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A B S T R A C T

As many public transportation systems around the world transition to electric buses, the
planning and operation of fleets can be improved via tailored decision-support tools. In this
work, we study the impact of jointly locating charging facilities, assigning electric buses to
trips, and determining when and where to charge the buses. We propose a mixed integer
linear program that co-optimizes planning and operational decisions jointly and an iterated
local search heuristic to solve large-scale instances. Herein, we use a concurrent scheduler
algorithm to generate an initial feasible solution, which serves as a starting point for our
iterated local search algorithm. In the sequential case, we first optimize trip assignments and
charging locations. Charging schedules are then determined after fixing the optimal decisions
from the first level. The joint model, on the other hand, integrates charge scheduling within
the local search procedure. The solution quality of the joint and sequential iterated local search
models are compared for multiple real-world bus transit networks. Our results demonstrate that
joint models can help further improve operating costs by 14.1% and lower total costs by about
4.1% on average compared with sequential models. In addition, energy consumption costs and
contracted power capacity costs have been reduced significantly due to our integrated planning
approach.

1. Introduction

Electric Vehicles (EVs) have the potential to significantly reduce the environmental impacts of tail-pipe emissions. While several
government subsidies promote electric mobility (Sierzchula et al., 2014), most are personal-vehicle centric and hence do not address
congestion issues (Wan et al., 2015). For cities to grow sustainably, it is necessary to electrify public transportation systems (Pelletier
et al., 2019) that offer eco-friendly travel alternatives and at the same time limit the use of personal travel modes. However, large-
scale deployment of electric buses requires proper charging infrastructure and strategies for day-to-day operations. To this end, one
must factor in the buses’ state of charge (SoC) at different time points and the energy needs of transit trips to optimize operational
and planning decisions.

In this context, the range of EV buses can vary widely depending on the battery capacity. For example, the BYD’s K7M buses
have an advertised range of 258 km, and their K8M models have a higher range of 315 km (BYD, 2023). The true range is usually
lower and depends on several other factors, such as driving styles, passenger loads, and weather conditions. Unlike diesel/gasoline
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Fig. 1. Different tasks involved in strategic and operational planning of electric bus fleets.

buses, electric buses may require charging between operations to replenish their battery levels due to limited range. Furthermore,
it is recommended not to discharge the battery below a certain threshold for handling unforeseen events and improving the battery
life cycle (Ellingsen et al., 2022).

If the layover times between trips are short, buses may not have sufficient time to recharge their batteries. This issue can be
addressed by understanding where to locate charging stations – the Charging Location Problem (CLP), how to assign buses to trips –
the Vehicle Scheduling Problem (VSP), and when and how much to charge buses at a charging station – the Charge Scheduling Problem
(CSP). Fig. 1 illustrates these problem components. While the decisions to these problems can be made sequentially, strategic choices
can have a significant role on the operational ones (Dirks et al., 2022). For instance, the bus-to-trip assignment is more constrained if
the charging locations are pre-determined. Likewise, the bus-to-trip assignment determines the charging demand and the time slots
for recharging. Consequently, a holistic framework that co-optimizes these planning tasks in an integrated fashion promises cost
savings over their sequential counterparts. However, finding high-quality solutions for joint models presents significant challenges
due to increased search space, raising the question: Can we design algorithms that co-optimize the aforementioned planning tasks and
are computationally tractable? If so, what is the added benefit of such an integrated approach? This paper explores solution techniques
for such integrated frameworks and demonstrates their potential to achieve significant cost savings while remaining tractable.

Specifically, our paper addresses the Charging Location and Electric Vehicle Scheduling Problem (CLP–EVSP) and the Charging
Location, Electric Vehicle Scheduling Problem, and Charge Scheduling Problem (CLP–EVSP–CSP) jointly. Numerous research studies
have focused on these planning tasks in isolation, but there has been very limited effort in developing a holistic framework, due to the
aforementioned challenges. We seek solutions that minimize the fixed costs – total investment cost of electric buses and charging
facilities – and operational costs due to deadheading and recharging. In the charge scheduling problem, we permit recharging
multiple buses simultaneously.

A list of features modeled in this research and comparisons with relevant papers are shown in Table 1. Our research makes
multiple contributions to the literature on the planning and operations of electric bus fleets, as summarized below:

• We propose a Mixed Integer Linear Programming (MILP) formulation for the CLP–EVSP–CSP for a multiple depot setting.
While the novelty of our work lies in the integrated modeling approach, our problem also captures several other practical
characteristics of electric transit systems found in the literature, such as grid capacity, time-of-day pricing, and split charging.

• We design an iterated local search (ILS) procedure for the CLP–EVSP to optimize locations and bus rotations. A bus rotation
denotes a sequence of trips performed by a bus and includes its starting and ending depots. We also propose a novel MILP and
two surrogate Linear Programming (LP) formulations to solve the charge scheduling problem. These LPs allow us to extend
the ILS framework to the joint CLP–EVSP–CSP while maintaining tractability.

• We demonstrate the practical value of our integrated planning approach using multiple real-world GTFS datasets. GTFS datasets
contain information on trip timetables and bus stops of various networks. With reasonable assumptions about input parameters,
our joint CLP–EVSP–CSP model exhibited average savings of 41.4% in scheduling costs, 39.6% in operational costs, and 14.4%
in total costs over all the test networks compared to the concurrent scheduler. The corresponding average savings compared
to the sequential CLP–EVSP model were 17.5%, 14.1%, and 4.1%, respectively.

The rest of the paper is structured as follows: Section 2 explores relevant literature on the CLP, EVSP, and CSP, including a few
studies on joint modeling. Section 3 formally defines the CLP–EVSP–CSP problem. In Section 4, we present CSP models and a joint
formulation for the CLP–EVSP–CSP. Section 5 introduces algorithms for the CLP–EVSP and CLP–EVSP–CSP ILS heuristics. We study
the benefits from applying these heuristics to different networks in Section 6. Finally, Section 7 summarizes the paper’s findings
and discusses future research directions.
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Table 1
Modeling features of relevant works (∙ fully modeled, ◦ partially modeled). In ambiguous situations where it was not clear how a certain feature was
represented, we considered it to be fully modeled.

References Bus
acquisition

Charging
station costs

Vehicle
scheduling

Dynamic
pricing

Multiple
depots

Power load
costs

Partial
charging

Split
charging

Rogge et al.
(2018)

∙ ◦ ∙ ∙

Janovec and
Koháni
(2019)

∙ ∙ ∙

Li et al.
(2019)

∙ ∙ ∙ ∙

Liu et al.
(2019)

∙ ∙ ∙ ∙ ∙

Abdelwahed
et al. (2020)

∙ ∙ ∙

Li et al.
(2020)

∙ ◦ ∙ ∙ ∙ ∙

Liu and
Ceder (2020)

◦ ∙ ∙ ∙

Olsen and
Kliewer
(2020)

∙ ∙ ∙

Teng et al.
(2020)

∙ ∙ ∙

Yao et al.
(2020)

∙ ∙ ∙

Zhou, Liu,
Wei, and
Golub
(2020a)

∙ ∙ ∙

Alvo et al.
(2021)

◦ ∙ ∙ ∙

Alwesabi
et al. (2021)

∙ ∙ ◦ ∙

Jiang et al.
(2021)

∙ ∙ ∙ ∙ ∙

Lee et al.
(2021)

∙ ∙ ∙ ∙ ∙

Stumpe et al.
(2021)

∙ ∙ ∙ ∙

Olsen and
Kliewer
(2022)

∙ ∙ ∙ ∙

Zhang et al.
(2022)

∙ ∙ ∙ ∙

Bao et al.
(2023)

∙ ∙ ◦ ∙

(Gairola and
Nezamuddin,
2023)

∙ ∙ ◦ ∙ ◦ ◦ ∙

Our work ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

2. Literature review

Strategic and operational problems in managing electric buses and charging stations have been widely researched in recent
ears. Strategic problems include locating charging and battery swapping stations and fleet transition decisions. On the other hand,
perational problems deal with electric bus scheduling, charging schedule optimization, and battery swapping. A detailed survey
n these problems can be found in Perumal et al. (2022). This section discusses the state-of-the-art models for CLP, EVSP, and CSP
f the joint framework proposed in this paper.

.1. Optimizing charging locations

Locating EV charging stations resembles the classic facility location problem (Schettini et al., 2023). The objective of the CLP is
o establish charging sites from a set of candidate locations to fulfill the demand of electric vehicles. For transit networks, charging
tations are typically located at the start and end of bus routes, areas where buses tend to have extended parking times. Station
apacities are also usually optimized along with location decisions. E.g., a new charging facility is redundant if a nearby station can
erve the peak demand (Metais et al., 2022). Capacities, often determined by the number of chargers, are constrained by available
3 
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parking spaces. Some studies ignore this effect and assume infinite capacities (Wang and Wang, 2010; He et al., 2015), while
others associate station capacities to power grid limits (Zhang et al., 2016). CLP formulations can optimize objectives such as
distance traveled by EVs (Shahraki et al., 2015), number of EVs charged (Cavadas et al., 2015), and deadheading distances (Xu
et al., 2013). For electric buses, specific objectives include energy consumption of the system (Xylia et al., 2017), number and
locations of chargers (Kunith et al., 2017), and infrastructure cost (He et al., 2019). Most of these problems are solved using MILP
models (Alwesabi et al., 2020) and meta-heuristics (Iliopoulou and Kepaptsoglou, 2019).

2.2. Electric vehicle scheduling problem

The VSP assigns a set of timetabled trips to vehicles originating from one or more depots based on time compatibility (Bunte and
liewer, 2009). The multi-depot VSP (MDVSP) can be formulated either as a multi-commodity flow model (Forbes et al., 1994; Kliewer

et al., 2006) or as a set partitioning model (Ribeiro and Soumis, 1994) and is known to be an NP-hard problem (Bertossi et al., 1987).
The EVSP is an extension of the VSP with additional range constraints (Reuer et al., 2015; Liu and Ceder, 2020; Olsen and Kliewer,
2020). EVSP objectives are similar to those of VSP, but they can also include transit-specific aims, such as minimizing the total cost of
ownership (Rogge et al., 2018). Most studies in the literature differ in solution techniques and problem scales. Exact methods using
MILP models are common (Li, 2014; Janovec and Koháni, 2019; Li et al., 2019). The Column Generation (CG) method can also be
applied to the EVSP for improving tractability (Adler and Mirchandani, 2017; Tang et al., 2019). However, large problem instances
require heuristics or meta-heuristics such as GAs (Rogge et al., 2018; Liu et al., 2019; Li et al., 2020; Yao et al., 2020), particle
swarm optimization (Teng et al., 2020), simulated annealing (Zhou et al., 2020b), and ant colony optimization (Wang and Shen,
2007). Heuristics based on constraint generation (Haghani and Banihashemi, 2002), concurrent scheduling (Adler and Mirchandani,
2017), adaptive large neighborhood search (Wen et al., 2016; Perumal et al., 2021), and iterative neighborhood search (Zhou et al.,
2020b) have also proven to scale successfully to larger instances.

2.3. Charge scheduling problem

The stand-alone version of the CSP assumes that the allocation of buses to their respective trips and the charging stations’
locations are predetermined. The goal of the CSP is usually to minimize charging costs under time-varying electricity prices. While
charging schedules are typically designed not to exceed grid capacity (Zhang et al., 2016), some studies allow grid reinforcement
and exclude such constraints (Sadeghi-Barzani et al., 2014). Among literature that considered dynamic electricity pricing, Leou
and Hung (2017) presented two MILP models for a single charging station to minimize capacity and energy charges. (Bao et al.,
2023) formulated a MILP model for the charge scheduling problem. Specifically, they used a Lagrangian relaxation framework and
decomposed the charge scheduling problem to the level of individual buses, solving them using a bi-criterion dynamic programming
algorithm. Abdelwahed et al. (2020) proposed discrete time- and discrete event-based MILP models to minimize charging costs.
Although they considered split charging events, they did not extend their model to multiple charging locations. A similar approach
to minimize total charging costs was adopted by He et al. (2020) using a linearized model that could be solved using commercial
solvers. Ke et al. (2020) employed a GA to minimize electricity costs. They also considered selling electricity back to the power
company.

Several other studies have focused on power load management at charging stations. Jahic et al. (2019) proposed a greedy
algorithm and a heuristic to minimize the peak load at a central depot. Houbbadi et al. (2019) analyzed overnight depot charging,
considering battery aging, using nonlinear programming. The operational cost of power distribution systems was minimized
by Bagherinezhad et al. (2020) using a relaxed cone programming model. Lastly, Yang et al. (2017) focused on minimizing electricity
consumption costs in a wireless charging system.

2.4. Joint models

The decision variables in the problems discussed above are interconnected. Several papers have jointly studied CLP–EVSP and
EVSP–CSP to optimize electric bus operations fully. These studies vary in their objective functions, methodologies, assumptions
about charging profiles, and the sizes of test networks. This section offers a discussion on the joint modeling of CLP–EVSP and
EVSP–CSP. Since the solution to the CSP inherently includes the solution for the CLP, we do not discuss integrated CLP–CSP models
separately. Table 2 provides an overview of the papers addressing the CLP–EVSP.

Stumpe et al. (2021) and Olsen and Kliewer (2022) introduced MILP models for the CLP–EVSP. For larger instances, they
used a variable neighborhood search (VNS) algorithm, originally proposed by Mladenović and Hansen (1997) and Hansen et al.
(2010). Alwesabi et al. (2021) integrated vehicle scheduling with charging planning using dynamic wireless charging. Li et al.
(2020) used a GA variant for the Stationary Charger Deployment and MDVSP, with partial charging and time-of-day electricity
pricing.

Both in-depot and en-route charging can replenish electric buses’ battery levels (Zhou et al., 2020a). A few studies optimize
charge schedules and bus-to-trip assignments for a given set of charging stations. Jiang et al. (2021) optimized the MDVSP along with
charging events while allowing partial charging. A linearized version of a non-convex programming model was used by Zhou et al.
(2022) to address the bus and charge scheduling for a single route. Lee et al. (2021) studied joint bus and charge scheduling for small
networks using a two-stage exact approach that considered electricity consumption costs. Similar problems were investigated with

fixed electricity pricing (Janovec and Koháni, 2019; Olsen and Kliewer, 2020; Gkiotsalitis et al., 2023) and time-varying costs (Teng
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Table 2
Overview of different networks and methods used to solve the CLP–EVSP. (Data on the largest instance used is shown in the
table. Missing information has been marked as ‘–’).
Reference Trips Routes Stops Candidate

locations
Solution techniques

Rogge et al. (2018) 200 3 – – Grouping GA
Li et al. (2019) 288 6 – 2 MILP model
Liu et al. (2019) 544 4 – 2 Bin-packing and GA
Li et al. (2020) 867 8 164 5 Adaptive GA
Yao et al. (2020) 931 4 – 2 GA with a fitness

computation algorithm
Alwesabi et al. (2021) 102 6 – 57 MILP model
Lee et al. (2021) 74 1 38 38 A two-stage nonlinear

integer model
Stumpe et al. (2021) 1296 – – 88 MILP and VNS
Hu et al. (2022) 213 3 111 111 MILP model
Olsen and Kliewer (2022) 3067 – 209 209 VNS algorithm
Zhang et al. (2022) – 16 238 7 MILP model

et al., 2020; Jiang et al., 2021; Klein and Schiffer, 2023). Integrated approaches that jointly optimize charger configurations and
vehicle routing decisions have also shown significant benefits in logistics (Schiffer et al., 2019, 2021). Yet, the application of such
integrated strategies in electrification of bus networks remains less explored.

In conclusion, many CLP–EVSP models overlook charge scheduling, which can yield additional cost savings. EVSP–CSP, on the
ther hand, assumes known charging stations whose locations could have been sub-optimal. The problem of integrating CLP–EVSP
ith CSP has not been widely researched, primarily because of its computational challenges. Our joint CLP–EVSP–CSP addresses

his gap and is designed for tractability for network sizes commonly found in the literature and solved using an ILS framework.
e derive the motivation to use ILS because of its effective application to related problems such as the MDVSP (Laurent and Hao,

009), electric bus scheduling problem (Li, 2014), electric bus routing problem (Lian et al., 2023), mixed fleet vehicle routing
roblem (Sassi et al., 2015), and the electric bus charging location problem (Loaiza Quintana et al., 2022). We also improve upon
implifying assumptions frequently found in CSP literature by considering multiple charging locations and power load capacities.

. Problem description

EV bus fleet operations vary across transit agencies. Buses typically start their journey from a depot and return to the same or
different depot at the end of the day. Two types of charging models are common: overnight-slow and opportunity-fast charging.
vernight charging is usually done at depots, and buses start with a fully charged battery the next day. Opportunity charging can be
erformed at any charging location during the day when the battery levels are low or in response to dynamic prices and availability
f charging opportunities. Our model focuses on opportunity charging and, in this context, makes the following assumptions.

• The candidate charging stations are chosen from terminal bus stops of routes where most buses stay for a significant
duration. We make this assumption because charging buses at intermediate bus stops adds to passenger delays (Iliopoulou
and Kepaptsoglou, 2021).

• All buses are electric and homogeneous with the same range and can perform any scheduled trip. Buses can charge multiple
times during their layovers, with piecewise constant charging rates across different time-steps prescribed by our model. We
disallow deadheading to a charging station not in a bus itinerary, but allow partial charging.

• Due to the challenge of obtaining accurate information on the locations and capacities of depots, we assume a predetermined
set of depots. We chose these depots strategically based on the major terminal stops, which serve as starting or ending points
for multiple routes.

• Interlining is permitted, i.e., a bus can serve trips along multiple routes. A bus does not need to return to its starting depot at
the end of the day. However, since schedules are periodic over different days, we require the initial and final distribution of
buses to be the same across depots.

• Charging costs vary by the time of the day. Hence, it may benefit to fully charge a bus during an off-peak period or wait when
the electricity prices are high. We assume all stations are equipped with smart charging technology that dynamically regulates
the amount of energy transferred to the buses (Sadeghian et al., 2022).

• Overnight charging costs at the depots are ignored since they do not vary across bus-to-trip assignments; this is due to
deadheading being already accounted for and prices typically remaining constant during this period.

• Transit schedules are deterministic. While it is also possible to re-design trip schedules (Tang et al., 2023), we only optimize
supply components and assume that the timetabled trips (that are typically developed using transit demand estimates) are not
altered. Effects of congestion and delays due to traffic or vehicle breakdowns are out of scope of the current work. Still, they
can be integrated into our methodology to some degree by adding appropriate slacks.

The transit data includes a set of stops 𝑆, daily trips 𝐼 , and bus routes 𝑅. We assume that the candidate charging locations
𝑐𝑎𝑛𝑑
𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑝} are the start and end locations of all routes. Fig. 2(a) shows an example network. Stops in 𝑆 are indicated
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Fig. 2. Bus stops (smaller blue nodes) and candidate charging locations (larger green nodes) in the Ann Arbor Area Transportation Authority network, US.

Fig. 3. Network diagram for the EVSP.

using small blue nodes, and those in 𝑆𝑐𝑎𝑛𝑑 are shown as larger green nodes. The bus stops along a sample route are shown in
Fig. 2(b).

A pair of trips 𝑖 and 𝑗 are compatible if trip 𝑗 can be carried out after trip 𝑖 by the same bus, i.e., 𝛽𝑖 + 𝛾𝑖,𝑗 + 𝜃𝑖,𝑗 ≤ 𝛼𝑗 , where 𝛽𝑖 is
the end time of 𝑖, 𝛾𝑖,𝑗 is the deadhead trip duration from the end stop of 𝑖 to the start stop of 𝑗, 𝜃𝑖,𝑗 is the idle time before or after
the deadhead trip (layover time − deadhead time) in minutes and rounded down to the nearest integer, and 𝛼𝑗 is the start time of
𝑗. The idle time is set to zero if one of the trip ends is a depot.

Trip compatibility can be visualized using a graph 𝐺 = (𝑁,𝐴), where 𝑁 and 𝐴 are the set of nodes and arcs as shown in Fig. 3.
We define 𝑁 = 𝐼 ∪ 𝐷, where 𝐼 = {1, 2,… , 𝑛} is the set of 𝑛 trips and 𝐷 = {𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑚} is the set of 𝑚 depots. The set of
compatible trip pairs, 𝐴𝑐𝑜𝑚𝑝, are denoted using solid blue arcs, and the connections between the depots and the trip nodes are shown
using dashed green arcs. We do not require additional nodes for candidate charging locations since the trip itineraries capture the
sequence of visits to charging station locations.

The set of all arcs 𝐴 can be written as 𝐴 = 𝐴𝑐𝑜𝑚𝑝 ∪𝑖∈𝐼 {(𝑛 + 1, 𝑖), (𝑛 + 2, 𝑖),… , (𝑛 + 𝑚, 𝑖)} ∪𝑖∈𝐼 {(𝑖, 𝑛 + 1), (𝑖, 𝑛 + 2),… , (𝑖, 𝑛 + 𝑚)}.
Bus charging levels are tracked only at trip terminals. We denote 𝑂𝑠 and 𝐸𝑠 as the set of trips with 𝑠 as their start/origin and
end/destination stops, respectively. Mathematically, they can be written as: 𝑂𝑠 = {𝑖 ∈ 𝐼 ∶ 𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑠} and 𝐸𝑠 = {𝑖 ∈ 𝐼 ∶ 𝑖𝑒𝑛𝑑 = 𝑠},
where 𝑖𝑠𝑡𝑎𝑟𝑡 and 𝑖𝑒𝑛𝑑 are the starting and ending stops of trip 𝑖, respectively. We assume an initial set of buses 𝐵 = {𝑏1, 𝑏2,… , 𝑏𝑛}
(not all of which may be used in the optimal solution). The maximum number of buses available can be set to the number of trips
𝑛 as each bus can be assigned to exactly a single trip, but tighter bounds or existing fleet data can also be used if available.

The joint CLP–EVSP–CSP model is formulated as a MILP in Section 4.2. The objective is to minimize the fixed cost of buses
and charging stations, along with operational costs encompassing deadheading, electricity consumption, and grid power capacity
costs. Specifically, through bus scheduling, we aim to ensure that all the trip nodes depicted in Fig. 3 are served exactly once.
Charging stations are opened based on the charge feasibility of buses, and charge schedules are devised considering charging station
availability, bus idle time, and time-of-day electricity prices. Constraints include trip compatibility, charging level feasibility, and
battery level thresholds. The decision variables in the model capture the arc flows in 𝐺, the candidate bus stops that are converted
into charging stations, and the energy transferred to buses every minute while charging. We present a formal exposition of the CSP
and the joint model in Section 4.
6 
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Fig. 4. An illustration of the CEE charging strategy (The purple dashed arrows indicate depot trips, black dotted arrows indicate service trips, and blue solid
arrows indicate deadhead trips. Charging is allowed at the gray terminals. The bar charts at the upper level display the charging decisions in different time-steps
within each charging opportunity).

4. Charge scheduling and joint models

The CLP–EVSP model commonly found in the literature (Li et al., 2019; Stumpe et al., 2021) does not consider electricity costs
and grid capacity in deciding when and where buses should charge. This could increase the need for simultaneous charging and
lead to higher operating costs. To tackle this issue, we first formulate a general CSP that minimizes both electricity consumption
and contracted power capacity costs in Section 4.1. In this CSP, buses have the flexibility to charge between trips, either at the last
stop of a trip, the starting stop of its next trip, or at both ends if charging stations are available. This approach necessitates a MILP
framework, which is subsequently integrated into a CLP–EVSP formulation, resulting in our joint optimization model, CLP–EVSP–
CSP, in Section 4.2. However, the MILP version of the CSP is not computationally tractable for realistic instance sizes. Therefore,
we introduce surrogate CSP models in Section 4.3. These models prioritize where to charge between trip ends, enabling us to solve
the CSP using linear programs.

4.1. CSP model

Considering time-of-day electricity prices and the contracted capacity of charging locations, a bus may choose to charge at
the end stop of a trip, then deadhead to the starting stop of the next trip and charge again if a charging opportunity exists. We
address this aspect through a MILP model, where the time-step at which a bus begins deadheading if charging opportunities are
available at both ends is also a decision variable. We refer to this model as the Charge at Either End (CEE) version of the CSP.
We split time into one-minute intervals and consider the energy provided to buses at charging stations every minute as a decision
variable. Fig. 4 illustrates the CEE charging. The bar charts at the upper level display the charging decisions in different time-steps
within each charging opportunity. Trip ends where charging stations are located are shown using an icon, and the nodes are shaded
when charging is permitted. In cases where the bus can charge at both the ending stop of a trip and the starting stop of the next
trip (e.g., trips 1 and 4), the idle time 𝜃1,4 is divided into two charging sessions, and the model determines the optimal time to
begin deadheading. The solid red lines on the plots between trips indicate the start and end times of deadheading. We denote
the deadheading duration for bus 𝑏 during its 𝑘th charging opportunity by 𝜏𝑏,𝑘. The dotted green lines represent the maximum
energy transferable (𝜓𝑏) in a single time period. Note that not charging in a particular time-step may be optimal, depending on
the energy needs of other buses at the charging station. For the charging opportunities between trips (4,7) and (7,6), the process
is straightforward as the charging station is only at one end of the trips. Therefore, the bus will either charge and deadhead to the
next trip or deadhead first and charge before starting the next trip.

Table 3 summarizes the notation used in the MILP formulation of CSP. Charging opportunities are indexed consecutively for
each bus in a set 𝐾𝑏, and subsets 𝐾1

𝑏 and 𝐾2
𝑏 are created depending on the type of charging opportunity. For instance, in Fig. 4,

𝐾𝑏 = {0, 1, 2, 3}, 𝐾1
𝑏 = {2, 3}, and 𝐾2

𝑏 = {1}. Opportunities in 𝐾1
𝑏 allow charging at only one trip end, whereas ones in 𝐾2

𝑏 allow
charging at both ends. For opportunities in 𝐾2

𝑏 such as 𝑘 = 1, we refer to 1 as the current trip and 4 as the next trip.
We divide the time horizon of operations into one-minute steps and label time intervals where energy prices vary (e.g., 0900–

1400, 1400–1600, etc.) as periods. We denote the sets of time-steps where a bus can potentially charge at a station as 𝑇𝑏,𝑘, 𝑇 𝑒𝑛𝑑𝑏,𝑘 ,
and 𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 . We populate these time-steps by excluding the deadheading time associated with a charging opportunity, 𝜏𝑏,𝑘, from the
layover time. Fig. 5 shows an example of such sets for a charging opportunity in 𝐾2

𝑏 .
The objective (1) of the CSP consists of four terms. The first term considers the electricity consumption costs for charging at

opportunities in 𝐾1
𝑏 . The second and third terms represent the electricity costs for charging at the ending stop of the current trip and

the starting stop of the next trip, respectively, for charging opportunities in 𝐾2
𝑏 . The final term of the objective function accounts for

the contracted power capacity costs. This represents the fixed cost associated with establishing charging infrastructure at different
stations. The 𝑞𝑠 variable represents the maximum power required to meet the charging needs of buses recharging at station 𝑠.

min
∑

𝑝∈𝑃
𝑐𝑒𝑙𝑒𝑐𝑝

∑

𝑏∈𝐵

(

∑

𝑠∈𝑍,𝑡∈𝑇𝑝∩𝑇𝑏,𝑘∶

𝑘∈𝐾1 ,𝑠𝑏,𝑘=𝑠

𝑤𝑏,𝑠,𝑡 +
∑

𝑠∈𝑍,𝑡∈𝑇𝑝∩𝑇 𝑒𝑛𝑑𝑏,𝑘 ∶

2 𝑒𝑛𝑑

𝑤𝑏,𝑠,𝑡 +
∑

𝑠∈𝑍,𝑡∈𝑇𝑝∩𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 ∶

2 𝑠𝑡𝑎𝑟𝑡

𝑤𝑏,𝑠,𝑡

)

+ 𝑐𝑐𝑎𝑝
∑

𝑠∈𝑍
𝑞𝑠 (1)
𝑏 𝑘∈𝐾𝑏 ,𝑠𝑏,𝑘 =𝑠 𝑘∈𝐾𝑏 ,𝑠𝑏,𝑘 =𝑠
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Table 3
Notation used in the CSP formulation.

Notation description

Decision variables:

𝑤𝑏,𝑠,𝑡 Energy (kWh) provided to bus 𝑏 at charging location 𝑠 and time-step 𝑡
𝑟𝑒𝑛𝑑𝑏,𝑡 Binary variable which is 1 if bus 𝑏 can charge at time-step 𝑡 at the end stop location of a trip, when charging is allowed at both the

end points
𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡 Binary variable which is 1 if bus 𝑏 can charge at time-step 𝑡 at the start stop location of a trip, when charging is allowed at both the

end points
𝑞𝑠 Contracted power capacity (kW) at charging location 𝑠

Auxiliary variables:

𝑙𝑏,𝑘 Charging level (kWh) of bus 𝑏 at the end of its 𝑘th charging opportunity

Sets:

𝐵 Set of electric buses
𝑍 Set of charging locations
𝐾𝑏 Set of sequentially enumerated charging opportunities, i.e., trip changes/layovers by 𝑏, each with at least a charging station at trip

ends. We include 0 to keep track of the charge levels from the depot.
𝐾1
𝑏 Indices of charging opportunities that have a charging station at only one of the trip ends

𝐾2
𝑏 Indices of charging opportunities that have charging stations at both trip ends

𝑇𝑏,𝑘 Set of time-steps of bus 𝑏 at charging opportunity 𝑘 ∈ 𝐾1
𝑏

𝑇 𝑒𝑛𝑑𝑏,𝑘 Set of time-steps when bus 𝑏 can charge at the ending stop of a trip at charging opportunity 𝑘 ∈ 𝐾2
𝑏

𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 Set of time-steps of bus 𝑏 at the starting stop of a trip at charging opportunity 𝑘 ∈ 𝐾2
𝑏

𝑃 Set of time periods with different energy prices. Each period is a collection of successive time-steps
𝑇𝑝 Set of time-steps in time period 𝑝 ∈ 𝑃
𝑇 Set of all time-steps that cover the period of operations

Data/Parameters:

𝑒𝑏,𝑘,𝑘+1 Energy consumed (kWh) by bus 𝑏 to cover the distance from the end of charging opportunity 𝑘 ∈ 𝐾𝑏 to the start of its (𝑘 + 1)th
charging opportunity

𝑒𝑏,𝑘 Energy consumed (kWh) by bus 𝑏 for deadheading during charging opportunity 𝑘 ∈ 𝐾2
𝑏

𝑠𝑏,𝑘 Charging location of bus 𝑏 at charging opportunity 𝑘 ∈ 𝐾1
𝑏

𝑠𝑒𝑛𝑑𝑏,𝑘 End stop of the current trip on bus 𝑏 at charging opportunity 𝑘 ∈ 𝐾2
𝑏

𝑠𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 Start stop of next trip on bus 𝑏 at charging opportunity 𝑘 ∈ 𝐾2
𝑏

𝜏𝑏,𝑘 Deadheading time for bus 𝑏 during charging opportunity 𝑘 ∈ 𝐾𝑏
𝜓𝑏 Maximum amount of charge that can be provided to a bus 𝑏 in a single time-step (kWh/min)
𝑐𝑒𝑙𝑒𝑐𝑝 Electricity price ($/kWh) at time period 𝑝
𝑐𝑐𝑎𝑝 Unit price of contracted capacities ($/kW) of charging locations
𝑙𝑚𝑎𝑥 Battery capacity (kWh) of an electric bus
𝑙𝑚𝑖𝑛 Lower limit of energy level (kWh) of buses

Fig. 5. Decision variables at charging opportunities with stations at both trip ends (The bar chart at the upper level display the charging decisions in different
time-steps).

s.t. 𝑙𝑏,𝑘+1 = 𝑙𝑏,𝑘 − 𝑒𝑏,𝑘,𝑘+1 +
∑

𝑡∈𝑇𝑏,𝑘+1

𝑤𝑏,𝑠,𝑡 ∀ 𝑏 ∈ 𝐵, (𝑘 + 1) ∈ 𝐾1
𝑏 , 𝑠 = 𝑠𝑏,𝑘+1 (2)

𝑙𝑏,𝑘+1 = 𝑙𝑏,𝑘 − 𝑒𝑏,𝑘,𝑘+1 +
∑

𝑡∈𝑇 𝑒𝑛𝑑𝑏,𝑘+1

𝑤𝑏,𝑠,𝑡 − 𝑒𝑏,𝑘+1 +
∑

𝑡∈𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘+1

𝑤𝑏,𝑠′ ,𝑡 ∀ 𝑏 ∈ 𝐵, (𝑘 + 1) ∈ 𝐾2
𝑏 , 𝑠 = 𝑠𝑒𝑛𝑑𝑏,𝑘+1, 𝑠

′ = 𝑠𝑠𝑡𝑎𝑟𝑡𝑏,𝑘+1 (3)

𝑙𝑏,𝑘 − 𝑒𝑏,𝑘,𝑘+1 ≥ 𝑙𝑚𝑖𝑛 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾𝑏 (4)
8 
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𝑙𝑏,𝑘 − 𝑒𝑏,𝑘,𝑘+1 +
∑

𝑡∈𝑇 𝑒𝑛𝑑𝑏,𝑘+1

𝑤𝑏,𝑠,𝑡 − 𝑒𝑏,𝑘+1 ≥ 𝑙𝑚𝑖𝑛 ∀ 𝑏 ∈ 𝐵, (𝑘 + 1) ∈ 𝐾2
𝑏 , 𝑠 = 𝑠𝑒𝑛𝑑𝑏,𝑘+1 (5)

𝑙𝑏,𝑘 ≤ 𝑙𝑚𝑎𝑥 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾𝑏 (6)

𝑙𝑏,𝑘 − 𝑒𝑏,𝑘,𝑘+1 +
∑

𝑡∈𝑇 𝑒𝑛𝑑𝑏,𝑘+1

𝑤𝑏,𝑠,𝑡 ≤ 𝑙𝑚𝑎𝑥 ∀ 𝑏 ∈ 𝐵, (𝑘 + 1) ∈ 𝐾2
𝑏 , 𝑠 = 𝑠𝑒𝑛𝑑𝑏,𝑘+1 (7)

𝑙𝑏,0 = 𝑙𝑚𝑎𝑥 ∀ 𝑏 ∈ 𝐵 (8)

0 ≤ 𝑤𝑏,𝑠,𝑡 ≤ 𝜓𝑏 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾1
𝑏 , 𝑠 = 𝑠𝑏,𝑘, 𝑡 ∈ 𝑇𝑏,𝑘 (9)

0 ≤ 𝑤𝑏,𝑠,𝑡 ≤ 𝜓𝑏 𝑟
𝑒𝑛𝑑
𝑏,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾2

𝑏 , 𝑠 = 𝑠𝑒𝑛𝑑𝑏,𝑘 , 𝑡 ∈ 𝑇 𝑒𝑛𝑑𝑏,𝑘 (10)

0 ≤ 𝑤𝑏,𝑠,𝑡 ≤ 𝜓𝑏 𝑟
𝑠𝑡𝑎𝑟𝑡
𝑏,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾2

𝑏 , 𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 , 𝑡 ∈ 𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 (11)

𝑟𝑒𝑛𝑑𝑏,𝑡+1 ≤ 𝑟𝑒𝑛𝑑𝑏,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾2
𝑏 , 𝑡, (𝑡 + 1) ∈ 𝑇 𝑒𝑛𝑑𝑏,𝑘 (12)

𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡+1 ≥ 𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾2
𝑏 , 𝑡, (𝑡 + 1) ∈ 𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 (13)

𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡+𝜏𝑏,𝑘
≤ 1 − 𝑟𝑒𝑛𝑑𝑏,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾2

𝑏 , 𝑡 ∈ 𝑇 𝑒𝑛𝑑𝑏,𝑘 (14)
∑

𝑏∈𝐵,𝑘∈𝐾1
𝑏 ∶

𝑠𝑏,𝑘=𝑠,𝑡∈𝑇𝑏,𝑘

𝑤𝑏,𝑠,𝑡 +
∑

𝑏∈𝐵,𝑘∈𝐾2
𝑏 ∶

𝑠𝑒𝑛𝑑𝑏,𝑘 =𝑠,𝑡∈𝑇 𝑒𝑛𝑑𝑏,𝑘

𝑤𝑏,𝑠,𝑡 +
∑

𝑏∈𝐵,𝑘∈𝐾2
𝑏 ∶

𝑠𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 =𝑠,𝑡∈𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘

𝑤𝑏,𝑠,𝑡 ≤ 𝑞𝑠∕60 ∀ 𝑠 ∈ 𝑍, 𝑡 ∈ 𝑇 (15)

𝑟𝑒𝑛𝑑𝑏,𝑡 ∈ {0, 1}, 𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡′ ∈ {0, 1} ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾2
𝑏 , 𝑡 ∈ 𝑇 𝑒𝑛𝑑𝑏,𝑘 , 𝑡

′ ∈ 𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 (16)

onstraints (2) and (3) update the charging levels between two consecutive charging opportunities for each bus. Specifically, (2)
pplies when charging at the (𝑘 + 1)th opportunity is permitted only at one of the end stops, while (3) applies when charging is
llowed at both end stops. Constraints (4) and (5) ensure that the buses’ charging levels do not drop below a minimum threshold
t any time. Constraints (6) and (7) prevent buses from charging beyond their battery capacity. Buses start their daily operations
ith a fully charged battery due to (8). The maximum energy transferred to a bus within a single time-step is governed by the
vailability of the bus at charging locations, which is captured in constraints (9)–(11). When a charging opportunity 𝑘 is in 𝐾1

𝑏 ,
e simply set the upper bound based on the maximum rate 𝜓𝑏 at which the batteries on the bus can be charged. For a charging
pportunity 𝑘 ∈ 𝐾2

𝑏 , we use binary variables 𝑟𝑒𝑛𝑑𝑏,𝑡 and 𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡 to decide on the time-steps where charging is permitted at the trip ends
see Fig. 5). Constraint (12) ensures that the 𝑟𝑒𝑛𝑑𝑏,𝑡 variables exhibit a sequence of consecutive ones followed by zeros. Similarly, (13)
orces 𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡 variables to assume a series of zeros followed by ones. Furthermore, charging at the start stop of the next trip can begin
nly after finishing charging at the current trip’s end stop and the deadheading operation. Hence, the 𝑟𝑠𝑡𝑎𝑟𝑡𝑏,𝑡 variables in 𝑇 𝑠𝑡𝑎𝑟𝑡𝑏,𝑘 can be
ctive after considering the deadheading time from the last time-step where 𝑟𝑒𝑛𝑑𝑏,𝑡 is one, as specified in (14). Finally, (15) and the
inimization objective help set 𝑞𝑠 to the maximum amount of energy used by the charging station at 𝑠 in a single time-step. Binary

estrictions on the deadheading decision variables are imposed using (16).

.2. CLP–EVSP–CSP model

We enhance CLP–EVSP formulations found in the literature by incorporating CSP-specific variables. Instead of charging
pportunities, we utilize trip indices since the locations are not predetermined and are determined jointly by the model. Table 4
ntroduces additional notation to describe the MILP. The notation from the CSP formulation remains applicable.

The objective (17) comprises five terms: the acquisition cost of electric buses required to serve all the trips, the fixed cost of
charging station, the deadheading costs, the total electricity consumption cost, and the total cost for installing sufficient power

apacity at all charging stations. The deadheading and electricity consumption costs are scaled appropriately to account for the life
ycle of electric buses.

min
∑

𝑏∈𝐵

∑

(𝑖,𝑗)∈𝐴∶
𝑖∈𝐷

𝑐𝑏𝑢𝑠 𝑥𝑖,𝑗,𝑏 +
∑

𝑠∈𝑆𝑐𝑎𝑛𝑑
𝑐𝑙𝑜𝑐𝑧𝑠 +

∑

𝑏∈𝐵

∑

(𝑖,𝑗)∈𝐴
𝑐𝑘𝑚𝑖,𝑗 𝑥𝑖,𝑗,𝑏 +

∑

𝑝∈𝑃

∑

𝑡∈𝑇𝑝

∑

𝑖∈𝐼

∑

𝑏∈𝐵
𝑐𝑒𝑙𝑒𝑐𝑝 (𝑤𝑠𝑡𝑎𝑟𝑡𝑏,𝑖,𝑡 +𝑤𝑒𝑛𝑑𝑏,𝑖,𝑡) + 𝑐

𝑐𝑎𝑝
∑

𝑠∈𝑆𝑐𝑎𝑛𝑑
𝑞𝑠 (17)

.t.
∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 −

∑

𝑘∶(𝑘,𝑖)∈𝐴
𝑥𝑘,𝑖,𝑏 = 0 ∀ 𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 (18)

∑

𝑏∈𝐵

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 −

∑

𝑏∈𝐵

∑

𝑘∶(𝑘,𝑖)∈𝐴
𝑥𝑘,𝑖,𝑏 = 0 ∀ 𝑖 ∈ 𝐷 (19)

∑

𝑏∈𝐵

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 = 1 ∀ 𝑖 ∈ 𝐼 (20)

∑

𝑖∈𝐷

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 ≤ 1 ∀ 𝑏 ∈ 𝐵 (21)

𝑙𝑠𝑡𝑎𝑟𝑡𝑖,𝑏 ≤ 𝑙𝑚𝑎𝑥
∑

𝑥𝑘,𝑖,𝑏 ∀ 𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 (22)

𝑘∶(𝑘,𝑖)∈𝐴
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Table 4
Additional notation used in the joint optimization formulation of CLP–EVSP–CSP.

Notation description

Decision variables:

𝑥𝑖,𝑗,𝑏 Binary variable which is 1 if node 𝑗 is visited after node 𝑖 by bus 𝑏, and 0 otherwise
𝑧𝑠 Binary variable which is 1 if a charging facility is set up at stop 𝑠, and 0 otherwise
𝑤𝑠𝑡𝑎𝑟𝑡
𝑏,𝑖,𝑡 Energy (kWh) provided to bus 𝑏 at the starting stop of trip 𝑖 at time-step 𝑡

𝑤𝑒𝑛𝑑
𝑏,𝑖,𝑡 Energy (kWh) provided to bus 𝑏 at the ending stop of trip 𝑖 at time-step 𝑡

Auxiliary variables:

𝑦𝑠𝑡𝑎𝑟𝑡𝑖,𝑡 Binary variable which is 1 if charging can be done at the starting stop of trip 𝑖 at time-step 𝑡, and 0 otherwise
𝑦𝑒𝑛𝑑𝑖,𝑡 Binary variable which is 1 if charging can be done at the ending stop of trip 𝑖 at time-step 𝑡, and 0 otherwise
𝑙𝑠𝑡𝑎𝑟𝑡𝑖,𝑏 Energy level (kWh) of bus 𝑏 at the starting stop of trip 𝑖 or at the end of depot 𝑖
𝑙𝑒𝑛𝑑𝑖,𝑏 Energy level (kWh) of bus 𝑏 at the ending stop of trip 𝑖 or at the start of depot 𝑖

Sets:

𝐼 Set of trips
𝐷 Set of depots
𝑁 Set of nodes for the EVSP
𝐴 Set of arcs for the EVSP
𝐴𝑐𝑜𝑚𝑝 Set of compatible trip pairs
𝑆𝑐𝑎𝑛𝑑 Set of candidate charging locations
𝑂𝑠 Set of trips with stop 𝑠 as starting/origin stop
𝐸𝑠 Set of trips with stop 𝑠 as ending/destination stop
𝑇 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗 Set of time-steps during which a bus can charge at the starting stop of node 𝑗 if the preceding node was 𝑖
𝑇 𝑒𝑛𝑑𝑖,𝑗 Set of time-steps during which a bus can charge at the ending stop of node 𝑖 before moving to node 𝑗
𝑇 𝑝𝑟𝑒𝑣𝑖 Set of time-steps that precedes the starting time of trip 𝑖
𝑇 𝑛𝑒𝑥𝑡𝑖 Set of time-steps that succeeds the ending time of trip 𝑖

Data/Parameters:

𝑑𝑖 Energy consumed (kWh) to travel the distance of trip 𝑖
𝑑𝑖,𝑗 Energy consumed (kWh) in deadheading from the end of node 𝑖 to the start of node 𝑗
𝑀 A large positive number
𝑖𝑠𝑡𝑎𝑟𝑡 Starting stop of trip 𝑖
𝑖𝑒𝑛𝑑 Ending stop of trip 𝑖
𝛾𝑖,𝑗 Deadhead trip duration from the end stop of 𝑖 to the start stop of 𝑗
𝑐𝑏𝑢𝑠 Acquisition cost ($) of an electric bus
𝑐𝑙𝑜𝑐 Fixed investment cost ($) per charging location
𝑐𝑘𝑚𝑖,𝑗 Total energy consumption costs ($) from the end location of node 𝑖 to the start location of node 𝑗 (which equals the per km cost

multiplied by the corresponding deadhead distance traveled)

𝑙𝑒𝑛𝑑𝑖,𝑏 ≤ 𝑙𝑚𝑎𝑥
∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 ∀ 𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 (23)

𝑙𝑒𝑛𝑑𝑖,𝑏 = 𝑙𝑚𝑎𝑥
∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 ∀ 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐷 (24)

𝑙𝑠𝑡𝑎𝑟𝑡𝑖,𝑏 −
∑

𝑘∶(𝑘,𝑖)∈𝐴
𝑑𝑖 𝑥𝑘,𝑖,𝑏 ≥ 𝑙𝑚𝑖𝑛

∑

𝑘∶(𝑘,𝑖)∈𝐴
𝑥𝑘,𝑖,𝑏 ∀ 𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 (25)

𝑙𝑒𝑛𝑑𝑖,𝑏 −
∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑑𝑖,𝑗 𝑥𝑖,𝑗,𝑏 ≥ 𝑙𝑚𝑖𝑛

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 ∀ 𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 (26)

𝑙𝑠𝑡𝑎𝑟𝑡𝑗,𝑏 ≥ 𝑙𝑚𝑖𝑛
∑

𝑖∈𝐼
𝑥𝑖,𝑗,𝑏 ∀ 𝑗 ∈ 𝐷, 𝑏 ∈ 𝐵 (27)

𝑙𝑒𝑛𝑑𝑖,𝑏 ≤ 𝑙𝑠𝑡𝑎𝑟𝑡𝑖,𝑏 − 𝑑𝑖 +
∑

𝑡∈𝑇 𝑒𝑛𝑑𝑖,𝑗

𝑤𝑒𝑛𝑑𝑏,𝑖,𝑡 +𝑀(1 − 𝑥𝑖,𝑗,𝑏) ∀ 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼, (𝑖, 𝑗) ∈ 𝐴 (28)

𝑙𝑒𝑛𝑑𝑖,𝑏 ≥ 𝑙𝑠𝑡𝑎𝑟𝑡𝑖,𝑏 − 𝑑𝑖 +
∑

𝑡∈𝑇 𝑒𝑛𝑑𝑖,𝑗

𝑤𝑒𝑛𝑑𝑏,𝑖,𝑡 −𝑀(1 − 𝑥𝑖,𝑗,𝑏) ∀ 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼, (𝑖, 𝑗) ∈ 𝐴 (29)

𝑙𝑠𝑡𝑎𝑟𝑡𝑗,𝑏 ≥ 𝑙𝑒𝑛𝑑𝑖,𝑏 − 𝑑𝑖,𝑗 𝑥𝑖,𝑗,𝑏 +
∑

𝑡∈𝑇 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗

𝑤𝑠𝑡𝑎𝑟𝑡𝑏,𝑗,𝑡 −𝑀(1 − 𝑥𝑖,𝑗,𝑏) ∀ 𝑏 ∈ 𝐵, (𝑖, 𝑗) ∈ 𝐴 (30)

𝑙𝑠𝑡𝑎𝑟𝑡𝑗,𝑏 ≤ 𝑙𝑒𝑛𝑑𝑖,𝑏 − 𝑑𝑖,𝑗 𝑥𝑖,𝑗,𝑏 +
∑

𝑡∈𝑇 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗

𝑤𝑠𝑡𝑎𝑟𝑡𝑏,𝑗,𝑡 +𝑀(1 − 𝑥𝑖,𝑗,𝑏) ∀ 𝑏 ∈ 𝐵, (𝑖, 𝑗) ∈ 𝐴 (31)

𝑤𝑠𝑡𝑎𝑟𝑡𝑏,𝑖,𝑡 ≤ 𝜓𝑏 𝑦
𝑠𝑡𝑎𝑟𝑡
𝑖,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 𝑝𝑟𝑒𝑣𝑖 (32)

𝑤𝑒𝑛𝑑𝑏,𝑖,𝑡 ≤ 𝜓𝑏 𝑦
𝑒𝑛𝑑
𝑖,𝑡 ∀ 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 𝑛𝑒𝑥𝑡𝑖 (33)
10 
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𝑦𝑠𝑡𝑎𝑟𝑡𝑖,𝑡+1 ≥ 𝑦𝑠𝑡𝑎𝑟𝑡𝑖,𝑡 ∀ 𝑖 ∈ 𝐼, 𝑡, (𝑡 + 1) ∈ 𝑇 𝑝𝑟𝑒𝑣𝑖 (34)

𝑦𝑒𝑛𝑑𝑖,𝑡+1 ≤ 𝑦𝑒𝑛𝑑𝑖,𝑡 ∀ 𝑖 ∈ 𝐼, 𝑡, (𝑡 + 1) ∈ 𝑇 𝑛𝑒𝑥𝑡𝑖 (35)

𝑦𝑠𝑡𝑎𝑟𝑡𝑗,𝑡+𝛾𝑖,𝑗
≤ 1 − 𝑦𝑒𝑛𝑑𝑖,𝑡 +𝑀(1 − 𝑥𝑖,𝑗,𝑏) ∀ 𝑏 ∈ 𝐵, (𝑖, 𝑗) ∈ 𝐴𝑐𝑜𝑚𝑝, 𝑡 ∈ 𝑇 𝑒𝑛𝑑𝑖,𝑗 (36)

∑

𝑖∈𝑂𝑠

∑

𝑡∈𝑇 𝑝𝑟𝑒𝑣𝑖

𝑦𝑠𝑡𝑎𝑟𝑡𝑖,𝑡 +
∑

𝑖∈𝐸𝑠

∑

𝑡∈𝑇 𝑛𝑒𝑥𝑡𝑖

𝑦𝑒𝑛𝑑𝑖,𝑡 ≤𝑀𝑧𝑠 ∀ 𝑠 ∈ 𝑆𝑐𝑎𝑛𝑑 (37)

∑

𝑏∈𝐵

∑

𝑖∈𝐼∶
𝑖𝑒𝑛𝑑=𝑠

𝑤𝑒𝑛𝑑𝑏,𝑖,𝑡 +
∑

𝑏∈𝐵

∑

𝑖∈𝐼∶
𝑖𝑠𝑡𝑎𝑟𝑡=𝑠

𝑤𝑠𝑡𝑎𝑟𝑡𝑏,𝑖,𝑡 ≤ 𝑞𝑠∕60 ∀ 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆𝑐𝑎𝑛𝑑 (38)

𝑞𝑠 ≤𝑀𝑧𝑠 ∀ 𝑠 ∈ 𝑆𝑐𝑎𝑛𝑑 (39)

𝑥𝑖,𝑗,𝑏, 𝑧𝑠, 𝑦
𝑠𝑡𝑎𝑟𝑡
𝑖,𝑡 , 𝑦𝑒𝑛𝑑𝑖,𝑡′ ∈ {0, 1} ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 𝑝𝑟𝑒𝑣𝑖 , 𝑡′ ∈ 𝑇 𝑛𝑒𝑥𝑡𝑖 , 𝑠 ∈ 𝑆𝑐𝑎𝑛𝑑 (40)

𝑤𝑠𝑡𝑎𝑟𝑡𝑏,𝑖,𝑡 , 𝑤
𝑒𝑛𝑑
𝑏,𝑖,𝑡′ , 𝑞𝑠, 𝑙

𝑠𝑡𝑎𝑟𝑡
𝑖,𝑏 , 𝑙𝑒𝑛𝑑𝑖,𝑏 ∈ R+ ∀ 𝑖 ∈ 𝑁, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 𝑝𝑟𝑒𝑣𝑖 , 𝑡′ ∈ 𝑇 𝑛𝑒𝑥𝑡𝑖 , 𝑠 ∈ 𝑆𝑐𝑎𝑛𝑑 (41)

e ensure flow conservation at every trip node and depot node using (18) and (19), respectively. Constraint (20) indicates that each
rip is served by exactly one bus. Constraint (21) models the scenario where a bus may remain unused and determines the buses
tarting at different depots. Inequalities (22) and (23) ensure that the battery can be charged up to the maximum capacity, avoiding
vercharging. Used buses leave the depot fully charged according to (24). Constraints (25), (26), and (27) set minimum charge-level
equirements so that buses have sufficient energy to complete their assigned trips. Specifically, (25) handles service trips, (26) is
pplied to deadhead trips, and (27) deals with depot trips. Constraints (28) and (29) track the energy levels of each bus throughout
ts assigned trips, using the appropriate energy consumption and battery replenishment variables. Similar inequalities are defined
or the deadhead trips (including the pull-in and pull-out depot trips and the compatible service trips) using (30) and (31). We use a
arge positive number 𝑀 in the constraints to model the scenarios where an arc 𝑥𝑖,𝑗,𝑏 may or may not be used. If 𝑥𝑖,𝑗,𝑏 is one, i.e., the

arc (𝑖, 𝑗) is used, the terms with 𝑀 vanish, activating the desired constraints. On the other hand, when 𝑥𝑖,𝑗,𝑏 is zero, the constraints
ssociated with 𝑀 become relaxed. Constraints (32) and (33) restrict the amount of energy that can be transferred to a bus at
very time-step. Constraints (34)–(36) model the split charging of buses at both ends of a layover in a manner similar to (12)–(14).
onstraint (37) allows charging activities to occur if a charging facility is located at a terminal stop. Constraint (38) sets 𝑞𝑠 to the
aximum power supply needed for buses charging at 𝑠. It is permitted to be non-negative only if a charging station is opened at

, as stipulated by (39). We do not impose bounds on the contracted power capacity, but it is straightforward to incorporate them
hrough limits on the 𝑞𝑠 variables. The number of chargers is also not explicitly modeled to keep the decision variables continuous.

e can estimate this number from the optimal 𝑞𝑠 values and the power rating of each charging unit. Finally, binary restrictions and
imits on the decision variables are imposed by (40) and (41).

.3. Surrogate CSPs

The CEE MILP presented in Section 4.1 can be simplified using surrogate LP models. More importantly, these LPs enable the
evelopment of efficient local search heuristics, which will be discussed in Section 5. In these variants, we restrict buses to charge
t only one of the end stops during a layover when charging stations are available at both ends. This approach eliminates the
eed for integer variables that determine the timing of deadheading. Two types of priority rules can be applied at such layovers: a
harge-and-go (CAG) strategy, which involves charging at the end stop of the current trip before deadheading, and a go-and-charge
GAC) strategy, where deadheading is performed first, followed by charging at the starting stop of the next trip. The energy supplied
n each time-step in these split charging models changes dynamically. We can further simplify these models by assuming a constant
nergy supply rate within every charging opportunity, which we refer to as uniform charging. Our experiments demonstrate that
hese LPs are highly tractable, and there is an improvement in the overall objective and the CSP costs when they are integrated
ith other location and scheduling problems.

.3.1. Split charging with priority
Fig. 6 depicts an example of the split charging strategy. For the layover between trips 1 and 4, which has charging stations at

oth ends, the CAG strategy prioritizes charging at the ending stop of trip 1 (indicated by the gray node) as shown in Fig. 6(a).
imilarly, Fig. 6(b) demonstrates the GAC strategy, where charging at the starting stop of trip 4 is given priority. The formulations
or the CAG and GAC models are similar, differing only in the input data.

min
∑

𝑝∈𝑃

∑

𝑏∈𝐵

∑

𝑠∈𝑍,𝑡∈𝑇𝑝∩𝑇𝑏,𝑘∶

𝑘∈𝐾1
𝑏 ,𝑠𝑏,𝑘=𝑠

𝑐𝑒𝑙𝑒𝑐𝑝 𝑤𝑏,𝑠,𝑡 + 𝑐𝑐𝑎𝑝
∑

𝑠∈𝑍
𝑞𝑠 (42)

s.t. (2), (4), (6), (8), (9) with𝐾2
𝑏 = ∅

∑

𝑏∈𝐵,𝑘∈𝐾1
𝑏 ∶

𝑠𝑏,𝑘=𝑠,𝑡∈𝑇𝑏,𝑘

𝑤𝑏,𝑠,𝑡 ≤ 𝑞𝑠∕60 ∀ 𝑠 ∈ 𝑍, 𝑡 ∈ 𝑇 (43)

The objective (42) consists of two terms: the electricity consumption costs in different periods and the contracted capacity costs

across all charging locations. Constraint (43) models the contracted power capacity requirements of charging stations and is a

11 
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Fig. 6. Illustration of split charging strategies (The bar charts at the upper level display the charging decisions in different time-steps within each charging
opportunity).

simplified version of (15). We experimented with these strategies using a specific set of location and bus rotations and found that
the objective of the CAG strategy is closer to that of the optimal CEE solution for most networks. Therefore, for the remainder of
this paper, we will assume that the CSP is solved using the CAG strategy unless stated otherwise.

4.3.2. Uniform charging with priority
To further reduce the number of variables and the runtime of the local search operators/algorithms, one could consider

implementing a uniform charging strategy. In this formulation, we assume that buses are charged throughout their entire idle period
at a charging station, thereby eliminating the need for time indices as shown in the example in Fig. 7. We determine the charging
levels based on the energy requirements of the buses and their idle duration at the charging locations. Let 𝑤𝑏,𝑘 represent the energy
provided and 𝛿𝑏,𝑘 denote the idle time for bus 𝑏 at its 𝑘th charging opportunity. The uniform charging formulation can be written
as follows.

min
∑

𝑝∈𝑃

∑

𝑏∈𝐵

∑

𝑘∈𝐾1
𝑏 ∶

𝑡∈𝑇𝑝∩𝑇𝑏,𝑘

𝑐𝑒𝑙𝑒𝑐𝑝
𝑤𝑏,𝑘
𝛿𝑏,𝑘

+ 𝑐𝑐𝑎𝑝
∑

𝑠∈𝑍
𝑞𝑠 (44)

s.t. 𝑙𝑏,𝑘+1 = 𝑙𝑏,𝑘 − 𝑒𝑏,𝑘,𝑘+1 +𝑤𝑏,𝑘+1 ∀ 𝑏 ∈ 𝐵, (𝑘 + 1) ∈ 𝐾1
𝑏 (45)

𝑙𝑏,𝑘 ≤ 𝑙𝑚𝑎𝑥 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾1
𝑏 (46)

𝑙𝑏,𝑘 − 𝑒𝑏,𝑘,𝑘+1 ≥ 𝑙𝑚𝑖𝑛 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾1
𝑏 (47)

𝑙𝑏,0 = 𝑙𝑚𝑎𝑥 ∀ 𝑏 ∈ 𝐵 (48)

0 ≤ 𝑤𝑏,𝑘 ≤ 𝜓𝑏 𝛿𝑏,𝑘 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾1
𝑏 (49)

∑

𝑏∈𝐵,𝑘∈𝐾1
𝑏 ∶

𝑠𝑏,𝑘=𝑠,𝑡∈𝑇𝑏,𝑘

𝑤𝑏,𝑘
𝛿𝑏,𝑘

≤ 𝑞𝑠∕60 ∀ 𝑠 ∈ 𝑍, 𝑡 ∈ 𝑇 (50)

The objective (44) again consists of two terms: the electricity costs for charging and the contracted power capacity costs across all
charging locations. Constraint (45) maintains consistency in the charging levels between two consecutive charging opportunities
for each bus. Constraint (46) prohibits buses from charging in excess of their battery limits. Constraint (47) guarantees that the
energy levels in buses are always maintained above a specified minimum threshold. Furthermore, due to (48), buses begin their
daily activities with a battery that is fully charged. The maximum energy transferred to a bus within a single charging opportunity
is captured in constraint (49). Finally, Eq. (50) defines the station-level maximum contracted capacity, based on the energy supply
rate during various charging opportunities, for buses charging simultaneously at the station.

From an implementation perspective, constraint (50) need not be added for every time-step. Alternatively, for each station, we
could identify overlapping charging opportunities for different buses. This allows us to calculate the total rate at which multiple
buses are charged simultaneously. To this end, we construct an undirected graph for each charging station 𝑠 with pairs of (𝑏, 𝑘) as
vertices, where 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾1

𝑏 , 𝑠𝑏,𝑘 = 𝑠. We add an edge between two vertices if the charging opportunity time windows overlap. Once
this graph is constructed, (50) can be populated by enumerating all maximal cliques using the Bron–Kerbosch algorithm (Bron and
Kerbosch, 1973). A clique represents a subgraph in which an edge connects every vertex to all the other vertices in the subgraph. A
maximal clique is a clique that cannot be extended further by adding another vertex. This method of finding cliques is time-efficient
since it avoids duplicating constraints for different time-steps. Fig. 8 presents an example of three buses, 𝑏 , 𝑏 , and 𝑏 , at a station,
1 2 3
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Fig. 7. Illustration of the uniform CAG charging strategy (The bar charts at the upper level display the charging decisions in different time-steps within each
charging opportunity).

Fig. 8. Clique enumeration for populating CSP constraints.

where the charging opportunity time windows are indicated by green bars. The time windows for the pairs (𝑏1, 𝑘1), (𝑏2, 𝑘3), and
(𝑏3, 𝑘5) overlap, as do the time windows for the pairs (𝑏1, 𝑘2) and (𝑏2, 𝑘4). These overlaps are illustrated in the right panel of the
figure. Based on this graph, only two equations are required to represent (50) at this station.

The MDVSP is known to be NP-Hard (Bertossi et al., 1987). Unsurprisingly, the CLP–EVSP–CSP, even with surrogate models,
scales poorly for real-world instances. To tackle this challenge, we propose two ILS heuristic procedures: one for the CLP–EVSP,
which is sequentially followed by a CSP, and another for the joint CLP–EVSP–CSP, which integrates the aforementioned LPs into
the search operators. Additionally, we occasionally use the solution to a CLP–CSP where the EVSP decisions are pre-determined,
and each charging station’s usage is optional. This scenario is modeled by introducing additional binary variables 𝑧𝑠 in the CAG
CSP formulations, along with a constraint of the form (39).

5. Iterated local search

We use an ILS framework to overcome the computational challenges of the MILP model and solve CLP–EVSP and CLP–EVSP–
CSP efficiently. The procedure’s initial solution is generated through the concurrent scheduler algorithm (Bodin et al., 1978). This
algorithm organizes trips in ascending order of departure times and assigns them to available buses in a greedy manner. Additionally,
it activates charging stations at terminal stops when the buses’ charge levels fall below certain thresholds. Details on generating
initial solutions and charge-level feasibility checks are discussed in Sections 5.1 and 5.2, respectively.

In the sequential model, we first solve the CLP–EVSP using the ILS procedure. At a high level, the ILS for the CLP–EVSP involves
two sets of operators: location operators and scheduling operators. The location operators (refer Section 5.4), which can be viewed
as the ones making the first-stage decisions, optimize the CLP by evaluating the impact of opening and closing charging stations.
While opening charging stations does not compromise the feasibility of existing vehicle rotations, closing them can render rotations
charge-infeasible. In such cases, a rotation may have to be split, necessitating the creation of additional rotations. These rotations are
subsequently passed to the scheduling operators (see Section 5.3), which optimize the EVSP through trip/depot exchanges and shifts.
Operating costs are thus reduced either due to minimized deadheading or through the removal of rotations when trips are shifted.
The resulting rotations are then used to calculate utilization metrics, which track the time spent by buses at different terminal
stops, helping the location operators prioritize decisions on opening and closing charging stations. Subsequently, assuming that
the charging station locations and vehicle rotations are fixed, we optimize the CSP by solving the CEE CSP formulation. Fig. 9(a)
summarizes the steps involved in the ILS process of the sequential model, and Table 5 describes the additional notation used for
the local search methods. Unless stated otherwise, notations used in this section have the same meaning as those defined in the
previous sections.

Integrating the MILP model for charge scheduling with the local search for the CLP–CSP, while not inconceivable, is impractical,
as the MILP model needs to be solved numerous times within the scheduling operators. Hence, we use our novel surrogate CSP
formulations, which help find effective upper bounds to the optimal charging-related costs and assist in distinguishing the good
exchanges and shifts from the bad ones. Inarguably, employing these surrogate models introduces an optimality gap when compared
to the generic CEE version. However, more important than the magnitude is the consistency in the ordering of the CSP costs between
the CEE MILP and the surrogate models across different rotations. Since these surrogate models are LPs, they exhibit shorter runtimes,
making a strong case for their use within the ILS framework.

The overarching idea guiding our decisions for integration is straightforward. Operators that frequently invoke the CSP (such
as exchanges and shifts) employ the uniform CAG model due to its speed. In contrast, operators that call the CSP model sparingly,
13 
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Table 5
Notation used in ILS methods.
Notation Description

Sets/Lists:

𝑉 List of rotations of all the electric buses
𝑉𝑏 Rotation of 𝑏th electric bus present in a list of bus rotations

Data/Variables:

𝑛𝑏 Number of trips performed by bus 𝑏
𝑖𝑗𝑏 𝑗th trip performed by bus 𝑏
𝑖0𝑏 Starting depot of bus 𝑏
𝑖𝑛𝑏+1𝑏 Ending depot of bus 𝑏
𝛥𝑖 Nearest depot location from the starting bus stop location of trip 𝑖 ∈ 𝐼
𝜅𝑠 Current utilization of terminal 𝑠
𝜋𝑠 Potential utilization of terminal 𝑠
𝑞∗𝑠 Optimal power capacity of terminal 𝑠 from the CLP–CSP split charging formulation
𝑓 (𝑉 ,𝑍) Objective function with or without the CSP cost

such as the objective function evaluations, utilize the split CAG version. In addition, we treat the charging locations suggested by
the location operators merely as candidate locations, allowing a CLP–CSP split CAG model to optimize the actual locations within
this set. This CLP–CSP solution takes into account the fixed costs of establishing charge scheduling infrastructure and the power
capacity costs, and can potentially reduce the number of charging stations.

A summary of the enhancements to the ILS procedure is shown in Fig. 9(b). The green boxes indicate the CSP-related sub-routines.
he candidate locations are set as before, using the first-stage location operators. The EVSP–CSP is then addressed using the rotation
cheduling operators with the CSP surrogate models. Finally, utilization metrics, which tracked the time spent by buses at different
erminal stops, are now augmented with power capacity variables that guide the search for opening and closing charging stations.
n the following subsections, we delve into the details of the individual components of the ILS. We summarize the overall procedure
n Section 5.5.

.1. Initial solutions

The Concurrent Scheduler (CS) algorithm generates an initial feasible solution, see Algorithm 1. The solutions to the CLP–EVSP
an be represented using a list of bus rotations, 𝑉 , and a set of charging locations 𝑍 ⊆ 𝑆𝑐𝑎𝑛𝑑 .

Algorithm 1: ConcurrentScheduler (CS)
Input: 𝐼
Output: 𝑉 ,𝑍

1 𝑉 ,𝑍 ← 𝜙, 𝜙;
2 Rearrange 𝐼 in the ascending order of the trip start times;
3 Pick the first trip 𝑖 from the sorted list of 𝐼 ;
4 𝑉1 ← [𝛥𝑖, 𝑖, 𝛥𝑖] and add 𝑉1 to 𝑉 ;
// Insert trips to existing rotations

5 for 𝑗 = 2 to 𝑛 do
6 𝑖𝑗 ← The 𝑗th element from the sorted list of 𝐼 ;
7 for 𝑏 = 1 to |𝑉 | ∶ (𝑖𝑛𝑏𝑏 , 𝑖𝑗 ) ∈ 𝐴𝑐𝑜𝑚𝑝 do
8 𝑉 𝑡𝑒𝑚𝑝

𝑏 ← 𝑉𝑏 and insert 𝑖𝑗 to the list of service trips in 𝑉 𝑡𝑒𝑚𝑝
𝑏 ;

9 insertTrip, 𝑍𝑡𝑒𝑚𝑝 ← IsRotationChargeFeasible(𝑉 𝑡𝑒𝑚𝑝
𝑏 , 𝑍);

10 if 𝗂𝗇𝗌𝖾𝗋𝗍𝖳𝗋𝗂𝗉 then
11 𝑉𝑏 ← 𝑉 𝑡𝑒𝑚𝑝

𝑏 and 𝑍 ← 𝑍𝑡𝑒𝑚𝑝;
12 break

// Create new rotations
13 if 𝑖𝑗 is not assigned to any of the buses used so far then
14 Use a new bus |𝑉 | + 1, update its rotation to [𝛥𝑖𝑗 , 𝑖𝑗 , 𝛥𝑖𝑗 ], and add it to 𝑉 ;

We denote 𝑉 as [𝑉1, 𝑉2,… , 𝑉𝑏,… , 𝑉
|𝐵|], where 𝑉𝑏 is the rotation of the 𝑏th bus, containing information on the sequence of service

trips, along with its initial and final depot locations. We use the indices 𝑏, 𝑢, and 𝑣 to refer to buses. Assume that the number of trips
performed by the 𝑏th bus is 𝑛𝑏. The list 𝑉𝑏 can then be mathematically written as 𝑉𝑏 = [𝑖0𝑏 , 𝑖

1
𝑏 , 𝑖

2
𝑏 ,… , 𝑖𝑛𝑏𝑏 , 𝑖

𝑛𝑏+1
𝑏 ], where 𝑖𝑘𝑏 denotes the

0 𝑛𝑏+1
𝑘th trip performed by bus 𝑏. The starting and ending depots for bus 𝑏 are represented as dummy trips 𝑖𝑏 and 𝑖𝑏 , respectively. Note

14 
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that the starting and ending depots can be different. For these rotations, the corresponding decision variables in the MILP models
are 𝑥𝑖0𝑏 ,𝑖1𝑏 ,𝑏 = 1, 𝑥𝑖1𝑏 ,𝑖2𝑏 ,𝑏

= 1,… , 𝑥
𝑖𝑛𝑏𝑏 ,𝑖𝑛𝑏+1𝑏 ,𝑏

= 1, and for the charging station locations, 𝑧𝑠 = 1 for all 𝑠 ∈ 𝑍.
Initially, we assume no open charging locations. The algorithm starts by sorting the service trips in the ascending order of their

start times (line 2). It creates a new rotation by assigning the first trip 𝑖 to a bus by starting a bus from the depot nearest to trip 𝑖,
𝛥𝑖 (lines 3–4). The algorithm then checks if the next trip 𝑖𝑗 from the sorted list can be assigned to a used bus (lines 5–12). When
multiple rotations can accommodate the trip, priority is given to the bus rotation, which was created first. The time compatibility
for inserting the trip is checked in line 7, and a copy of the updated bus rotation is created in line 8. Additionally, the energy
level feasibility of the bus rotation is checked in line 9 using the IsRotationChargeFeasible function. This function returns a Boolean
value and an updated list of charging stations, which can be opened at any terminal stop. It is similar to Algorithm 2, described
in Section 5.2. The charging locations are modified using the CAG strategy, where opening a charging facility is prioritized at the
end stops of trips. If the trip insertion is feasible, the bus rotation and charging locations are updated in line 11, and the algorithm
proceeds to insert the next trip. If not, the algorithm creates a new bus rotation and assigns the trip to it (lines 13–14).

5.2. Charge feasibility check

Checking the charge feasibility of a bus for a given set of charging stations is central to the local search procedure and is
performed by Algorithm 2. Several sub-routines use variants of this algorithm, which are briefly described in their respective sections.

Algorithm 2: IsRotationChargeFeasible
Input: 𝑉𝑏, 𝑍
Output: True/False

1 feasibleTillTrip ← −1;
2 𝑙 ← 𝑙𝑚𝑎𝑥 − (𝑑𝑖0𝑏 ,𝑖1𝑏

− 𝑑𝑖1𝑏
);

3 if 𝑙 < 𝑙𝑚𝑖𝑛 then return false;
4 for 𝑗 = 1 to (𝑛𝑏 − 1) do
5 if 𝑙 − 𝑑

𝑖𝑗𝑏 ,𝑖
𝑛𝑏+1
𝑏

≥ 𝑙𝑚𝑖𝑛 then feasibleTillTrip ← 𝑗;

// Current trip end is a charging station
6 if 𝑖𝑗,𝑒𝑛𝑑𝑏 ∈ 𝑍 then
7 𝑙 ← min{𝑙𝑚𝑎𝑥, 𝑙 + 𝜆𝛿𝑖𝑗𝑏 ,𝑖

𝑗+1
𝑏

} − 𝑑𝑖𝑗𝑏 ,𝑖
𝑗+1
𝑏

;

8 if 𝑙 < 𝑙𝑚𝑖𝑛 then isNextTripFeasible ← false;
// Only next trip start is a charging station

9 if 𝑖𝑗,𝑒𝑛𝑑𝑏 ∉ 𝑍, 𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏 ∈ 𝑍 then
10 𝑙 ← 𝑙 − 𝑑𝑖𝑗𝑏 ,𝑖

𝑗+1
𝑏

;

11 if 𝑙 < 𝑙𝑚𝑖𝑛 then isNextTripFeasible ← false;
12 𝑙 ← min{𝑙𝑚𝑎𝑥, 𝑙 + 𝜆𝛿𝑖𝑗𝑏 ,𝑖

𝑗+1
𝑏

};

// Current trip end and next trip start are not charging stations
13 if 𝑖𝑗,𝑒𝑛𝑑𝑏 ∉ 𝑍, 𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏 ∉ 𝑍 then
14 𝑙 ← 𝑙 − 𝑑𝑖𝑗𝑏 ,𝑖

𝑗+1
𝑏

;

15 if 𝑙 < 𝑙𝑚𝑖𝑛 then isNextTripFeasible ← false;
16 𝑙 ← 𝑙 − 𝑑𝑖𝑗+1𝑏

;

17 if 𝑙 ≥ 𝑙𝑚𝑖𝑛 then isNextTripFeasible ← true;
18 if 𝐧𝐨𝐭 𝗂𝗌𝖭𝖾𝗑𝗍𝖳𝗋𝗂𝗉𝖥𝖾𝖺𝗌𝗂𝖻𝗅𝖾 then
19 return false

20 𝑙 ← 𝑙 − 𝑑
𝑖𝑛𝑏𝑏 ,𝑖𝑛𝑏+1𝑏

;

21 if 𝑙 < 𝑙𝑚𝑖𝑛 then
22 return false
23 feasibleTillTrip ← 𝑛𝑏;
24 return true;

The charge level at terminals is monitored using the 𝑙 variable. Since buses depart the depot fully charged, they are not permitted
o be charged at the start location of the first trip. Lines 2–3 ensure that the bus can deadhead to the start terminal of the first trip
nd successfully complete it. In cases where a rotation is infeasible, it is sometimes necessary to identify the last trip in its sequence
hat can be completed without running out of charge. This information is tracked using the feasibleTillTrip variable. This variable
15 
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Fig. 9. Iterated local search procedures.

Fig. 10. Scenarios for charging between trips with a maximum charging rate 𝜆 = 2.5 kWh/min.

is updated in line 5, which checks if the rotation can be terminated early and the end depot can be reached without letting the
charge levels fall below the minimum threshold.

Checking whether the charge level 𝑙 falls below 𝑙𝑚𝑖𝑛 must be carefully carried out after every trip, especially considering the
availability of charging opportunities. We declare the bus rotation as infeasible if charging at the maximum possible rate cannot
meet the energy requirements of its trips. This leads to three scenarios under the CAG strategy. In the first scenario (lines 6–8), the
end terminal is a charging station, allowing the bus to either charge to the maximum possible level, i.e., recharge at the maximum
rate possible during the idle time between trips, denoted as 𝜆𝛿𝑖𝑗𝑏 ,𝑖

𝑗+1
𝑏

. Subsequently, the bus may need to deadhead to the start location

of the next trip, after which the charge level is compared with 𝑙𝑚𝑖𝑛.
In the second scenario (lines 9–12), the bus can only charge after deadheading. Therefore, the charge levels are first checked for

infeasibility and then updated with the maximum possible energy that can be provided within its available idle time. In the third
scenario (lines 13–15), where there is no charging opportunity, the charge levels are updated following the deadheading trip. Line
16 accounts for the energy required for the next trip, and line 20 addresses the scenario of deadheading to the end depot after the
last trip.

Fig. 10 illustrates the charge level updates between two consecutive trips (4 and 7) of a bus rotation. The numbers on the arcs
indicate the energy required for each trip or for deadheading. The values displayed in the colored boxes represent the charge levels
under different scenarios. Assuming that charging occurs throughout the entire idle time at a maximum rate of 2.5 kWh/min, the
charge levels increase by 50 kWh at each charging opportunity. In the following sections, we use variants of this function, such as
the AreRotationChargeFeasible, in which this function is applied in a loop across different rotations. The notations for these functions
are slightly abused to spare the reader from a description of overloaded versions of the function.
16 
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5.3. Optimizing rotations

We optimize rotations through simple local search moves that involve exchanging and shifting service trips or exchanging depots.
ach iteration of this procedure (see Algorithm 3) alters the rotations in a greedy way by selecting a move that yields the maximum
bjective function improvement. This iterative process yields solutions that we call exchange optimal and shift optimal, i.e., solutions

that cannot be improved through exchanging two trips or shifting a trip. One can view this as being similar to 2-opt moves in the
traveling salesman problem. Exchanging and shifting multiple trips can also be performed, but this comes at a higher computational
cost as the number of possibilities explodes. In this context, methods such as improvement graphs (Ahuja et al., 2002) are not
directly applicable since the savings are not additive. Instead, we use an OptimizeMultipleShifts subroutine on a limited set of rotations
involving few trips (based on a user-defined threshold) to determine if multiple trips can be shifted elsewhere.

Algorithm 3: OptimizeRotations
Input: 𝑉 ,𝑍
Output: 𝑉

1 improvement ← ∞;
2 𝑉 𝑏𝑒𝑠𝑡 ← 𝑉 ;
3 while 𝗂𝗆𝗉𝗋𝗈𝗏𝖾𝗆𝖾𝗇𝗍 > 0 do
4 𝑉 ← 𝑉 𝑏𝑒𝑠𝑡;
5 𝑉 𝑏𝑒𝑠𝑡 ← ApplyBestImprovement(𝑉 ,𝑍);
6 improvement ← 𝑓 (𝑉 ,𝑍) − 𝑓 (𝑉 𝑏𝑒𝑠𝑡, 𝑍);
7 𝑉 ← OptimizeMultipleShifts(𝑉 ,𝑍);

Rotations are updated within each iteration using the ApplyBestImprovement sub-routine (Algorithm 4). The best exchange and
shift across all service trips are first evaluated (lines 1–2), and the better of the two is chosen (lines 8–11). The subroutines Exst
and Sst are described in Appendix A. When service trip exchanges and shifts do not yield any benefit, we try exchanging depots
(lines 3–7). Note that buses do not need to return to the same depot at the end of the day as long as the distribution of buses across
depots remains the same at the start and end of operations. This allows the service provider to repeat schedules without needing
to re-balance the buses. Trip exchanges and shifts are the most time-consuming parts of the local search process, particularly when
the CSP is integrated. Hence, when dealing with networks with a large number of trips, we use a hybrid version of this algorithm to
keep the computation tractable. In this hybrid method, a candidate pool of exchanges and shifts is shortlisted based on the savings
in deadheading, and the CSP is jointly solved only for new rotations derived from this pool.
Algorithm 4: ApplyBestImprovement

Input: 𝑉 ,𝑍
Output: 𝑉

1 𝑉 𝑒𝑥𝑠𝑡,exchangeSavings ← Exst(𝑉 ,𝑍);
2 𝑉 𝑠𝑠𝑡, shiftSavings ← Sst(𝑉 ,𝑍);
// Exchange depots

3 if 𝖾𝗑𝖼𝗁𝖺𝗇𝗀𝖾𝖲𝖺𝗏𝗂𝗇𝗀𝗌 ≤ 0 𝐚𝐧𝐝 𝗌𝗁𝗂𝖿 𝗍𝖲𝖺𝗏𝗂𝗇𝗀𝗌 ≤ 0 then
4 𝑉 𝑒𝑥𝑑 ,depotExchangeSavings ← Exd(𝑉 ,𝑍);
5 if 𝖽𝖾𝗉𝗈𝗍𝖤𝗑𝖼𝗁𝖺𝗇𝗀𝖾𝖲𝖺𝗏𝗂𝗇𝗀𝗌 > 0 then
6 𝑉 ← 𝑉 𝑒𝑥𝑑 ;
7 return;
// Exchange or shift service trips

8 if 𝖾𝗑𝖼𝗁𝖺𝗇𝗀𝖾𝖲𝖺𝗏𝗂𝗇𝗀𝗌 > 𝗌𝗁𝗂𝖿 𝗍𝖲𝖺𝗏𝗂𝗇𝗀𝗌 then
9 𝑉 ← 𝑉 𝑒𝑥𝑠𝑡;

10 else
11 𝑉 ← 𝑉 𝑠𝑠𝑡;

5.4. Optimizing stations

5.4.1. Utilization metrics
To prioritize the opening and closing of charging stations, we track the time spent by buses at different charging stations. If

everal buses are idle at stops that currently are not charging stations, opening a station at that location can potentially reduce
harging costs. Likewise, if buses do not spend much time at locations where charging stations are currently open, closing them
ould help recover the fixed costs associated with charging infrastructure.
17 
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Algorithm 5: UpdateUtilization
Input: 𝑉 ,𝑍
Output: 𝑍
// Initialize current and potential utilizations

1 𝜅𝑠, 𝜋𝑠 ← 0, 0 ∀ 𝑠 ∈ 𝑍;
2 for {𝑏 ∈ 𝑉 ∶ 𝑏 requires charging} do
3 for 𝑗 = 1 to 𝑛𝑏 − 1 do

// The current trip’s end terminal is a charging station
4 if 𝑖𝑗,𝑒𝑛𝑑𝑏 ∈ 𝑍 then
5 𝜅𝑖𝑗,𝑒𝑛𝑑𝑏

← 𝜅𝑖𝑗,𝑒𝑛𝑑𝑏
+ 𝜃𝑖𝑗𝑏 ,𝑖

𝑗+1
𝑏

// Only the next trip’s start terminal is a charging station
6 if 𝑖𝑗,𝑒𝑛𝑑𝑏 ∉ 𝑍, 𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏 ∈ 𝑍 then
7 𝜅𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏

← 𝜅𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏
+ 𝜃𝑖𝑗𝑏 ,𝑖

𝑗+1
𝑏

8 𝜋𝑖𝑗,𝑒𝑛𝑑𝑏
← 𝜋𝑖𝑗,𝑒𝑛𝑑𝑏

+ 𝜃𝑖𝑗𝑏 ,𝑖
𝑗+1
𝑏

// The current trip’s end and next trip’s start terminals are not charging stations
9 if 𝑖𝑗,𝑒𝑛𝑑𝑏 ∉ 𝑍, 𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏 ∉ 𝑍 then

10 𝜋𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏
← 𝜋𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏

+ 𝜃𝑖𝑗𝑏 ,𝑖
𝑗+1
𝑏

;

11 𝜋𝑖𝑗,𝑒𝑛𝑑𝑏
← 𝜋𝑖𝑗,𝑒𝑛𝑑𝑏

+ 𝜃𝑖𝑗𝑏 ,𝑖
𝑗+1
𝑏

;

// Close charging terminals with zero utilization
12 for 𝑠 ∈ 𝑍 ∶ 𝜅𝑠 = 0 do
13 𝑍 ← 𝑍 ⧵ {𝑠} ;

Algorithm 5 is designed to update the utilization of various locations. We keep track of two types of utilization metrics at each
erminal 𝑠: current utilization 𝜅𝑠 and potential utilization 𝜋𝑠. The current utilization simply stores the cumulative time spent by all
uses at a charging station. Potential utilization, on the other hand, captures the total idle time spent by all the buses should a
harging station be opened at 𝑠. Finally, the algorithm also removes any charging stations from the set of locations that have zero
urrent utilization in lines 12–13.

Initially, the algorithm sets both the current and potential utilizations of each location to zero. For each trip made by a bus,
t checks if the ends of a layover have a charging station and works in three scenarios just like Algorithm 2. In case 1, if the end
erminal of the current trip is a charging station, the algorithm increments the current utilization of that station by the idle time
etween the current and the next trip. Note that the utilization stats are dependent on the current charging station configuration
ince we assume that operations are carried out under the CAG policy. Hence, an open charging station at the start of a trip will
ot be utilized if there is already a charging station at the end terminal of its previous trip. In scenario 2, if the end terminal is not
charging station but the start terminal of the next trip is, it increments the current utilization of the next trip’s start terminal and

he potential utilization of the current trip’s end terminal by the idle time. Finally, in scenario 3, if neither end of a layover is a
harging station, only the potential utilization for both terminals is incremented by the idle time.

.4.2. Opening charging stations
Algorithm 6 evaluates the impact of adding new charging stations on the overall cost. It takes as input a list of charging stations

o open 𝑍𝑜𝑝𝑒𝑛 and checks for improvement in the rotations (and charge scheduling in the case of the joint model). That is, the fixed
osts of opening the station must be offset by a reduction in the vehicle and charge scheduling costs. Charging stations that are not
eeded are then removed using the UpdateUtilization function (in the case of the sequential model) and the CLP–CSP model (in the
oint model case). If the new objective value is not better, no changes are made to the set of charging stations and bus rotations
lines 7–9).

Algorithm 6: OpenChargingStation
Input: 𝑉 ,𝑍,𝑍𝑜𝑝𝑒𝑛

Output: 𝑉 ,𝑍
1 𝑍𝑡𝑒𝑚𝑝 ← 𝑍 ∪ {𝑍𝑜𝑝𝑒𝑛};
2 𝑉 𝑡𝑒𝑚𝑝 ← OptimizeRotations(𝑉 ,𝑍𝑡𝑒𝑚𝑝);
3 if the sequential model is solved then
4 𝑍𝑡𝑒𝑚𝑝 ← UpdateUtilization(𝑉 ,𝑍𝑡𝑒𝑚𝑝)

5 if if the joint model is solved then
6 Solve CLP–CSP model (Section 4.3), remove unused stations from 𝑍𝑡𝑒𝑚𝑝

7 if 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍𝑡𝑒𝑚𝑝) < 𝑓 (𝑉 ,𝑍) then
8 𝑉 ← 𝑉 𝑡𝑒𝑚𝑝;
9 𝑍 ← 𝑍𝑡𝑒𝑚𝑝
18 
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5.4.3. Closing charging stations and splitting trips
We also test the effect of closing charging stations in a similar way, except that closing charging stations affects charge feasibility,

nd hence, we allow rotations to be split. Algorithm 7 takes as input the specific charging station that is considered for closure and
dentifies a subset of buses that are affected by the closure of the specified charging station under the CAG strategy (lines 2–6).
he algorithm then temporarily removes the specified charging station from the location set and checks if the bus rotations are still
easible. If the rotations are not feasible, the algorithm splits trips at locations from where the bus can return to the depot without
alling below the lower threshold of charge using the AreRotationsChargeFeasible function. This function, a variant of Algorithm
, returns a Boolean value and a set of potentially modified rotations. It yields ‘true’ if closing the station does not result in a
us being stranded due to inadequate charge. This is determined after recursively splitting rotations and checking their charge
easibility. Splitting trips will require new buses and can increase the fixed costs of buses. However, this can be compensated by
etter bus-to-trip assignments. Hence, the bus rotations are optimized using the OptimizeRotations sub-routine in line 11. If there is
n improvement, the station is kept closed, and the algorithm terminates.

Algorithm 7: CloseChargingStation
Input: 𝑉 ,𝑍, 𝑠𝑐𝑙𝑜𝑠𝑒
Output: 𝑉 ,𝑍
// Identify the rotations affected by the terminal closure

1 affectedRotations ← ∅;
2 for {𝑏 ∈ 𝑉 ∶ 𝑏 requires charging} do
3 for 𝑗 = 1 to 𝑛𝑏 − 1 do
4 if (𝑖𝑗,𝑒𝑛𝑑𝑏 = 𝑠𝑐𝑙𝑜𝑠𝑒) 𝐨𝐫 (𝑖𝑗+1,𝑠𝑡𝑎𝑟𝑡𝑏 = 𝑠𝑐𝑙𝑜𝑠𝑒 𝐚𝐧𝐝 𝑖𝑗,𝑒𝑛𝑑𝑏 ∉ 𝑍) then
5 affectedRotations ← affectedRotations ∪ {𝑏};
6 break;

7 𝑍𝑡𝑒𝑚𝑝 ← 𝑍 ⧵ {𝑠𝑐𝑙𝑜𝑠𝑒};
// Check for charge feasibility after terminal closure and split trips if necessary

8 closureFeasible, 𝑉 𝑡𝑒𝑚𝑝 ← AreRotationsChargeFeasible(𝑉 ,𝑍𝑡𝑒𝑚𝑝,affectedRotations) ;
9 if 𝐧𝐨𝐭 𝖼𝗅𝗈𝗌𝗎𝗋𝖾𝖥𝖾𝖺𝗌𝗂𝖻𝗅𝖾 then

10 return;
// Optimize rotations after terminal closure

11 𝑉 𝑡𝑒𝑚𝑝 ← OptimizeRotations(𝑉 𝑡𝑒𝑚𝑝, 𝑍𝑡𝑒𝑚𝑝);
12 if 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍𝑡𝑒𝑚𝑝) < 𝑓 (𝑉 ,𝑍) then
13 𝑉 ← 𝑉 𝑡𝑒𝑚𝑝;
14 𝑍 ← 𝑍𝑡𝑒𝑚𝑝

5.5. Summary

The overall ILS procedure is summarized in Algorithm 8. The CS algorithm initializes bus rotations (line 1). The OptimizeMul-
ipleShifts operator (line 2) then optimizes these rotations by efficiently reallocating trips, focusing particularly on rotations with
ewer trips. We present the pseudocode for this operator in Appendix B.

Subsequently, the algorithm calculates utilization metrics and opens charging stations at locations that exhibit positive potential
tilization (see Algorithm 6). This process can also be executed sequentially for each station, selecting a station with the highest
otential utilization 𝜋𝑠. These utilization metrics can then be updated after each iteration after further optimizing the rotations.

From lines 7 to 15, the algorithm evaluates the impact of sequentially closing charging stations, optimizing rotations during this
rocess, and addressing any charge infeasibilities by splitting rotations. The stations currently in operation are tracked in 𝑍𝑐𝑙𝑜𝑠𝑒.
n the sequential model, the algorithm updates utilizations and identifies the least utilized station for closure. For joint models,
he CLP–CSP split formulation is solved, and station power capacities are utilized to prioritize closures. Stations exhibiting zero
tilization or power capacity are also removed from the potential closure list.

Ultimately, after determining the optimal configuration of charging stations and rotations, the algorithm solves the MILP CSP
ormulation described in Section 4.1 to optimize charge scheduling costs. Although we explored the possibility of swapping an open
harging station with a closed one, the benefits were negligible in our tested datasets and did not justify the additional computational
ime.

. Experiments and results

We demonstrate the benefits of our framework on 14 real-world bus transit networks by solving both the joint CLP–EVSP–CSP
nd the sequential CLP–EVSP with a subsequent CSP model. The MILP model, outlined in Section 4.2, could only be solved for small
oy networks using CPLEX. The local search subroutines were implemented in C++ using the GCC compiler version 11.4.0. LPs were
olved using CPLEX, and the Boost library was utilized for the Bron–Kerbosch algorithm within the uniform charging LPs as CSP
urrogates. All experiments were conducted on a Dell Precision workstation with AMD Ryzen Threadripper Pro 7975WX CPU @
.0 GHz and 128 GB of RAM. OpenMP was employed with 32 cores to run the exchange and shift operators in parallel. The source
odes are available at github.com/transetlab/clp-evsp-csp.
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Algorithm 8: OptimizeEBusFleet
Input: 𝐼
Output: 𝑉 ,𝑍
// Initialize rotations and locations

1 𝑉 ,𝑍 ← ConcurrentScheduler(𝐼);
// Optimize rotations that serve few trips

2 𝑉 ← OptimizeMultipleShifts(𝑉 ,𝑍)
// Open charging stations and optimize rotations

3 𝑍 ← UpdateUtilization(𝑉 ,𝑍);
4 𝑍𝑜𝑝𝑒𝑛 ← Sort terminals not in 𝑍 for which 𝜋𝑠 > 0 in ascending order ;
5 𝑉 ,𝑍 ← OpenChargingStations(𝑉 ,𝑍,𝑍𝑜𝑝𝑒𝑛);
// Close charging stations and optimize rotations

6 𝑍𝑐𝑙𝑜𝑠𝑒 ← Select all terminals in 𝑍;
7 do
8 if the sequential model is solved then
9 𝑍 ← UpdateUtilization(𝑉 ,𝑍)

10 if if the joint model is solved then
11 Solve CLP–CSP model (Section 4.3), remove unused stations from 𝑍, and update the optimal power capacities 𝑞∗𝑠
12 Remove terminal 𝑠 from 𝑍𝑐𝑙𝑜𝑠𝑒 for which 𝜅𝑠 = 0 (sequential model) or 𝑞∗𝑠 = 0 (joint model)
13 Find terminal 𝑠𝑐𝑙𝑜𝑠𝑒 with minimum 𝜅𝑠 (sequential model) or 𝑞∗𝑠 (joint model) and remove it from 𝑍𝑐𝑙𝑜𝑠𝑒;
14 𝑉 ,𝑍 ← CloseChargingStation(𝑉 ,𝑍, 𝑠𝑐𝑙𝑜𝑠𝑒) ;
15 while 𝑍𝑐𝑙𝑜𝑠𝑒 ≠ ∅;
16 Find the optimal charge schedule using the CSP MILP (Section 4.1)

Fig. 11. Distribution of simultaneous trips over time for sample networks.

6.1. Performance evaluation of ILS

Datasets and Parameters: The GTFS data for all networks were collected from transitfeeds.com. For deadheading trips, the
shortest path distances between stops are calculated using Open Street Maps (OSM) and converted into time, assuming a constant
bus speed of 30 km/h. This speed is consistent with the bus speeds implied by the trip schedules for various networks. Calendar
data was missing in some of the networks and was hence ignored. Table 6 provides a summary of the network data. The origins and
destinations of different routes determine candidate charging locations. Considering the number of trips originating or terminating
at each location, a maximum of five depots are chosen from this subset. The initial CS solution determines the column ‘Depots used’
based on the number of depots assigned to rotations.

To establish a lower limit on the required number of buses, we track the number of simultaneous trips across time for all the
networks. For example, see Fig. 11, where the SCMTD network requires a minimum of 134 buses to accommodate simultaneous
afternoon trips. Table 6 also presents the lower limit on the number of buses for all networks.

Table 7 presents the parameter values used in this study. We apply an exchange rate factor of 1.09 to convert cost parameters
from euros (e) to dollars ($) based on some of the original sources mentioned in Table 7. We assume dynamic electricity pricing

ith the following schedule: 444 $/kWh from 9 AM to 2 PM, 555 $/kWh from 2 PM to 4 PM and 9 PM to 9 AM, with a peak rate
f 1355 $/kWh from 4 PM to 9 PM (PGEC, 2023). Note that the daily electricity costs are scaled up by 365 × 12 to account for an

operational period of 12 years. The table includes costs (in $) and energy-related parameters sourced from existing literature. Some
components of the objective are strategic, while other costs are from tactical and operational decisions. Therefore, these values are
adjusted to account for a 12-year life cycle operational period for buses and charging infrastructure. We do not consider discounting
and projected future energy prices, but these modifications can be easily incorporated with good-quality estimates. In the following
sections, we detail the results of various heuristics for one network, Ann Arbor, US. Similar trends were observed in other cases.

Initial Solution Generation: We generate an initial feasible solution for both the sequential and joint models using the CS
algorithm. The initial solution often recommends opening a large number of charging locations. However, only a subset of these
locations might be used when we solve the CSP using the MILP model. The fixed charging location cost is calculated based on the
stations utilized by the post-CSP solution. Table 8 displays the initial solutions for all networks, revealing that bus acquisition costs
20 
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Table 6
Summary of transit network characteristics.

Network name Trips Routes Stops |𝑆𝑐𝑎𝑛𝑑 | Depots
used

Min buses
required

Cornwall, Canada 432 13 308 23 4 18
Milton, Canada 501 9 312 5 3 22
Mountain Line, US 716 9 181 11 5 42
Ann Arbor, US 858 22 966 29 3 40
LA Go, US 928 20 909 28 3 57
Cascades East, US 1093 20 310 27 3 42
Denton County, US 1148 32 560 25 5 32
Gold Coast, US 1292 23 651 35 4 78
CityLink, US 1364 20 1026 30 5 69
Intercity, US 1591 22 954 22 4 85
SCMTD, US 1830 24 786 26 4 134
Strathcona, Canada 2355 28 373 30 3 117
Embark, US 2830 34 1508 58 3 125
Arlington, US 3337 19 635 32 5 123

Table 7
Parameter values (operating costs are multiplied by 12 × 365 to account for a 12-year operational period).
Parameters Values References

𝑐𝑏𝑢𝑠 $381,500 Dirks et al. (2022)
𝑐𝑙𝑜𝑐 $218,000 Olsen and Kliewer (2022)
per km travel cost $2100 Dirks et al. (2022)
𝑐𝑐𝑎𝑝 654 ($/kW) Dirks et al. (2022)
𝜆 2.505 (kWh/min) Jahic et al. (2019)
𝑙𝑚𝑎𝑥 300 (kWh) Stumpe et al. (2021)
𝑙𝑚𝑖𝑛 45 (kWh) Sadati et al. (2019)
𝜓𝑏 2.505 (kWh/min) Jahic et al. (2019)

Table 8
Concurrent scheduler results.

Network name Buses used Charging locations opened Total cost (million $) % Share

Bus acquisition Facility opening Deadhead CSP

Cornwall 20 1 10.20 74.81 2.14 2.36 20.69
Milton 25 4 14.31 66.64 6.09 2.39 24.88
Mountain Line 45 1 22.36 76.76 0.97 1.99 20.28
Ann Arbor 57 10 31.93 68.11 6.83 7.30 17.76
LA Go 87 13 57.67 57.55 4.91 25.69 11.85
Cascades East 71 11 41.67 65.00 5.75 17.13 12.12
Denton County 46 13 32.23 54.46 8.79 14.96 21.79
Gold Coast 97 12 57.52 64.33 4.55 14.34 16.78
CityLink 87 13 56.69 58.55 5.00 15.16 21.29
Intercity 195 11 95.70 77.73 2.51 6.99 12.77
SCMTD 187 11 134.62 52.99 1.78 19.60 25.63
Strathcona 146 4 82.98 67.13 1.05 7.86 23.96
Embark 183 31 116.84 59.75 5.78 15.07 19.40
Arlington 145 20 84.43 65.52 5.16 11.22 18.10

are a significant share of the total cost. The % share of charge scheduling costs typically surpasses facility opening and deadheading
costs. In Fig. 12(a), the Gantt chart illustrates the bus schedules, featuring trips (indicated by blue bars) and charging events.
Charging gaps result from split charging, while gaps in bus schedules include deadheading trips. The schedules are densely packed,
aligning with the CS algorithm’s logic. Colored backgrounds and borders help distinguish the energy price periods. The Ann Arbor
network’s initial solution employs 10 charging locations, with many charging activities scheduled during peak periods. Subsequent
refinements of bus and charging schedules are made through ILS and CSP models.

ILS — Sequential Model Results: The ILS for the sequential model addresses the CLP–EVSP by refining the CS algorithm
olution. Subsequently, the CEE model is employed to solve the CSP. Table 9(a) presents outcomes for various networks, revealing
ubstantial cost savings over the CS solution. The reduction is primarily due to fewer charging locations compared to the CS solution,
ccompanied by notable deadheading cost reductions via exchange and shift operators. Charge scheduling costs are also consistently
ower across transit networks. Fig. 12(b) depicts the resulting Gantt chart of bus schedules, featuring structural changes due to trip
xchanges and shifts.

ILS — Joint Model Results: We then applied the ILS technique to the joint CLP–EVSP–CSP model, using the CS solution as
starting point. This approach yields noticeable savings in charging costs, even though deadheading costs increase compared to
he sequential model for most networks. The joint model’s results, summarized in Table 9, show overall cost savings across all
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Fig. 12. Bus schedules for the Ann Arbor network (The stop numbers in the legend represent bus stop IDs where charging stations are located. The plot shows
both spatial and temporal information on the charging activities of buses).

networks. The values in the table indicate savings relative to the solutions of the sequential model. The table shows negative values
for some cost components, indicating higher costs for these components in the joint model compared to the sequential one. This is
22 



R.B. Nath et al. Transportation Research Part C 167 (2024) 104839 
Table 9
ILS model results (Instances marked with a ‘*’ were solved using a hybrid method where the top 400 shifts/exchanges were considered based on savings in
deadheading costs.)

(a) Sequential model

Network name Buses used Charging
locations opened

% savings w.r.t. CS model Runtime (s)

Overall Bus acquisition Facility opening Deadhead CSP

Cornwall 20 1 0.51 0.00 0.00 15.93 0.67 0.08
Milton 25 2 7.48 0.00 50.00 67.26 11.38 0.10
Mountain Line 45 1 1.76 0.00 0.00 48.89 3.90 0.14
Ann Arbor 57 3 14.84 0.00 70.00 70.49 27.69 0.28
LA Go 87 11 8.13 0.00 15.38 20.42 18.00 0.45
Cascades East 71 8 11.24 0.00 27.27 46.23 14.46 0.46
Denton County 46 7 17.60 0.00 46.15 60.26 20.78 0.54
Gold Coast 97 7 13.35 0.00 41.67 45.16 29.67 0.73
CityLink 87 6 17.05 0.00 53.85 67.85 19.11 0.82
Intercity 195 7 9.99 0.00 36.36 66.98 34.47 1.28
SCMTD 187 9 14.77 0.00 18.18 45.66 21.44 1.76
Strathcona 146 3 6.28 0.00 25.00 52.96 7.73 1.79
Embark 183 28 15.16 0.00 9.68 57.39 30.69 4.07
Arlington 145 12 11.49 0.00 40.00 52.19 19.73 6.25

(b) Joint model

Network name Buses used Charging
locations opened

% Savings w.r.t. sequential model Runtime (s)

Overall Bus acquisition Facility opening Deadhead CSP

Cornwall 20 1 7.69 0.00 0.00 −3.88 37.58 41.58
Milton 25 2 6.52 0.00 0.00 −46.93 29.01 59.17
Mountain Line 45 1 5.11 0.00 0.00 10.03 25.25 90.65
Ann Arbor 57 2 4.04 0.00 33.33 −47.11 29.34 102.70
LA Go 89 8 0.99 −2.30 27.27 −4.09 19.90 865.11
Cascades East 71 5 5.17 0.00 37.50 −7.47 35.74 702.00
Denton County 46 4 4.84 0.00 42.86 −9.71 14.67 509.89
Gold Coast 98 6 0.94 −1.03 14.29 −10.68 16.45 1420.18
CityLink 88 2 6.66 −1.15 66.67 −5.43 28.57 4631.02
Intercity 195 2 7.70 0.00 71.43 −16.36 73.65 11 897.79
SCMTD* 193 7 0.13 −3.21 22.22 −11.66 13.54 7024.60
Strathcona* 147 1 3.70 −0.68 66.67 −27.41 19.97 1265.62
Embark* 188 19 2.95 −2.73 32.14 −13.54 24.74 3135.22
Arlington* 146 7 1.55 −0.69 41.67 −29.47 14.56 142 177.98

Fig. 13. Cost components of the objective for the Ann Arbor network.

primarily seen in deadheading costs, as buses may need to deadhead more to provide greater flexibility in charging opportunities.
These increased deadheading costs are offset by significant savings in the CSP, leading to overall cost savings. For example, a bus
may be incentivized to deadhead to a far-off location if it can help ease charging demand at a nearby busy charging station. This
could reduce the contracted power capacity and electricity consumption cost if the charging event shifts to a non-peak period. The
same reason holds for increased bus acquisition costs for some networks. The extra buses that are added reduce the system’s overall
energy requirements, thus leading to a lower CSP cost.

Fig. 13 breaks down the costs associated with using the CS, sequential, and joint models for the Ann Arbor network. The joint
model utilizes fewer charging locations than the sequential model. Despite the increased deadheading costs in the joint model,
they remain lower than those incurred using the CS algorithm. Fig. 12(c) displays schedules from the joint model, where one can
23 
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Table 10
Power requirements of charging stations in kW (The lower value of the two models are shown in bold).
Network name Maximum power required Average power required

Sequential Joint Sequential Joint

Cornwall 811.22 262.29 811.22 262.29
Milton 543.13 300.60 421.86 250.31
Mountain Line 1032.66 681.01 1032.66 681.01
Ann Arbor 694.65 601.65 450.49 601.43
LA Go 377.14 300.60 148.56 152.02
Cascades East 314.09 219.98 179.34 144.06
Denton County 302.00 315.03 198.84 274.50
Gold Coast 536.57 549.97 246.42 241.56
CityLink 2004.53 1106.46 549.82 778.68
Intercity 1503.00 498.72 318.35 278.07
SCMTD 1653.30 1675.09 600.01 730.78
Strathcona 4401.20 3007.14 2068.27 3007.14
Embark 450.90 450.90 183.29 191.17
Arlington 300.60 332.96 237.97 298.11

Fig. 14. Activity-based duration for buses in the Ann Arbor network using the joint model.

prominently notice significant cost savings in electricity consumption during peak periods, as only a few buses are charged. Similar
trends were observed in other networks.

A majority of the cost is incurred in bus acquisition. For agencies where bus procurement happens through subsidies or when
gasoline/diesel buses are exchanged/replaced, these savings estimates are conservative and can actually be closer to the CSP savings.

6.2. Extended analysis

Power Requirements: The predominant objective component in the CSP is electricity consumption costs. Table 10 summarizes
he maximum and average power requirements for charging locations opened using sequential and joint models.

In most instances, the maximum power required by the joint model is lower than that of the sequential model. In cases where
he sequential model exhibits lower average power requirements, the difference is relatively modest. Given that we model these
ecisions as continuous variables, the overall power requirement can also be translated into the equivalent number of chargers to
e stationed at a charging facility. For example, a power requirement of 300 kW will warrant installing two 150 kW chargers at
he charging location. A charging station in Strathcona has a power requirement of 3007.14 kW using the joint model, which is
quivalent to installing 20–21 chargers if the power rating of chargers is 150 kW. This work assumes that sufficient space is available
o install these chargers. With additional location-specific data, one could impose precise bounds on these variables.

Activity-Based Time Allocation: Fig. 14 illustrates the time allocated to various activities, as determined by the joint model
for the Ann Arbor network. Buses engage in service trips, deadhead trips, recharging activities, idling during recharging due to split
charging, and true idling when not plugged into the grid. On average, buses spend approximately 8 h on trips and charging activities.
Some buses covering short distances may not require opportunity charging but require overnight charging. Periodic bus swapping
between different rotations/itineraries might be necessary to balance overall usage and mitigate potential long-term maintenance
issues.

Station-level Analysis: Fig. 15 displays station-level metrics for a sample charging station situated at the Blake Transit Center
(bus stop 54), Ann Arbor. The metrics plotted include the number of buses present at the station, the number of buses charging
simultaneously, and the power demand at the charging station over time.

Under sequential and joint models, a maximum of 23 and 22 buses are observed to be simultaneously present at the charging

location, respectively. There are slight variations in the number of vehicles present (see Figs. 15(a) & 15(d)) between the sequential

24 



R.B. Nath et al.

a
m
j
d
v

t
w
l
l
d
h

Transportation Research Part C 167 (2024) 104839 
Fig. 15. Station-level comparison between the sequential and joint models for the charging location at the Blake Transit Center of the Ann Arbor network.

Fig. 16. Bus energy levels in the Ann Arbor network using the joint model.

nd joint models due to variations in vehicle scheduling. Both sequential (Fig. 15(b)) and joint models (Fig. 15(e)) accommodate a
aximum of six simultaneously charging buses. However, the overall power demand at the charging station remains lower for the

oint model than that observed in the sequential model (see Figs. 15(c) & 15(f)) at any given point in time. We notice this pattern
espite a nearly equal number of buses being present at the station over time in both the sequential and joint models. Furthermore,
ery few charging events take place during the peak periods in the joint case.

Bus-level Analysis: We can also monitor the energy levels of each bus during operational hours using the results obtained from
he ILS methods. Fig. 16 traces the energy levels of buses 1 and 26 using the joint model solution. Buses commence daily operations
ith a fully charged battery capacity of 300 kWh. Buses that require charging during the day finish daily operations with an energy

evel of 45 kWh, indicating no overcharging. The red lines denote energy dissipation during service or deadheading trips. Green
ines represent charging activities, while blue lines indicate bus idling. Varying slopes of the red lines result from different speeds
uring service and deadheading trips. Bus speeds fluctuate based on the schedule and the assumed deadheading speed. On the other
and, varying slopes of the green lines result from different charging rates and the split charging assumption. Bus 1 exhibits no split

charging, whereas bus 26 engages in split charging activities from 16:45 to 16:48, shown in Fig. 16(c).
Convergence Analysis — ILS Models: We examine the convergence patterns of ILS models using a normalized cost metric.

Since total costs vary across networks, we used normalized costs to compare the rate of decrease in the objective function value

for different networks in the same plot. The total cost of the CS model is normalized to 1, and the normalized total cost of the
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Fig. 17. Convergence of ILS models.

sequential/joint model at termination is assumed to be 0. In this analysis, CSP costs are excluded when studying the convergence
of the sequential model, as the focus is exclusively on the CLP–EVSP. Convergence plots, as shown in Fig. 17 for both sequential
and joint models across all networks, reveal that smaller networks tend to converge faster than larger ones. Notably, most networks
exhibit a sharp decline in normalized costs after a few iterations, primarily due to the closing of unused charging stations. The
iteration count on the 𝑥-axis is assumed to increment each time a cost improvement occurs during calls to the OptimizeRotations
function within Algorithm 8.

7. Conclusions and future work

This study focused on a comprehensive approach to address the joint optimization of charging locations, bus-to-trip assignments,
and charge scheduling. We first presented a sequential problem, which solves the CLP–EVSP, followed by charge schedule
optimization using a new CSP MILP model. Additionally, we explored a fully integrated joint CLP–EVSP–CSP framework to better
capture the interdependence between decision variables. Although MILP models can be formulated for both problems, they fall
short of solving real-world instances. This model could not be solved optimally, even for toy transit networks. To overcome this,
we employ a novel ILS framework for both models, with initial solutions generated using a concurrent scheduler algorithm. The
joint model solves the CLP–EVSP–CSP, integrating the CSP during trip exchanges and shifts using innovative surrogate linear
programming formulations. In these linear programs, we apply priority rules, eliminating the need to decide the departure time
between layovers. Buses either charge at the current location and then deadhead immediately or deadhead immediately to the
starting stop of the next trip and then charge, making it practically convenient for the drivers. These priority rules also provide
a significant computational benefit over a MILP formulation for the CSP. We applied the sequential and joint models to various
real-world bus transit networks, with the joint model consistently outperforming the sequential model, achieving an average of
17.5% and 14.1% savings in scheduling and operational costs, respectively over all networks and maximum total cost savings of up
to 7.7%.

Our research focuses on developing a framework for the joint model and comparing the benefits over a sequential one. This
research sets the stage for combining learning-based approaches to identify parts of the state space worth exploring, thereby enabling
the application of these techniques to larger transit networks. Future research could also involve comparing the solution methods
proposed in this paper with other heuristic techniques such as genetic algorithms and variable neighborhood search for the integrated
problem. Potential areas for investigation could also include modifications to objectives and constraints based on battery life cycles,
incorporation of realistic battery charging and discharging curves, addressing uncertainty in energy usage and travel time due to
congestion, and enabling buses to take charging detours. Transit networks and schedules evolve over time; in this context, exploring
multi-stage deterministic and stochastic models would be interesting. These models could account for changes in land use and travel
patterns in urban settings, assessing their impact on long-term decisions regarding bus acquisition and charging infrastructure. As
with most facility location problems that integrate strategic and operational elements, our research assumes that transit operations
are unchanged over the planning period. Although this is restrictive, with better forecasts and data, our ILS method could be
integrated with multi-stage scenario-based models to incorporate operational uncertainty using estimated expected EVSP and CSP
costs.

Our joint model can help transit agencies make better strategic decisions, such as charging location placement, while considering
tactical/operational features, such as vehicle scheduling and charge scheduling. Empirical findings from our experiments indicate
that it is possible to reduce operational costs by co-optimizing charging infrastructure, trip assignment, and charge schedules.
Significant cost savings can be achieved through reduced CSP costs, even when deadheading costs increase. Overall, our study makes
a compelling case for joint modeling, suggesting that introducing additional features is worthwhile, provided that the trade-offs
between solution quality and computation time are carefully managed.
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Fig. 18. Example of exchanging service trips.
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ppendix A. Optimize rotations

In this appendix, we detail the exchange and shift operators for service trips Exst and Sst, respectively. The sub-routine for
exchanging depot trips, Exd, is similar to Exst and is hence not presented in detail.

A.1. Exchanging service trips

Algorithm 9 exchanges service trips between a pair of buses to reduce operational costs, primarily from deadheading. The
algorithm computes cost savings for all feasible pairs based on trip compatibility (line 4) and charging levels (line 7). We finally
perform the exchange yielding the highest cost saving (lines 10–12).

For the joint CLP–EVSP–CSP model, this exchange sub-routine additionally calculates savings in electricity and power capacity
costs using the charge scheduling LP (line 9). Fig. 18 illustrates a trip exchange step, where trips 7 and 9 are exchanged between
two buses. Note that trip pairs (4,9), (9,3), (5,7), and (7,2) must be compatible, and the exchange should not make the rotations
charge infeasible.

Algorithm 9: ExchangeServiceTrips (Exst)
Input: 𝑉 ,𝑍
Output: 𝑉 𝑒𝑥𝑠𝑡,exchangeSavings

1 𝑉 𝑒𝑥𝑠𝑡 ← 𝑉 ;
2 exchangeSavings ← −∞;
// Iterate across all possible trip exchanges

3 for
{

{𝑉𝑢, 𝑉𝑣} ∶ 𝑉𝑢, 𝑉𝑣 ∈ 𝑉 , 𝑉𝑢 ≠ 𝑉𝑣
}

do
4 for 𝑗 ∈ {1, 2,… , 𝑛𝑢}, 𝑘 ∈ {1, 2,… , 𝑛𝑣} ∶ (𝑖𝑗−1𝑢 , 𝑖𝑘𝑣), (𝑖

𝑘
𝑣 , 𝑖

𝑗+1
𝑢 ), (𝑖𝑘−1𝑣 , 𝑖𝑗𝑢), (𝑖

𝑗
𝑢, 𝑖𝑘+1𝑣 ) ∈ 𝐴 do

5 𝑉 𝑡𝑒𝑚𝑝 ← 𝑉 ;
6 Update 𝑉 𝑡𝑒𝑚𝑝 by exchanging the 𝑗th trip of bus 𝑢 with 𝑘th trip of bus 𝑣;
7 if AreRotationsChargeFeasible(𝑉 𝑡𝑒𝑚𝑝, 𝑍) then
8 if the joint model is solved then
9 Solve the CSP LP (Section 4.3) and add the charging costs to the 𝑓 values;

// Select the exchange that yields maximum savings
10 if 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍) − 𝑓 (𝑉 ,𝑍) > 𝖾𝗑𝖼𝗁𝖺𝗇𝗀𝖾𝖲𝖺𝗏𝗂𝗇𝗀𝗌 then
11 exchangeSavings ← 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍) − 𝑓 (𝑉 ,𝑍);
12 𝑉 𝑒𝑥𝑠𝑡 ← 𝑉 𝑡𝑒𝑚𝑝;
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Algorithm 10: OptimizeMultipleShifts
Input: 𝑉 ,𝑍
Output: 𝑉

1 improvement ← ∞;
2 𝑉 𝑏𝑒𝑠𝑡 ← 𝑉 ;
// Apply shifts repeatedly until the benefits are exhausted

3 while 𝗂𝗆𝗉𝗋𝗈𝗏𝖾𝗆𝖾𝗇𝗍 > 0 do
4 𝑉 ← 𝑉 𝑏𝑒𝑠𝑡;
5 𝑉 𝑓𝑒𝑤 ← Rotations in 𝑉 with fewer than 𝜁 service trips ;
6 maxSavings ← −∞ ;

// Find the rotation that gives the maximum savings from shifting multiple trips
7 for 𝑉𝑏 ∈ 𝑉 𝑓𝑒𝑤 do
8 𝑉 𝑚𝑠𝑠𝑡,multiShiftSavings ← ShiftMultipleTrips(𝑉 ,𝑍, 𝑉𝑏)
9 if 𝗆𝗎𝗅𝗍𝗂𝖲𝗁𝗂𝖿 𝗍𝖲𝖺𝗏𝗂𝗇𝗀𝗌 > 𝗆𝖺𝗑𝖲𝖺𝗏𝗂𝗇𝗀𝗌 then

10 maxSavings ← multiShiftSavings ;
11 𝑉 𝑏𝑒𝑠𝑡 ← 𝑉 𝑚𝑠𝑠𝑡 ;

12 improvement ← 𝑓 (𝑉 ,𝑍) − 𝑓 (𝑉 𝑏𝑒𝑠𝑡, 𝑍);

A.2. Shifting service trips

Algorithm 11 performs an exhaustive search by shifting a service trip from one bus to another. We verify the possibility of
rip insertion based on trip compatibility (line 4) and charge feasibility of the updated configuration (line 7). The cost savings are
imilarly to those for the exchange operator (lines 10–12), with the exception that if a bus performs no service trips, it is omitted,
nd the vehicle’s fixed cost is recovered. As before, we solve the charge scheduling LP only for the joint CLP–EVSP–CSP model (line
).

Fig. 19 illustrates an example of shifting of service trips. Suppose (7, 5) and (5, 3) are compatible trip pairs. Trip 5, originally
performed by bus 𝑣, is shifted after trip 7 of bus 𝑢 after ensuring that the resulting rotation is charge feasible.

Algorithm 11: ShiftServiceTrips (Sst)
Input: 𝑉 ,𝑍
Output: 𝑉 𝑠𝑠𝑡, shiftSavings

1 𝑉 𝑠𝑠𝑡 ← 𝑉 ;
2 shiftSavings ← −∞;
// Iterate across all possible shifts

3 for 𝑉𝑢, 𝑉𝑣 ∈ 𝑉 ∶ 𝑉𝑢 ≠ 𝑉𝑣 do
4 for 𝑗 ∈ {1, 2,… , 𝑛𝑢}, 𝑘 ∈ {1, 2,… , 𝑛𝑣} ∶ (𝑖𝑗𝑢, 𝑖𝑘𝑣), (𝑖

𝑘
𝑣 , 𝑖

𝑗+1
𝑢 ) ∈ 𝐴 do

5 𝑉 𝑡𝑒𝑚𝑝 ← 𝑉 ;
6 Update 𝑉 𝑡𝑒𝑚𝑝 by shifting the 𝑘th trip of bus 𝑣 after 𝑗th trip of bus 𝑢;
7 if AreRotationsChargeFeasible(𝑉 𝑡𝑒𝑚𝑝, 𝑍) then
8 if the joint model is solved then
9 Solve the CSP LP (Section 4.3) and add the charging costs to the 𝑓 values;

// Select the shift that yields maximum savings
10 if 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍) − 𝑓 (𝑉 ,𝑍) > 𝗌𝗁𝗂𝖿 𝗍𝖲𝖺𝗏𝗂𝗇𝗀𝗌 then
11 shiftSavings ← 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍) − 𝑓 (𝑉 ,𝑍);
12 𝑉 𝑠𝑠𝑡 ← 𝑉 𝑡𝑒𝑚𝑝;

Appendix B. ILS routines for shifting multiple trips

Although we found that the rotations from the concurrent scheduler are usually tight, the closure of charging stations can lead to
he splitting of rotations and the creation of rotations with fewer trips. In such cases, shifting one trip at a time in the Sst subroutine

may not help release these newly created rotations since it may be optimal to exchange and shift other trips in subsequent iterations.
Since bus acquisition costs are one of the largest components of the overall objective, we use an operator that attempts to shift
multiple trips in rotations that have fewer trips than a user-defined threshold. The locations at which these trips are to be inserted
are chosen greedily. Even when they do not reduce the number of rotations, these operators offer some benefits to the deadheading

costs while remaining computationally inexpensive.
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Fig. 19. Example of shifting service trips.

Algorithm 10 describes a sub-routine that iteratively checks if there is a rotation that improves the objective when multiple trips
are shifted to other rotations. To keep these calculations tractable, we consider only those rotations with 𝜁 = 5 or fewer service trips
(see line 5). Each rotation in 𝑉 𝑓𝑒𝑤 is examined in the ShiftMultipleTrips sub-routine (lines 7–8) for savings from shifting multiple trips,
and the resulting rotations are saved in 𝑉 𝑚𝑠𝑠𝑡. The most promising of these bus-to-trip assignments are saved in 𝑉 𝑏𝑒𝑠𝑡 in lines 9–11.
We then calculate the change in the objective in line 12, and the process is repeated until such shifts are no longer advantageous. The
ShiftMultipleTrips sub-routine (see Algorithm 12) is similar to the Sst algorithm, except that it tries to shift multiple trips assigned
to a bus to other rotations. The output includes an adjusted list of bus rotations (𝑉 𝑚𝑠𝑠𝑡) and the maximum savings possible from
such greedy insertions (𝗆𝗎𝗅𝗍𝗂𝖲𝗁𝗂𝖿 𝗍𝖲𝖺𝗏𝗂𝗇𝗀𝗌).

Algorithm 12: ShiftMultipleTrips
Input: 𝑉 ,𝑍, 𝑉𝑏
Output: 𝑉 𝑚𝑠𝑠𝑡,multiShiftSavings

1 𝑉 𝑜𝑟𝑔 ← 𝑉 ;
// Shift multiple trips in the rotation

2 for 𝑘 = 1 to 𝑛𝑏 do
3 multiShiftSavings ← −∞;

// Iterate across all possible locations to insert the trip
4 for 𝑉𝑢 ∈ 𝑉 ∶ 𝑉𝑢 ≠ 𝑉𝑏 do
5 for 𝑗 ∈ {1, 2,… , 𝑛𝑢} ∶ (𝑖𝑗𝑢, 𝑖𝑘𝑏 ), (𝑖

𝑘
𝑏 , 𝑖

𝑗+1
𝑢 ) ∈ 𝐴 do

6 𝑉 𝑡𝑒𝑚𝑝 ← 𝑉 ;
7 Update 𝑉 𝑡𝑒𝑚𝑝 by shifting the 𝑘th trip of bus 𝑏 after 𝑗th trip of bus 𝑢;
8 if AreRotationsChargeFeasible(𝑉 𝑡𝑒𝑚𝑝, 𝑍) then
9 if the joint model is solved then

10 Solve the CSP LP (Section 4.3) and add the charging costs to the 𝑓 values;
// Select the shift that gives the maximum savings

11 if 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍) − 𝑓 (𝑉 ,𝑍) > 𝗆𝗎𝗅𝗍𝗂𝖲𝗁𝗂𝖿 𝗍𝖲𝖺𝗏𝗂𝗇𝗀𝗌 then
12 multiShiftSavings ← 𝑓 (𝑉 𝑡𝑒𝑚𝑝, 𝑍) − 𝑓 (𝑉 ,𝑍);
13 𝑉 𝑚𝑠𝑠𝑡 ← 𝑉 𝑡𝑒𝑚𝑝;

// Update the rotations if shifting the trip is feasible
14 if 𝗆𝗎𝗅𝗍𝗂𝖲𝗁𝗂𝖿 𝗍𝖲𝖺𝗏𝗂𝗇𝗀𝗌 = −∞ then
15 return 𝑉 𝑜𝑟𝑔

16 𝑉 ← 𝑉 𝑚𝑠𝑠𝑡;

The algorithm begins by creating a copy of the original bus rotations that is returned if no trip can be shifted (line 1). It then
terates over each trip in 𝑉𝑏 and initializes variables to track the feasibility of a single shift and determines where to insert the

displaced trip for maximum savings in the objective. Trip compatibility and charge feasibility are necessary during these calculations,
and we embed the CSP linear program when the problem is jointly solved. Lines 4–13 carry out these steps and are similar to the
Sst algorithm. If the shifted trip can be inserted elsewhere, the algorithm updates the rotation list, and proceeds to shift the next trip
in 𝑉𝑏. Note that some of the shifts can lead to negative savings. The overall objective of this procedure, however, can only improve
as it is taken care of in line 3 of Algorithm 10.
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