unit cell. The Schröedinger equa-
tion can be discretized and written in terms of a difference
equation

(E − εi )φi =
∑

j

ti jφ j, (B1)

where, E , εi, ti j , and φi are the energy, on-site potential at
the ith site, hopping integral between ith and jth site, and
probability amplitude at the ith site, respectively. Here, we
only consider the nearest-neighbor-hopping term. We can
write down the difference equations using Eq. (B1) for the
Hamiltonian as follows:

(E − iγ )φa = t1φb + t2φ
′
d ,

(E + iγ )φb = t1φa + t2φ c,

(E + iγ )φc = t2φb + t1φd ,

(E − iγ )φd = t1φc + t2φ
′′

a. (B2)

The primed parameters [X ′ (X ′′)] indicate the atoms in the
adjacent right (left) unit cell. We have judiciously simplified
Eq. (B2) to integrate out b and c sites from the lattice [see
Fig. 2(a) in the main text], obtaining

[E − ε′′]φa = σφd + t2φ
′
d , (B3)
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FIG. 9. Band dispersion of nonreciprocal SSH model in the presence of APT staggered imaginary potential. The four phases, corresponding
to the phase diagram in the main text (see Fig. 2), exhibit gapless spectra as well as distinct real and imaginary line gaps. The transitions
among the phases are characterized by exceptional physics with the absolute energy gap closing. We set γ = 0.11, τ = 0.13 for (a) and (e),
γ = 0.27, τ = 0.82 for (b) and (f), γ = 0.63, τ = 1.83 for (c) and (g), γ = 1.22, τ = 0.29 for (d) and (h).

and

[E − ε′′]φd = σφa + t2φ
′
a, (B4)

where ε′′ = iγ + t2
1

E−ε′ , ε′ = t2
2

E+iγ − iγ , and σ = t1
2t2

(E+iγ )(E−ε′ ) .
Thus, we get an effective two-band model with energy-
dependent renormalized coupling and gain and loss terms. The
Hamiltonian has the form

(
ε′′ σ + t2e−ika

σ + t2eika ε′′

)
(B5)

It is interesting to note that the dispersion mimics the original
four-site model throughout the parameter space (see Fig. 9).

Next, we consider the low-energy limit of the model E →
0 and show that one can map the model to an effective SSH
model. The topological phase transition and associated ge-
ometric interpretation of spectral properties of the original
model would entirely captured by this effective SSH model
in the same parameter regime as that of the original model.
We now study the topological phase transitions of the system
driven by the non-Hermiticity factor γ in terms of the orbital
character of the bands. We write the creation operators for

two bands as c†
kα

= 1√
2
(c†

kA + c†
kB) and c†

kβ
= 1√

2
(c†

kA − c†
kB).

Next, decomposing the band wavefunctions (n = 0, 1) into the
bonding and antibonding contributions in terms of creation
operators, c†

nk = ψn
αkc†

kα
+ ψn

βkc†
kβ

, we plot |ψn
αk|2 for both the

bands. These show the characteristic twist of the bands in
the nontrivial (topological) region (γ 2 < t2

1 − t2
2 ) revealing

the orbital nature of the bands [see Figs. 2(e) and 2(f) in the
main text]. While in the trivial region (γ 2 > t2

1 − t2
2 ), there is

no mixing in the orbital character of the bands. The orbital
nature of these two regimes can be distinguished by electric
polarization, which is a measurable quantity [78].

APPENDIX C: SPECTRAL TOPOLOGY OF THE
FOUR-SITE MODEL

In this Appendix, we present a comprehensive analysis of
the phase diagram, elucidating the unique spectral topology
through the non-Hermitian winding number. Additionally,
we explore the relationship between the topological winding
number and the chiral modes in the system. The phase dia-
gram is divided into four regions (see Fig. 2 in the main text).

(I) The spectrum, when plotted in the complex plane
(Re[E ], Im[E ]) comprises of two spectral lobes separated
in real energy by a line gap [see Fig. 10(a)]. (II) The spec-
tral topology is that of a single loop in the complex plane
[see Fig. 10(b)]. (III) The complex spectrum has a two-lobe
structure with the lobes vertically displaced along the imagi-
nary axis [see Fig. 10(c)]. We obtained the fourth phase (IV)
with four lobes shifted in real and imaginary directions [see
Fig. 10(d)]. These four phases and their transitions are related
to distinct changes in the Fermi surface topology, namely,
Lifshitz transitions. The band dispersion corresponding to
these four phases is shown in Fig. 9. The spectral topology
can be characterized by the non-Hermitian winding number,
w, which is expressed as [8,79]

w =
∫ π

−π

∂k ( log(det[Hd (k) − EB]))dk/2π i, (C1)

where EB is the chosen base energy. The four regions are
characterized by winding numbers (1, 1/2, 0, 0), respectively.
Interestingly, these winding numbers have a one-to-one cor-
respondence with the nondecaying chiral modes [80,81]. The
connection between the winding number and chiral modes can
be established as follows:

ω = 1

2

∑
nα

sign[Im(En(knα ))]sign[∂k[Re(En(knα ))]], (C2)

where knα : Re(En(knα )) = 0 represents the set of wavevec-
tors where the real part of the energy vanishes, and α labels
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FIG. 10. Various phases of nonreciprocal SSH model in the
presence of APT staggered imaginary potential. The four phases
corresponding to the phase diagram in the main text (see Fig. 2)
exhibit distinct spectral topology consisting of point and line gaps.
The phase transitions are characterized by Lifshitz transitions. The
phase transition lines define the locus of second-order exceptional
points. The chiral modes are indicated in red and green. We consider
the same parameters chosen in Fig. 9 for the four phases.

the number of connected points in the spectrum with such
properties. Here n denotes the band index. Therefore, the
topological winding number of the complex spectrum signi-
fies the count of chiral modes where Re(En(knα )) = 0. The
term sign[Im(En(knα ))] picks up the sign of the imaginary
parts of the zero modes (modes with zero real parts), ef-
fectively quantifying the dynamically growing or decaying
modes. This suggests that only one of the chiral modes with
positive imaginary parts dynamically survives at long time.
The chiral modes are designated by red and green dots in
Fig. 10.

APPENDIX D: CHARACTERIZATION OF EXCEPTIONAL
POINTS THROUGH NEWTON POLYGONS AND

TROPICAL GEOMETRY

As discussed in the preceding Appendix, the phase tran-
sition lines dividing the different phases signify the locus of
exceptional points enabling non-Hermitian phase transitions.
We characterize the exceptional points from our downfolded
two-band model using algebraic topology, specifically with
the help of Newton polygons and tropical geometry. We note
that this algebraic-geometric framework we discuss below
can characterize the exceptional points even in the presence
of energy-dependent coupling parameters in the decimated
model. Interestingly, the algebraic-geometric information is
encoded in the characteristics polynomial of the decimated
model. The characteristic equation under low energy expan-
sion around k = 0 reads

E2
1 − (√

3E1 + 2iE2
1 − i

)
k +

(
0.5 + i

√
3

2
E1 − E2

1

)
k2 = 0.

(D1)

Next, we individually discuss Newton’s polygon method
and tropical geometry formalism, illustrating their exceptional
characterisation.

1. Newton polygon method

Consider the characteristic equation of the form p(ω, ε) =
det(H − ωI) = 0, and express it as a polynomial in terms of
ω and ε as follows: p(ω, ε) = ∑

m,n amn(t1, t2, . . .)ωmεn. Each
term in this polynomial can be represented as a point (m, n) in
R2. The collection of these points forms a set, and the smallest
convex shape that encloses all plotted points is known as the
Newton polygon [42].

To determine the lowest-order dependence of ω on ε, we
need to select a line segment from the Newton polygon in
a way that all plotted points are either on, above, or to the
right of it. The negative slope of this line segment will pro-
vide us with the desired information about the lowest order
dependence of ω on ε characterising the exceptional point.
For our model, the Newton polygon and the characterization
of the exceptional point are shown in Fig. 2(g) in the main
text.

2. Tropical geometry formalism

The tropical geometric approach is based on evaluating the
characteristic polynomial using a concept called “valuation”
[41]. The valuation is defined as follows:

(i) The valuation of a is ∞ if and only if a = 0.
(ii) The valuation of the product of two elements, ab, is the

sum of their individual valuations: val(ab) = val(a) + val(b).
(iii) The valuation of the sum of two elements, a + b,

is greater than or equal to the minimum of their individual
valuations: val(a + b) � min{val(a), val(b)} for all a, b ∈ K,
where K is a complex field.

This framework mainly deals with the field of the
Puiseux series having coefficients in the complex numbers
C. This field possesses a natural valuation, which consid-
ers the lowest exponent appearing in the expansion of a
nonzero Puiseux series. For instance, val(t3 − 2t2 + 3) =
min{val(t3), val(−2t2), val(3)} = min{3, 2, 0} = 0.

At its core, tropical geometry provides a method to
compute the valuations of nonzero roots of a nonzero
polynomial p ∈ K[λ] in terms of the valuations of its co-
efficients. More precisely, given the nonzero polynomial
p = ∑d

i=0 aiλ
i ∈ K[λ], its tropicalization trop(p) : R → R is

defined as trop(p)(ω) = minival(ai ) + i · ω. A real number
ω0 is termed a “tropical root” of trop(p) if the minimum
defining trop(p)(ω0) is achieved by at least two distinct
terms val(a j ) + j · ω0 and val(ak ) + k · ω0 for j �= k. In other
words, the tropical roots of trop(p) correspond precisely to
the real numbers where trop(p) is nondifferentiable, forming
the “bend locus” of trop(p). The tropical root defines the
order of exceptional points, thus characterizing exceptional
physics.

For our case, the tropicalization corresponding to Eq. (D1)
leads to trop(p(E , k)) = {2E , 2E + 2, 2E + 1, E + 2, E +
1, 2, 1}. The bend locus is shown in Fig. 2(h) in the main
text.
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FIG. 11. Comparison between different decimation schemes for
four band model. (a) Decimation scheme for eliminating sites a
and d . (b) Illustration of the equivalence between two decimation
schemes (decimation scheme for b and c and a and d) with relative
sign change in γ . These schemes are mapped by shifting the unit
cells by half the cell size.

APPENDIX E: COMPARISON BETWEEN DIFFERENT
DECIMATION SCHEMES FOR FOUR-BAND MODEL

The present decimation model is an exact formalism that
does not lose any information of the original model. In other
words, the energy band dispersion remains invariant under this
exact transformation, which gives rise to exactly the same
real and imaginary band structure. The decimation scheme
essentially rewrites the new effective on-site energies and hop-
ping parameters of the downfolded system in terms of all the
on-site and hopping parameters of the original lattice model,
keeping the dispersion relation invariant. Naturally, the choice
of degrees of freedom to be decimated is not very stringent.
For example, as no spectral information of the original Hamil-
tonian is lost during the transformation, decimating B and C
sites is one of the many choices to obtain a reduced renormal-
ized lattice. Please note that for the model given in Eq. (10),
the renormalized two-level system can also be achieved by
equivalent decimation routes, i.e., decimating {a and b}, or,
say, {a and d} lattice sites. We want to emphasize that these
transformations yield the same characteristic equation, which
provides exactly the same complex energy dispersion plots.
Therefore, one can choose any of these similar paths to deci-
mate the system to a low-level model without any ambiguity.
We have added the decimation results, i.e., the renormalized
hopping and on-site parameters for the above-mentioned dec-
imation routes, to establish that the characteristic equation is
invariant.

Let us consider the following scheme, which enables deci-
mating d and a sites. We start with the difference equation for
a and d sites (see the unit cell denoted by l and o in Fig. 11)

(E − iγ )ψo
a = t2ψ

l
d + (t1 − τ )ψo

b , (E1)

and

(E − iγ )ψ l
d = t2ψ

o
a + (t1 + τ )ψ l

c. (E2)

Next, we substitute Eq. (E2) into Eq. (E1) to obtain

(E − ε′)ψo
a = t2(t1 + τ )

E − iγ
ψ l

c + (t1 − τ )ψo
b , (E3)

and

(E − ε′)ψ l
d = t2(t1 − τ )

E − iγ
ψo

b + (t1 + τ )ψ l
c, (E4)

where, ε′ = iγ + t2
2

E−iγ .

Next, we write the difference equation for b and c using
Eqs. (E3) and (E4),

(E − ε′′)ψo
b = t2(t1 + τ )2

(E − iγ )(E − ε′)
ψ l

c + t2ψ
o
c , (E5)

and

(E − ε′′)ψ l
c = t2(t1 − τ )2

(E − iγ )(E − ε′)
ψ l

b + t2ψ
l
b, (E6)

where the renormalized on-site parameter ε′′ = −iγ + t2
1 −τ 2

E−ε′
and the hopping between b → c and c → b are represented
by tb→c = t2(t1+τ )2

(E−iγ )(E−ε′ ) and tc→b = t2(t1−τ )2

(E−iγ )(E−ε′ ) .
The above expressions for the renormalized parameters

are expected because of the transformation c ↔ a and d ↔ b
under γ ↔ −γ presented in the main text while decimating b
and c sites. Please note that both decimation schemes lead to
the same characteristic polynomials. Figure 11 demonstrates
that shifting the unit cell by half its size directly maps to the
decimation scheme for b and c, enabling the switching of the
γ sign.

APPENDIX F: ANALYZING BBC USING TRANSFER
MATRIX APPROACH

In this Appendix, we investigate the BBC via the transfer
matrix approach. We consider the tight-binding chain under
OBC with N unit cells. The Q1D Hamiltonian can be written
as [47]

H =
∑

i

(JLc†
i ci+1 + Mc†

i ci + J†
Rc†

i+1ci ). (F1)

JL and JR denote the nearest-neighbor-hopping terms, while
M is the on-site term. Note that a single-particle state can be
expressed as |1〉 = ∑N

n=0 ψnc†
n|0〉, with |0〉 being the vacuum

state. Plugging this wavefunction in the Schröedinger equa-
tion H (k)|ψ〉 = ε|ψ〉 results in

J|ψn+1〉 + M|ψn〉 + J†|ψn−1〉 = ε|ψn〉, (F2)

for JL = J†
R . The hopping matrix can be written by using the

singular value decomposition

J = V �W †, (F3)

where � = diag{η1, η2, · · · ηr} with ηi positive and real. V
and W denote: V = {v1, v2, , vr}, W = {w1,w2, ,wr}, which
admit the relations V †V = W †W = 1,V †W = 0. r is the rank
of matrix J . Rewriting Eq. (F2) in terms of the on-site Green’s
function G = 1

ε−M , which eventually gives rise to

ψn = GJψn+1 + GJ†ψn−1. (F4)

To construct the transfer matrix, we use the substitutions
αn = V †ψn and βn = W †ψn. We follow the prescription in-
troduced by Kunst et al. [47] and multiply V † and W † to
Eq. (F4), to obtain the following relation φn+1 = T φn; φn =
(βn, αn−1)T . Here T is the transfer matrix given by

T = 1

Gvw

( 1
η

−Gww

Gvv η(GvwGwv − GvvGww )

)
. (F5)

Next, we will calculate our system’s transfer matrix us-
ing Eq. (F1) corresponding to the Bloch Hamiltonian. We
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have J = (0 0
t2 0) and M = ( ε −2t1ντ + ν(t2

1 + τ 2 )
2t1ντ + ν(t2

1 + τ 2 ) ε
),

where ν = t2
(E+iγ )(E−ε′ ) . The on-site Green’s function can be

written as

G = 1

(E − ε)2 − ν2
(
t2
1 + τ 2

) + 4t2
1 ν2τ(

E − ε −2t1ντ + ν
(
t2
1 + τ 2

)
2t1ντ + ν

(
t2
1 + τ 2

)
E − ε

)
. (F6)

The singular value decomposition of J = V �W † gives
V = (0 1

1 0), � = (t2 0
0 0) and W = (1 0

0 1). The trace of
the transfer matrix in Eq. (F5) is obtained as detT =
ν(t2

1 +τ 2 )+2t1ντ

ν(t2
1 +τ 2 )−2t1ντ

. This immediately gives us
(i) τ → 0 ⇒ detT = 1 restores the BBC.
(ii) τ �= 0 ⇒ detT �= 1 results in broken BBC and dispar-

ity in periodic and open spectra.
(iii) t1 = |τ | ⇒ detT = 0 leads to a higher order excep-

tional point in the OBC spectrum.

APPENDIX G: ANALYSIS OF SKIN EFFECT AND
ZERO-ENERGY MODES

In this Appendix, we derive the condition given in Eq. (13)
of the main text for the parameter β that governs the
bulk states under OBC. We begin by considering the one-
dimensional real-space tight-binding model with two orbitals,
A and B, within a unit cell for the momentum-space Hamil-
tonian described in Eq. (11) of the main text. The real-space
wavefunction is subject to the following constraints:

′ψa,n + t2ψa,n+1 + εnψb,n = Eψb,n,

ψb,n + t2ψb,n−1 + εnψa,n = Eψa,n. (G1)

The spatial periodicity enables us to take the following
ansatz, (ψan, ψbn) = βn(ψa, ψb). We obtain

′ψa + t2βψa + (εn − E )ψb = 0,

ψb + t2
1

β
ψb + (εn − E )ψa = 0. (G2)

This leads to the following condition

β2t2 + β
{
′ + t2

2 − (εn − E )2
} + t2

′ = 0. (G3)

The roots of the above equation satisfy the following con-
dition, β1β2 = ′


. It can be shown that the bulk states of a

long chain require |β1| = |β2|. This immediately suggests that
|β| = |β1| = |β2| = √|′/|. This condition |β| < 1 (|β| >

1) dictates that the bulk states are localized at the left (right)
end of the chain.

We find the zero-energy mode condition considering the
low energy approximation. Eq. (G3), in the E → εm limit
becomes

β2t2 + β
{
′ + t2

2

} + t2
′ = 0. (G4)

This quadratic equation in β gives rise to two roots β =
−′

t2
or −t2


. We obtain solutions of the zero-energy modes

with parametric dependence t2
2 = ′ by equating |β| =√|′/| = −′

t2
= −t2


.

APPENDIX H: FORMULATION OF GENERALIZED
BRILLOUIN ZONE

In this Appendix, we construct the generalized Brillouin
zone (GBZ) formalism and explore the van Hove singularity
in light of the saddle point coalescing in the GBZ. We start
with Eq. (G2), which leads to the following condition:

(′ + t2β )( + t2/β ) = (E − ε)2. (H1)

Replacing  and ′, we get

M(E , β ) = f (β ) − g(E ) = 0, (H2)

where f (β ) = (t1 + τ )2 1
β

+ (t1 − τ )2β and g(E ) =
[ (E+iγ )2−t2

2

t2
2

]{[E −iγ − (t1τ )(t1+τ )(E+iγ )
(E+iγ )2−t2

2
]2 − (t1−τ )2(t1+τ )2t2

2

[(E+iγ )2−t2
2 ]2 − t2

2 }.
One can consider the two solutions β and β ′ to have the same
absolute values, |β| = |β ′|. Then, we get β ′ = βeiθ , θ ∈ R.
This enables us to write f (β ) − f (βeiθ ) = 0. Solving this
equation, we obtain β = ±e−iθ/2 with θ ∈ [0, 2π ). This
equation enables us to calculate β for any given value of
θ ∈ [0, 2π ). Subsequently, we derive a set of values of β

that satisfy the condition |β| = |β ′|. By judiciously choosing
values of β and β ′ that meet this equality criterion, we can
obtain the GBZ.

Subsequently, we determine the condition for saddle points
within the GBZ as ∂βM(E , β ) = 0. Solving this condition
yields |β| = ± t1+τ

t1−τ
. As a result, two saddle points coalesce at

t1 = −τ , leading to the occurrence of a van Hove singularity
in the density of states.

APPENDIX I: FORMULATION OF GBZ IN THE
PRESENCE OF NEXT-NEAREST-NEIGHBOR HOPPING

We start with the Hamiltonian [see Eq. (10) in the main
text], which features a four-band model having both nonrecip-
rocal hopping and inversion symmetric imaginary potentials.
To see the effect of the next-nearest-neighbor hopping on the
GBZ formulation, we add a hopping of strength t3 between the
first and second sites of the adjacent unit cells (see Fig. 12).
Next, we employ the decimation scheme to obtain a two-site
model by integrating out the other two degrees of freedom.
We have judiciously simplified Eq. (B1) (see the main text) to
integrate out c and d sites from the unit cell, obtaining

[E − Oa]φa2 = (t1 − τ )φb2 + α1φb1 + t3φb3 , (I1)

and

[E − Ob]φb1 = α2φa2 + (t1 + τ )φa1 + t3φa0 , (I2)

where Oa = iγ + t2
2

E−εd
, Ob = −iγ + t2

2
E−εc

, εc = iγ +
(t1−τ )(t1+τ )

(E−iγ ) , εd = iγ + (t1−τ )(t1+τ )
(E+iγ ) , α1 = t2

2 (t1+τ )
(E−εd )(E+iγ ) , and

α2 = t2
2 (t1−τ )

(E−εc )(E+iγ ) . The decimated Hamiltonian with
renormalized energy-dependent coupling reads

Hd =
(

Oa t1 − τ+α1e−ika+t3eika

t1+τ+α2eika+t3e−ika Ob

)
.

(I3)
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FIG. 12. GBZ formulation for model with next-nearest-neighbor hopping. (a) A schematic of the model with next-nearest-neighbor
hopping and its decimation scheme illustrating the two-band model. We note that only one representative next-nearest-neighbor coupling
t3 is shown here. In the original next-nearest-neighbor model each A and B sites are coupled with each other in the adjacent cells. (b) The GBZ
for the decimated model with parameters t1 = 1.0, t2 = 1.0, τ = 0.1, γ = 1, and t3 = 1. Note the noncircular shape of the GBZ.

Next, we write M(E , β ) = Hd (eik → β ) − EI as a decou-
pled form for further analysis, M(E , β ) = f (β, E ) − g(E ) =
0. As we discussed in the earlier Appendix, the condition
M(E , β ) − M(E , βeiθ ) = 0 gives the GBZ for any given val-
ues of θ ∈ [0, 2π ) satisfying the following condition on the
roots of β: |β1| < |β2| = |β3| < |β4|. This results in the GBZ
with two cusps (see Fig. 12). We note that t3 → 0 leads to the
previous criterion (β =

√
|(t1 + τ )2/(t1 − τ )2|) with vanish-

ing next-nearest-neighbor hopping (as presented in the main
text).

APPENDIX J: DECOUPLING OF FLAT BAND AND SSH
CHAIN IN THREE-SITE DIAMOND AND STUB LATTICES

THROUGH THE DECIMATION SCHEME

We start with a generalized one-dimensional trimer
model with bipartite sublattice symmetry, where the system

decouples into an SSH chain along with a localized flat band.
Eventually, we consider the model with non-Hermitian cou-
pling strength leading to the formation of an Aharonov-Bohm
cage with a net magnetic flux [17]. The Bloch Hamiltonian of
the system reads

Hk =
⎛
⎝ 0 κ1 + κ2eik 0

κ1 + κ2e−ik � κ3 + κ4e−ik

0 κ3 + κ4eik 0

⎞
⎠, (J1)

where κ j are complex coupling terms and � denotes the
detuning of the central sites [see Fig. 2(a) of main text]. As we
discussed in the main text, we employ our decimation scheme
and write down the tight-binding analog of the Schrödinger

(a) (b)

FIG. 13. Illustration of decoupling into SSH chain and flat band through a three-site trimer model. (a) Schematic of the trimer lattice
consisting of A, B, and C sites with bipartite sublattice symmetry featuring a flat band at zero energy. The on-site potential of A, B, and C are
�1, �2, and �3, respectively. κi represents the non-Hermitian coupling. (b) We use the decimation scheme to eliminate the C site and obtain
an effective two-level system. The effective model can characterize the flat-band physics and the decoupled SSH spectra. Furthermore, we
modify the coupling to get the non-Hermitian stub and diamond lattices, which feature exceptional physics and flat bands.
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equation as follows:

(E − �1)ψA = κ1ψB + κ2ψ
′
B,

(E − �2)ψB = κ1ψA + κ3ψC + κ2ψ
′
A + κ4ψ

′
C,

(E − �3)ψC = κ4ψ
′
B + κ3ψB,

(E − �4)ψ ′
B = κ2ψA + +κ1ψ

′′
A + κ3ψ

′′
c + κ4ψc. (J2)

Note that we choose �1 = �3 = 0 and �2 = �4 = �. We
integrate out the central site from the lattice to obtain the
following coupled equations:(

E − κ2
1 + κ2

2

E − �

)
ψA = κ1κ3 + κ2κ4

E − �
ψC + κ1κ2

E − �
ψ ′

A

+ κ1κ4

E − �
ψ ′

C + κ2κ1

E − �
ψ ′′

A

+ κ2κ3

E − �
ψ ′′

C,

(
E − κ2

3 + κ2
4

E − �

)
ψC = κ2κ4 + κ1κ3

E − �
ψC + κ1κ4

E − �
ψ ′′

A

+ κ3κ4

E − �
ψ ′′

C+ κ2κ3

E − �
ψ ′

A+ κ3κ4

E − �
ψ ′

C .

The above-coupled equation leads to the two-level Hamilto-
nian

Hk =
(

ε1 + 2h cos k v + d1e−ik + d2eik

v + d1eik + d2e−ik ε2 + 2l cos k

)
, (J3)

with the following parameters h = κ1κ2
E−�

, l = κ3κ4
E−�

,

v = κ1κ3+κ2κ4
E−�

, d1 = κ1κ4
E−�

, d2 = κ2κ3
E−�

, ε1 = κ2
1 +κ2

2
E−�

and

ε2 = � + κ2
3 +κ2

4
E−�

. The eigenspectra E = 0, 1
2 (� ±

2
√

2
√

�2/8 + κ2
1 + κ2

2 + 2κ1κ2 cos k ) feature a massive SSH
dispersion along with a nondispersive flat band for κ1 = κ3

and κ2 = κ4. Next, we discuss two kinds of non-Hermitian
coupling terms leading to diamond and stub lattices, as
discussed by Leykam et al. [17].

We consider a non-Hermitian diamond lattice with two
legs consisting of opposite non-Hermitian coupling strengths,
κ1 = C + iγ , κ2 = ακ1 (α ∈ R), κ3 = κ∗

1 , and κ4 = κ∗
2 . Con-

sequently, the upper (lower) leg accumulates a phase θ (−θ ),
resulting in a net magnetic flux of �θ = 2θ (see Fig. 13).

One can tune the non-Hermiticity coefficient, γ , from zero to
C, and the eigenvalue becomes nondispersive. This scenario
resembles the formation of an Aharonov-Bohm cage with a
phase difference �θ = π . Further, the system becomes de-
fective with the appearance of exceptional points.

Next, we consider the stub lattice with a balanced non-
Hermitian coupling, resulting in zero net flux. The coupling
through each leg of the lattice manifesting balanced gain
and loss has the following form, κ1 = C, κ2 = 0 and κ3 =
κ∗

4 = C + iγ . Consequently, the non-Hermiticity causes the
broadening of the two dispersive bands through the tuning
of the effective coupling of the system. With increasing γ ,
the lower band merges with the flat band, giving rise to
an exceptional point with the critical momentum, k = kc =
cos−1 (1 − 5/(2 + 2γ 2/C2)) [17].

APPENDIX K: DECIMATION SCHEME FOR
A FIVE-SITE MODEL

Next, we discuss the nature of the band structure of a five-
site parity-time (PT ) symmetric Q1D Lieb lattice model in the
presence of non-Hermiticity. In particular, the model features
a non-Hermitian flat band and CLS in real space as a result of
local destructive interference of the wavefunctions. The Lieb
photonic lattice can be realized as an array of periodically
arranged evanescently coupled waveguides, which consists
five sites per unit cell [57–60]. The Hamiltonian of interest
for the non-Hermitian Lieb lattice model can be written in the
tight-binding basis as

H =
∑

n

(εaa†
nan + εbb†

nbn + εcc†
ncn + εd d†

n dn + εee†
nen)

+a†
n(t̃1bn+t̃2bn−1+tcn)+e†

n(t̃2dn+t̃1dn−1+tcn) + H.c.,

where {a†
n, b†

n, c†
n, d†

n , e†
n} and {an, bn, cn, dn, en} are the

fermionic creation and annihilation operator in the nth unit
cell for sublattice {A, B,C, D, E}, respectively. The parame-
ters t , t̃1, and t̃2 are the coupling coefficients between different
sites that can, in principle, be nonreciprocal to account for the
non-Hermiticity. Here, let us consider that the non-Hermiticity
is introduced as an on-site gain and loss term similar to the
flat-band model, as depicted in Fig. 4 the main text. The
corresponding Hamiltonian can be expressed in momentum
space by Fourier transforming the operators to obtain

Hk =

⎛
⎜⎜⎜⎜⎝

εa t1 + t2e−ikl t 0 0
t1 + t2eikl εb 0 0 0

0 0 εc 0 t
0 0 0 εd t2 + t2eikl

0 0 t t2 + t1e−ikl εe

⎞
⎟⎟⎟⎟⎠. (K1)

In the main text, we evaluated the dispersion relations of
the same model using an exact real-space decimation method
to eliminate the A and E sites. However, here, we shall use a
similar strategy to decimate out the {B,C, D} subset of sites,
keeping {A, E} intact to establish that the decimation path
is not unique. We can write the difference equations using

Eq. (B1) for the real-space system as

(E − εa)φa = t1φb + t2φb′ + tφc,

(E − εc)φc = tφa + tφ e,

(E − εe)φe = t2φd + t1φd ′ + tφc,

085431-17



AYAN BANERJEE et al. PHYSICAL REVIEW B 110, 085431 (2024)

(E − εb)φb = t1φa + t2φal ,

(E − εd )φd = t2φe + t1φel ,

(E − εb)φb′ = t2φa + t1φar,

(E − εd )φd ′ = t1φe + t2φer . (K2)

Eliminating φc from Eq. (K2), we get the following trans-
formed equations

(E − ε′
a)φa = t1φb + t2φ

′
b + tcoφe,

(E − ε′
e)φe = t2φd + t1φ

′
d + tcoφa, (K3)

where ε′
a/e = εa/e + tco and tco = t2

E−εc
. Therefore, the deci-

mated lattice does not possess the site C; however, all the
information regarding it is encoded in the remaining deci-
mated lattice model with four sites per unit cell. Next, we
shall decimate the sites B and D to obtain an effective two-site
lattice problem model without losing any information about
the original system. The difference equations read

(E − �a)φa = uφal + uφar + tcoφe,

(E − �e)φe = dφel + dφer + tcoφa. (K4)

In the above Eq. (K4), the parameters have the following

form, �a = ε′
a + t2

1 +t2
2

E−εb
, �e = ε′

e + t2
1 +t2

2
E−εd

, u = t1t2
E−εb

, and d =
t1t2

E−εd
. In particular, the decimated system features a simplified

uniform ladder network with energy-dependent decimated
coupling and renormalized on-site potential. The Hamiltonian
reads (

�a + 2u cos k tco

tco �e + 2d cos k

)
. (K5)

We show that this two-level system is a caricature of
the original five-site system described by the Hamiltonian in
Eq. (K1) and mimics the dispersion and concomitant phase
transition in the presence of exceptional points without losing
any information about the original system. Next, we extend
our analysis and further simplify the ladder in order to trans-
form it into two decoupled chains via a basis transformation
to bring forth the rich physics of the system. We show that
the model naturally gives rise to the SSH dispersion and ex-
plains the presence of CLS. We start from the one-dimensional

real-space tight-binding model with two orbitals, A and E , in
a unit cell for the momentum-space Hamiltonian in Eq. (K5).
We can write the tight-binding Hamiltonian for the ladder
network as

H =
∑

m

εmc†
mcm + h

( ∑
m

c†
mcm+1 + c.c.

)
, (K6)

where cm = (cm,1
cm,2

), εm = (�a tco

tco �e
), h = (u 0

0 d) and c†
m, j (cm, j )

is the fermionic creation (annihilation) operator at the nth site
of the jth arm. The parameters tco and u/d are, respectively,
vertical and horizontal hopping integrals of the decimated
uniform ladder network. Here, the eigenbasis for the ladder
network is defined by the real-space vector

ψn =
(

ψn,1

ψn,2

)
. (K7)

In this basis, the difference equation reads

[E − εn]ψn = h[ψn+1 − ψn−1]. (K8)

In the main text we have considered, εa = εe and εb = εd

(so, u = d), which changes the form of h to h = (
u 0
0 u

).

Next, we use a similarity transformation to diagonalize the
uniform ladder network system with a suitable change of
basis going from the basis ψn ≡ (ψn,1, ψn,2) to a new basis
φn ≡ (φn,1, ψn,2), where

φi ≡
2∑

j=1

(M−1)i jψ j . (K9)

The matrix M diagonalizes the system, and eventually,
we can write two decoupled sets of difference equations as
follows

[E − ε+]φn,1 = u φn+1,1 + u φn−1,1, (K10)

and

[E − ε−]φn,2 = u φn+1,1 + u φn−1,1. (K11)

Here ε± = �a ± tco, where �a = �e. Interestingly, we
obtain two independent linear chains in terms of the deci-
mated parameters. The intricacy of these decoupled chains
can mimic the original dispersion that essentially gives rise
to a flat band, as also obtained in the main text.
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