
Supplementary Notes: Single-photon induced instabilities in a cavity
electromechanical device

Supplementary Note 1. Device fabrication, setup,
and single-photon coupling rate

A. Device Fabrication and experimental setup

The devices are fabricated on a cleaned 2.5 mm×7 mm
silicon-(100) substrate. A single-step electron beam
lithography (EBL) process is used to pattern the sub-
strate with a bi-layer resist stack of MMA-EL-11 and
PMMA-950-A4. Subsequently, aluminum(Al) films are
deposited using shadow evaporation technique with an
intermediate in-situ oxidation step. We found the evap-
orated films to be under compressive stress after the de-
position, which is not quite suitable for the release of the
Al-resonator. To convert it to the tensile stress, the chip
is annealed at 180°C for 15 min in the ambient environ-
ment. It leads to a change in the tunnel junction resis-
tance of the SQUID at room temperature, as mentioned
in Supplementary Table 1.

Next, we carry out electron beam lithography using
a single layer of PMMA resist and pattern a rectangu-
lar window surrounding the nanowire. It is followed by
a reactive ion etching (RIE) process, where the silicon
underneath the wire is etched out. The etching process
is done in two steps, using SF6 gas only. In the first
step, silicon is anisotropically etched by using a low pro-
cess pressure (≈ 9 mTorr). It is then followed by an
isotropic etch at higher process pressure (≈ 95 mTorr).
The isotropic etch step removes silicon underneath the
nanobeam and makes it suspended. Without breaking
the vacuum, PMMA ashing is carried out to remove
any residual resist on the substrate. Supplementary Fig-
ure 1(a) shows the optical image of the qubit fabricated
on the silicon chip.

The etching process further affects the tunnel resis-
tance of the junctions. We have consistently seen a re-
duction in the tunnel resistance by 40 − 45% while an-
nealing the substrate and an increase in the resistance by
15−20% after the etching process. To accomodate these
changes, the oxidation parameters during the junction
fabrication are tuned to get the target junction resistance
after the final step.

Finally, the chip is placed inside a coaxial cavity, and
then inside a home-built vector magnet setup. We use
two layers of concentric shielding cans to protect the de-
vice from the infrared radiation and stray magnetic field.
The radiation tight inner can is coated with an IR ab-
sorbing layer, and the outer can is made of cryo-perm,
which helps in reducing the magnetic field fluctuations at
the sample. The entire assembly, mounted to the mixing
chamber plate of dilution refrigerator is shown in Supple-
mentary Figure 1(b). Supplementary Figure 1(c) shows
the schematic of the complete measurement setup used
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Supplementary Figure 1. Device details and the mea-
surement setup: (a) An optical microscope image of the
qubit device patterned on a silicon substrate. The white rect-
angles are the qubit antenna pads. In between the pads, a
SQUID loop with a suspended nanowire is patterned. (b)
Entire device assembly, inside a two-layer shield, attached to
the mixing chamber plate of the dilution refrigerator is shown.
(c) Schematic of the measurement setup, showing input and
output lines with the attenuation, amplifier, and filters.

in the experiment.

B. Derivation of the single-photon coupling rate

The single-photon electromechanical coupling rate is
defined as the change in resonance frequency due to the
zero point fluctuation of the mechanical resonator. For
the upper polariton mode, it can be written as

g+ =
dω+

dx
xzpf =

dω+

dΦ

dΦ

dx
xzpf = G+

dΦ

dx
xzpf , (1)

where G+ = dω+/dx is the flux responsivity, and Φ is
the total magnetic flux passing through the SQUID loop.
The magnetic-flux Φ through the SQUID loop can be
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written as

Φ = B⊥l(w + ζx∥) +B∥lζx⊥.

The first term comes due to the out-of-plane magnetic
field. It has a static component and a component arising
from in-plane motion x∥ of the suspended nanowire. The
second term originates from to the out-of-plane motion
of the beam x⊥ and the in-plane magnetic filed. Upon
substitution in Supplementary Equation 1, we get

g+ = ζ(B⊥lxzpf +B∥lxzpf ). (2)

Here we have assumed that in-plane and out-of-plane
mode of vibrations are nearly degenerate and therefore
results in the same vacuum zero-point fluctuations xzpf .
Since B∥ ≫ B⊥, the first term can be ignored.

Supplementary Note 2. Device parameters,
calibration, and flux-responsivity

A. Device Parameter tables

Device-1 Symbol Value
Cavity frequency ωc/2π 5.846 GHz
Bare cavity decay rate κb 8 MHz
Maximum qubit frequency ω0

q/2π 7.38 GHz
Qubit-cavity coupling rate J/2π 72 MHz
Measured transmon anharmonicity −αT /2π −284 MHz
Tunnel resistance after deposition Rn 8.9 kΩ
Tunnel resistance after annealing Rn 5 kΩ
Tunnel resistance after etching Rn 5.9 kΩ
Josephson inductance of SQUID LJ 7 nH
Mechanical resonator length l ∼ 40 µm
Mechanical resonator width b ∼250 nm
Mechanical resonator thickness d ∼28 nm
Mass of the mechanical resonator m ∼0.75 pg
Mechanical resonator frequency ωm/2π ∼3.97 MHz
Maximum axial magnetic field Bmax ∼ 45 mT
Product of input-line attenuation
and input coupling rate

A/κin ∼ 17444 s

Supplementary Table 1. Summary of the key parameters of
the first sample studied.

Supplementary Table 1 and Supplementary Table 2 list
the parameters of the devices used in the experiment.

B. Calibration of input-line attenuation

To estimate the total attenuation in the input line, we
use the ac-stark shift measurement. We tune the dressed
transmon frequency of Device-1 to ωq/2π ∼ 5.325 GHz
where it couples dispersively to the cavity. Using the two-
tone spectroscopy technique, we measure the transmon
qubit spectrum while probe power is varied. With the
increase in probe power, the qubit transition frequency

Device-2 Symbol Value
Bare cavity frequency ωc/2π 5.744 GHz
Bare cavity decay rate κb 8 MHz
Maximum qubit frequency ω0

q/2π 8.26 GHz
Qubit-cavity coupling rate J/2π 193 MHz
Measured transmon anharmonicity −αT /2π −300 MHz
Mechanical resonator length l ∼ 40 µm
Mechanical resonator width b ∼250 nm
Mechanical resonator thickness d ∼28 nm
Mass of the mechanical resonator m ∼0.75 pg
Mechanical resonator frequency ωm/2π ∼3.97 MHz
Maximum axial magnetic field Bmax ∼ 9 mT
Product of input-line attenuation
and input coupling rate

A/κin ∼ 1647 s

Supplementary Table 2. Summary of the key parameters of
the second sample studied.

shifts, and it is given by ωq′ = ωq − 2ndχ, where nd

and χ are mean intracavity probe photon occupation
and the dispersive shift of the transmon, respectively.

The dispersive shift is given by χ = −J2

∆
αT

∆−αT
, where

∆ = ωq − ωc is the detuning between transmon and cav-
ity. In a separate measurement, we estimate the disper-
sive shift −3.5 ± 0.126 MHz of the transmon. The ex-
perimentally computed intracavity photon (ω′

q − ωq)/2χ
is plotted with the input probe power in Supplementary
Figure 2(a). Thus, it allows us to estimate the product
of the total input line attenuation and the coupling rate
of the input port for Device-1. The same procedure is
carried out for Device-2 as well. The estimated attenua-
tion for both devices is given in Supplementary Table 1
and Supplementary Table 2. This parameter allows us
to calculate the mean photon occupancy in a mode for a
specific pump power and energy decay rate of the mode.

C. Calibration of the net output gain

To calibrate the net output gain, we send a pump sig-
nal at frequency ω+ and record the transmitted power
Pd at the same frequency. The inset of Supplementary
Figure 2(b) shows the measured power spectral density
(PSD) recorded using a spectrum analyzer. The trans-
mitted power at pump frequency is given by Pd/ℏω+ =
APndκe, where AP is the net output power gain, nd is
the mean occupation of the EM mode due to the coherent
pump, and κe is the coupling rate of the output port. We
vary the pump signal strength and measure Pd in a spec-
trum analyzer. Using the input line attenuation, given
in the device parameter table, and the dressed mode de-
cay rate of κ/2π ∼ 9.7 ± 0.1 MHz, we can estimate the
mean photon occupation nd for all pump powers. The
measured Pd is then plotted against the mean dressed
mode occupation nd, as depicted in Supplementary Fig-
ure 2(b). From the slope of the linear fit, we estimate the
net gain. Using the output coupling rate of κe/2π ≈ 6.2
MHz (discussed in the following section) the net gain of
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Supplementary Figure 2. All results are from Device-1. (a) Plot of the experimentally determined mean photon occupation
with the input probe power. The data points show the normalized shift in the qubit frequency while performing ac-Stark shift
measurement. The solid black line is the fit that relates the injected microwave power to the mean photon occupation of the
cavity. (b) Plot of the transmitted power Pd at ω+ with mean dressed-mode occupation nd. The dashed line is the linear fit
and its slope is used to estimate the net output gain. This measurement is carried out at a mode frequency of 5.864 GHz and
applied magnetic field of B∥ ∼ 18 mT. The inset shows the output signal, recorded using a spectrum analyzer, when a pump
signal at ω+ is injected into the device. (c) The output microwave power at the sideband peak SV V is plotted with mean dressed
mode occupation. The dashed line is a linear fit, and its slope is used to estimate mean thermal phonon occupation. Inset of
(c) shows the mechanical resonator’s spectrum. It is the power spectral density (PSD) of the lower mechanical sideband for a
pump at ω+. (d) PSD of the mechanical resonator when axial magnetic field is 18 mT, and dressed mode frequency is 5.864
GHz. From the Lorentzian fit (black-line) to the data, we estimate the mechanical resonator frequency ωm/2π ∼ 3.97 MHz
and intrinsic linewidth γm/2π ∼ 6 Hz. (e) Reflection measurement from the output coupling port at a temperature of 1 K.
The black line is from the fitted model.
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the output line is estimated to be AP = 58.5 dB. The
same exercise is carried out in Device-2 as well, result-
ing in a net gain of AP = 64.3 dB. The net gain of the
output line can be used to estimate mean-photon occu-
pancy nd of the mode, using nd = Pd/(APκeℏω). The
reported mean-photon occupation for the experimental
result shown in Fig. 5(a) of the main text is determined
from this method.

D. Power spectral density (PSD)

In this section, we derive the PSD of the output signal
when the dressed EM mode is subjected to a low-power
single microwave drive ϵeiωdt. At low drive power, we
can neglect the nonlinearity of the polariton mode and
consider it as a linear mode of frequency ω+, which is
longitudinally coupled to a mechanical mode with fre-
quency ωm. In the rotating frame of the drive frequency,
the effective system Hamiltonian is given by

H = −∆â†+â++ωmb̂†b̂+g+â
†â(b̂+ b̂†)+ϵ (â++â†+), (3)

where ∆ = ωd−ωc is the drive detuning, g+ is the single-

photon coupling strength, and â+(b̂) is the ladder oper-
ators corresponding to dressed (mechanical) mode.

Subsequently, the quantum Langevin equations of mo-
tion are obtained as

˙̂a+ = (i∆− κ

2
)â+ − ig+â+(b̂+ b̂†) + ϵ+

√
κex âin

+
√
κ0 f̂in, (4a)

˙̂
b = (−iωm − γm

2
)b̂− ig+â

†
+â+ +

√
γm b̂in, (4b)

where âin, f̂in represent the EM mode noise operator cor-
responding to the input port and the dissipative thermal

bath. The quantity b̂in represents the mechanical mode
noise operator corresponding to the dissipative thermal

bath. The total decay rate of EM (mechanical) mode is
represented by κ (γm), and the external (internal) decay
rate of the EM mode is represented by κex (κ0). By defin-
ing the mean field occupation of the EM mode and the
mechanical mode as α and β, we arrive at the following
semi-classical equations of motion (EOM)

α̇ = (i∆− κ

2
)α− ig+α(β + β∗) + ϵ, (5a)

β̇ = (−iωm − γm
2

)β − ig+ |α|2 . (5b)

In the steady state of the system, these equations be-
come α̇ = 0, β̇ = 0. By solving them, we determine the
steady state field amplitudes ᾱ and β̄. Subsequently, we
write down the field as a combination of a steady state
value and a fluctuation around them, i.e. â+ = ᾱ+ δâ+,
and b̂ = β̄ + δb̂. Thereafter, the EOM for the field fluc-
tuations are given by

δ̇â+ =
[
i∆̃− κ

2

]
δâ+−iG(δb̂+δb̂†)+

√
κex âin+

√
κ0 f̂in,

(6a)

δ̇â†+ =
[
−i∆̃− κ

2

]
δâ†++iG∗(δb̂+δb̂†)+

√
κex â†in+

√
κ0 f̂

†
in,

(6b)

˙
δb̂ =

[
−iωm − γm

2

]
δb̂−iG∗δâ+−iGδâ†++

√
γm b̂in, (6c)

˙
δb̂† =

[
iωm − γm

2

]
δb̂† + iGδâ†+ + iG∗δâ+ +

√
γm b̂†in,

(6d)

where ∆̃ = ∆ − g+(β̄ + β̄∗) and G = g+ᾱ. These
equations are solved in the frequency space using the

Fourier transformation x[ω] = F [x(t)] =
∫ +∞
−∞ x(t)eiωtdt.

Using the identities (x†)[ω] = (x[−ω])† and F [ẋ(t)] =
−iωF [x(t)], the equations of motion become

 1/χc 0 iG iG
0 1/χ̃c −iG −iG

1/χm 0 iG iG
0 1/χ̃m −iG −iG




δâ+[ω]

(δâ†+)[ω]

δb̂[ω]

(δb̂†)[ω]

 =


√
κex âin[ω] +

√
κ0 f̂in[ω]√

κex (â†in)[ω] +
√
κ0 (f̂†

in)[ω]√
γm b̂in[ω]√
γm (b̂†in)[ω]

 . (7)

The susceptibilities are given as follows: χc[ω] =

1/(−i(ω + ∆̃) + κ/2), χ̃c[ω] = 1/(−i(ω − ∆̃) + κ/2),
χm[ω] = 1/(−i(ω−ωm)+γm/2), and χ̃m[ω] = 1/(−i(ω+
ωm) + γm/2). The above matrix equation is rearranged

and written as
δâ+[ω]

(δâ†+)[ω]

δb̂[ω]

(δb̂†)[ω]

 = A


√
κex âin[ω] +

√
κ0 f̂in[ω]√

κex (â†in)[ω] +
√
κ0 (f̂†

in)[ω]√
γm b̂in[ω]√
γm (b̂†in)[ω]

 , (8)

where A represents the susceptibility matrix. Thus, we
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determine

δâ+[ω] = A11(
√
κex âin[ω])

√
κ0 f̂in[ω])+

A12(
√
κex (â†in)[ω] +

√
κ0 (f̂†

in)[ω])

+A13
√
γm b̂in[ω] +A14

√
γm (b̂†in)[ω], (9)

where Aij ’s are the elements of the susceptibility matrix.
Using the Fourier transform identity (x†)[ω] = (x[−ω])†,
we get

δâ+[ω] = A11(
√
κex âin[ω])

√
κ0 f̂in[ω])+

A12(
√
κex (âin[−ω])† +

√
κ0 (f̂in[−ω])†)

+A13
√
γm b̂in[ω] +A14

√
γm (b̂in[−ω])†. (10)

The noise operators follow the relation

⟨âin[ω](âin[ω′])†⟩ = 2πδ(ω − ω′), ⟨(âin[ω])†âin[ω′]⟩ = 0,
(11a)

⟨f̂in[ω](f̂in[ω′])†⟩ = 2πδ(ω − ω′), ⟨(f̂in[ω])†f̂in[ω′]⟩ = 0,
(11b)

⟨b̂in[ω](b̂in[ω′])†⟩ = 2π(nm + 1)δ(ω − ω′),

⟨(b̂in[ω])†b̂in[ω′]⟩ = 2πnmδ(ω − ω′). (11c)

Using these relations, we calculate the spectrum of the
dressed EM mode. It is given by

S(ω) =
1

2π

∞∫
−∞

⟨(δâ+[ω′])†δâ[ω]⟩dω′

= (κex + κ0)A
∗
12A12 + γmnmA∗

13A13

+ γm(nm + 1)A∗
14A14. (12)

The last two terms, which have nm, contain the infor-
mation of the mechanical resonator’s motion, whereas the
first term produces the Lorentzian envelope of the EM
mode. For a resonant microwave drive to the dressed
EM mode, we set ∆ = 0 and calculate the mechanical
spectrum over the Lorentzian envelope using the last two
terms of Supplementary Equation 12. It is given by

S(ω) ≈
16G2γm
κ2 + 4ω2

(
nm

γ2
m + 4(ω − ωm)2

+
nm + 1

γ2
m + 4(ω + ωm)2

)
.

(13)

It should be noted that the above formalism is carried
out for a linear EM mode coupled to a mechanical res-
onator. However, the EM modes in our devices exhibit
nonlinearity due to the presence of Josephson inductance.
As a result, the expression of Supplementary Equation 13
can only be used when the drive power is very low and
the nonlinear effects are negligible.

E. Estimation of the effective mechanical mode
temperature

A pump signal, tuned to the dressed mode frequency
ω+ produces two sidebands at ω = ω+ ± ωm due to the
thermal motion of the mechanical resonator. The output
microwave power at the lower mechanical sideband fre-
quency (ω+−ωm) can be computed from Supplementary
Equation 13. It is given by

SV V

ℏω
≈ AP

(
1

2
+ nadd +

ke
γm

16g2+ndnm

(k2 + 4ω2
m)

)
,

where (nadd+1/2) is the total noise added by the ampli-
fier chain. We pump the dressed mode at zero detuning
and record the PSD of the lower mechanical sideband us-
ing a spectrum analyzer. In the inset of Supplementary
Figure 2(c), we show a representative measurement of the
microwave PSD showing the mechanical mode. Supple-
mentary Figure 2(c) shows the plot the microwave output
power at the sideband peak SV V (ω+−ωm) with the mean
pump photon occupation nd in the dressed mode. From
the slope of a linear line fit, we estimate the mean thermal
occupation nm of the mechanical resonator. The dressed
mode frequency is tuned to w+/2π ∼ 5.884 GHz and
axial magnetic field B∥ ∼ 18 mT is applied. These pa-
rameters correspond to an electromechanical coupling of
g+/2π ∼ 22 kHz, which is measured separately in CEQA
experiment as described in the main text. The dressed
mode decay rate κ/2π ∼ 11.5±0.3 MHz is extracted from
transmission |S21(ω)|. With all these parameters, we es-
timate the thermal phonon occupation of the mechanical
resonator to be nm ∼ 365, which corresponds to a mode
temperature of 70 mK.

F. Mechanical resonator’s linewidth in lower
magnetic fields

The mechanical resonator’s linewidth of 13 Hz, re-
ported for the Device-1 in the main text is affected by
the flux noise present in the system. To mitigate this
effect and find out the intrinsic mechanical linewidth, we
record the output mechanical PSD of the pump while
operating at a smaller magnetic field (B∥ ∼ 18 mT), an
operating point with the lower flux responsivity of the po-
lariton mode (G+/2π = 0.55 GHz/Φ0), and a low pump
strength to avoid any backaction.

Supplementary Figure 2(d) shows the PSD of the lower
mechanical sideband for a pump signal sent at ω+/2π ∼
5.864 GHz. By doing a Lorentzian fit on the spectrum,
we determine the intrinsic linewidth of γm/2π ∼ 6 Hz.

G. Estimation of the output coupling rate

To estimate the coupling rate of the output port with
the cavity, we measure the port’s reflection |S11(ω)| at
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1 K temperature. The reflection measurement is done in
a separate cooldown where a 20-dB direction coupler is
added to the output line. The cable between the out-
put port of the cavity and the directional coupler creates
small ripples in the reflected signal which can be seen in
Supplementary Figure 2(e).

We fit the data to model

S11(ω) = 1− κe

(κi + κin + κe)/2 + i(ω − ωc)
,

where κi is the internal cavity decay rate, κin is the input-
port coupling rate, ωc is the cavity resonance frequency
and κe is the output-port coupling rate. From the fit, we
estimate the output coupling rate to be κe/2π ∼ 6.2 ±
0.1 MHz.

H. Flux-responsivity and Kerr-nonlinearity of the
dressed mode

From the cavity transmission |S21(ω)| near the vacuum
Rabi splitting, as shown in Fig. 1(d) of main text, we can
calculate the flux responsivity of the dressed mode for
both devices. First, we estimate the mode frequency ω+

at each flux bias point by fitting a Lorentzian to |S21(ω)|
measurement. Subsequently, the extracted results can
be used to numerically compute the first derivative of ω+

with respect to flux bias (Φ), i.e. the flux responsivity. In
Supplementary Figure 3, we plot G+ of the upper dressed
mode with the mode frequency.

The flux responsivity can be utilized to estimate the
coupling rate at different flux bias points, employing
straight forward relation g+ = G+B∥xzpf . This method
is particularly useful for determining coupling rates for
mode frequencies not determined by CEQA experiment.
From the CEQA experiment in Device-1 (Fig. 2(d) of
main text), we know that g+/2π ≈ 23.1 ± 1.4 kHz for
dressed mode frequency of 5.884 GHz when B∥ is set to
18 mT. From this known value of coupling strength, we
estimate g+ at dressed mode frequency of 5.873 GHz to
be 13.4 ± 0.8 kHz, which is used to compute the black
curves in Fig. 3(a) of the main text.

Next, we estimate the Kerr nonlinearity of the dressed
modes. Using the QuTip package [1], we compute the
eigen-energies of the system while varying the transmon
qubit frequency. The system Hamiltonian is defined us-
ing the device parameters given in Supplementary Ta-
ble 1 and Supplementary Table 2. Subsequently, we esti-
mate the Kerr nonlinearity of the dressed mode by calcu-
lating the difference between different energy levels, and
the result is plotted in red curve of Supplementary Fig-
ure 3.

For the numerical calculations of the Kerr nonlinearity,
we model the transmon and cavity as a 4-level systems
each. For the numerically calculated plot of Fig. 4(b)
in the main text, the Hilbert space dimension is chosen
to be 9, consisting of 3-levels of transmon and 3-levels
of the cavity. The mean-thermal occupation is set to

be 0.1 for both transmon and cavity, which is essential
to capture the higher transitions. These values are also
used to compute the plots in Fig. 5(b) and (d) of the
main text.

I. Intra-cavity field of a nonlinear oscillator

The Hamiltonian of a nonlinear oscillator subjected to
a drive is given by

H = −∆â†+â+ − K+

2
â†+â

†
+â+â+ + ϵd (â+ + â†+), (14)

where K+ represents the Kerr nonlinearity, ϵd represents
the drive strength, and ∆ represents the drive detuning.
The creation (annihilation) operator is represented by

â+ (â†+). The dynamics of the oscillator can be described
by the Lindblad master equation

ρ̇ = i[ρ,H] + γ1D[â+] +
γϕ
2
D[â†+â+], (15)

where D[Ô]ρ = ÔρÔ − Ô†Ôρ/2− ρÔ†Ô/2 for any oper-

ator Ô. The quantities γ1 and γϕ represent the energy
decay rate and the dephasing rate of the oscillator, re-
spectively. The expectation value of the operator is given
by ⟨O⟩ = Tr(ρÔ) = Tr(Ôρ). The equation of motion of
the expectation value of the operator is given by

⟨ ˙̂O⟩ = Tr(⟨ρ̇Ô⟩). (16)

Using Supplementary Equation 15 one can expand the
R.H.S. of the above equation and arrive at

Tr(ρÔ) = Tr(i[ρ,H]Ô) + Tr(γ1D[â+]ρÔ)+

Tr(γϕD[â†+â+]ρÔ/2). (17)

Using the commutator relation [â+, â
†
+] = 1 and the

associative identity of trace Tr(ABC) = Tr(CAB) =
Tr(BCA), we can simplify each term of the above equa-
tion as

Tr(i[ρ,H]Ô) = −i⟨[Ô,H]⟩ (18a)

Tr(γ1D[â+]ρÔ) = ⟨γ1[â†+, Ô]Ô+⟩+ ⟨γ1
2
[Ô, â†+â+]⟩

(18b)

Tr(γϕD[â†+â+]ρÔ/2) =
γϕ
2
⟨[â†+â+, Ô]â†+â+⟩

+
γϕ
4
⟨[Ô, â†+â+

2
]⟩ (18c)

We are interested in calculating the mean field occupa-
tion ⟨â+⟩ inside the oscillator. Hence, we replace â+ in

place of Ô in Supplementary Equation 17 and arrive at
the following equation of motion

˙(⟨a+⟩) = −i⟨[a+, H]⟩ − (γ1 + γϕ/2)

2
⟨a+⟩, (19)
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Supplementary Figure 3. Plot of the flux responsivity (G+) and Kerr nonlinearity (K+) of the upper polariton mode for
Device-1 and Device-2 are shown in (a) and (b), respectively. G+ is extracted from the direct cavity measurements. The
anharmonicity of the polariton mode |K+| is numerically calculated using QuTip [1] and the experimentally determined device
parameter given in the device parameter Table.

where â+ is represented as a+ for simplicity. After
computing the commutation relation, we use the semi-

classical approximation ⟨a†+a+⟩ = |⟨a+⟩|2 and finally ar-
rive at the equation

ȧ+ = (i∆− κ/2)a+ + iK+ |a+|2 a+ − iϵd. (20)

Here, κ = (γ1 + γϕ/2) represents the total linewidth of
the weak Kerr oscillator. By solving the above equation,
one can determine the mean field occupation. Subse-
quently, one can calculate the mean photon occupation
nd = |a+|2.

Supplementary Note 3. Modeling of cavity-enabled
qubit-phonon absorption

A. In weak anharmonicity limit

For the experiment discussed in Fig. 2(c) of main text,
the transmon-cavity detuning is kept such that the po-
lariton mode’s decay rate is larger than its anharmonicity.
In this limit, the upper-polariton mode can be treated as
a weak-Kerr oscillator. Hence, only considering the up-
per polariton mode, the system can be described as a
weak-Kerr oscillator of frequency ω+ longitudinally cou-
pled to a mechanical resonator of frequency ωm with a
coupling strength of g+. In the presence of two continu-
ous drive signals, a strong pump and a weak probe, the
Hamiltonian of the system can be written as

H = ω+â
†
+â+ − K+

2
â†+â

†
+â+â+ + ωmb̂†b̂

+ g+ â†+â+(b̂+ b̂†) + ϵd(â+e
iωdt + â†+e

−iωdt)

+ ϵp(â+e
iωpt + â†+e

−iωpt), (21)

where ωd (ωp) is the pump (probe) drive frequency, ϵd
(ϵp) is the strength of the signal, and K+ is the Kerr

nonlinearity of porariton mode. In the frame rotating at
the control drive frequency ωd, the Hamiltonian is given
by

H = −∆â†+â+ − K+

2
â†+â

†
+â+â+ + ωmb̂†b̂

+ g+ â†+â+(b̂+ b̂†) + ϵd(â+ + â†+)

+ ϵp(â+e
iδpt + â†+e

−iδpt), (22)

where ∆ = ωd − ωc, and δp = ωp − ωd.
We ignore the quantum fluctuations and write down

the equation of motion (EOM) for the mean values of

the operators. The operators (b̂ + b̂†) and (b̂ − b̂†) are
essentially the normalized position and momentum, and
denoted as X̂ and P̂ , respectively. The mean value ⟨Ô⟩(t)
of any operator is represented as O from now on.
Then, the EOMs are given by

.
a+= (i∆− κ/2)a+ + iK+a

∗
+a+a+ − ig+a+X

− iϵd − iϵe−iδpt (23a)

.

a∗+= (i∆− κ/2)a∗+ − iK+a
∗
+a

∗
+a+ + ig+a

∗
+X

+ iϵd + iϵpe
iδpt (23b)

.

X= −iωmP (23c)

.

P= −iωmX − 2ig+a
∗
+a+ − γmP. (23d)

To solve these equation of motions, we use a perturba-
tive ansatz solution for weak probe. It is given by

a+(t) = A0 +A−e
−iδpt +A+e

iδpt, (24a)
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X(t) = X0 +X−e
−iδpt +X+e

iδpt, (24b)

P (t) = P0 + P−e
−iδpt + P+e

iδpt. (24c)

It has a time-independent static component, along
with two other time-dependent parts. By substituting
the ansatz and comparing the time-independent compo-
nents of Supplementary Equation 23, we arrive at the
following steady state equations:

−iωmP0 = 0, (25a)

X0 = −2g+|ᾱ|2

ωm
, (25b)

(i∆− κ/2)A0 + iK+A
∗
0A

2
0 − ig+A0X0 − iϵd = 0. (25c)

The Supplementary Equation 25(a) essentially implies
that the average momentum of the mechanical mode is
zero, while Supplementary Equation 25(b) represents the
static mechanical displacement denoted by X0. The “op-
tical” mode’s steady state amplitude is represented by
A0, which we will henceforth refer to as ᾱ. It can be
computed by solving Supplementary Equation 25(c).

Our goal is to determine the response A− at the probe
frequency, which is experimentally measured quantity. In
order to do this, we substitute the ansatz solutions in
Supplementary Equation 23 and compare the coefficient
of e−iδpt. Thus, we arrive at the following equations

B1X− = −2g+ωm(ᾱ∗A− + ᾱA∗
−), (26a)

B2A− = iϵp + iK+ᾱ
2A∗

− − ig+ᾱX−, (26b)

B3A
∗
− = −iK+(ᾱ

∗)2A− + ig+ᾱ
∗X−, (26c)

where

B1 = (ω2
m − δ2p − iγmδp),

B2 =
(
κ/2− i(δp +∆)− 2iK+|ᾱ|2 − 2ig+|ᾱ|2/ωm

)
,

and

B3 = (κ/2− i(δp −∆) + 2iK+|ᾱ|2 + 2ig+|ᾱ|2/ωm).

Substituting the solution of X− from Supplementary
Equation 26(a) into Supplementary Equation 26(c) will
results in

(B3 + i|ᾱ|2B′
1)A

∗
− = −i(ᾱ∗)2(K+ +B′

1)A−, (27)
where B′

1 = 2g2+ωm/B1. Next, we substitute the solution
of X and A∗

− into Supplementary Equation 26(b), and
arrive at the following equation

(
B2 − i|ᾱ|2B′

1 − |ᾱ|4 (K+ +B′
1)

2

B3 + i|ᾱ|2B′
1

)
A− = −iϵp. (28)

If the pump is applied at a red-detuned frequency, i.e.,
ωd = ωc − ωm, and the probe is near the resonator fre-
quency, i.e., ωp = ωc + δ where δ = δp − ωm, then the
component of the intracavity field A− at frequency ωp

takes the following analytical form:

A−(δ) ≈
iϵp

−κ/2 + 2iK+|ᾱ|2 + 2ig+|ᾱ|2/ωm + iδ − 2|ᾱ|2g2+/(γm − 2iδ) + |ᾱ|4 (K++2ig2
+/(γm−2iδ))2

2iK+|ᾱ|2+κ/2−2iωm+2|ᾱ|2g2
+/ωm(i−ωm/(γm−2iδ))

.

(29)

The experimentally measured cavity transmission is
given by

√
κeA−/ain, where κe and ain are the output

coupling rate and input probe strength, respectively. The
expression of A− is obtained without the approximation
of resolved sideband regime (ωm ≫ κ). Thus, it can be
used to fit the experimental data of Fig. 2(c) of the main
text to obtain electromechanical coupling rate g+.

B. In strong anharmonicity limit

When transmon qubit is detuned away from the cavity
frequency, its anharmonicity is not diluted by the lin-
ear cavity and is large compared to the dissipation rate.
Then, the “transmon-like” mode can still be treated as an

effective two-level system (TLS) or qubit. The frequency
of the TLS is given by ω̃q = ωq+J2/∆q, where ωq, J , and
∆q = ωq − ωc are the bare qubit frequency, transmon-
cavity coupling rate, and detuning between transmon and
cavity, respectively. The shift in frequency arises from
the interaction with the cavity. Thus, the system can be
described as a TLS longitudinally coupled to a mechani-
cal resonator.
In the presence of a pump and a probe signal with

frequency ωd and ωp, the Hamiltonian of the system can
be written as

H =
ω̃q

2
σ̂z +ωmb̂†b̂+

g0
2
(σ̂z +1)(b̂† + b̂)+ ϵd(σ̂

+e−iωdt

+ σ̂−eiωdt) + ϵp(σ̂
+e−iωpt + σ̂−eiωpt). (30)
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Here, σ̂’s represents the Pauli operators corresponding to

the TLS, b̂ (b̂†) represents the ladder operator of the me-
chanical mode, and g0 represents the coupling strength
between the transmon and the mechanical resonator. By
shifting to a frame rotating at pump signal’s frequency
ωd, we obtain

H = −∆

2
σ̂z + ωmb̂†b̂+

g0
2
(σ̂z + 1)(b̂† + b̂)

+ ϵd(σ̂
+ + σ̂−) + ϵp(σ̂

+e−iδpt + σ̂−eiδpt), (31)

where ∆ = ωd − ω̃q and δp = ωp − ωd. The Pauli
operators follow the commutation relation, [σ̂+, σ̂−] =
σ̂z, [σ̂+, σ̂z] = −2σ̂+, and [σ̂−, σ̂z] = 2σ̂−.

In this study, we deal with the mean response of the
system and ignore the quantum fluctuation. For sim-
plicity, the mean value ⟨Ô⟩ of an operator is represented
as O. We can construct the mean value equation using
the Hamiltonian of Supplementary Equation 31 and it is
given by

.

X= −iωmP, (32a)

.

P= −iωmX − ig0(σ
z + 1)− γmP, (32b)

.
σ
+
= (−i∆− γq/2)σ

+ + ig0Xσ+ − iϵdσ
z

− iϵpe
iδptσz, (32c)

.
σ
−
= (i∆− γq/2)σ

− − ig0Xσ− + iϵdσ
z

+ iϵpe
−iδptσz, (32d)

.
σ
z
= −γq(σ

z + 1)− 2iϵdσ
+ + 2iϵdσ

−

− 2iϵpe
−iδptσ+ + 2iϵpe

iδptσ−. (32e)

Here, γq and γm represents the dissipation rates of the
qubit and mechanical resonator respectively.

For a low enough strength of probe signal, we do a
perturbative expansion of the mean values and use the
Ansatz solution

O(t) = O0 +O−e
−iδpt +O+e

iδpt, (33)

where O(t) represents the mean values of the operators.
The time-independent component are the steady state
amplitude, whereas the coefficient of e−iδpt represents the
response at probe frequency. By substituting the ansatz
solution in Supplementary Equation 32, and we arrive at
the steady state equations

−iωmP0 = 0, (34a)

−iωmX0 − ig0(σ
z
0 + 1)− γmP0 = 0, (34b)

(−i∆− γq/2)σ
+
0 + ig0X0σ

+
0 − iϵdσ

z
0 = 0, (34c)

(i∆− γq/2)σ
−
0 − ig0X0σ

−
0 + iϵdσ

z
0 = 0, (34d)

−γq(σ
z
0 + 1)− 2iϵdσ

+
0 + 2iϵdσ

−
0 = 0. (34e)

From the above equation, we compute the steady state
amplitudes

P0 = 0, (35a)

σz
0 = −

∆̃2 + γ2
q/4

∆̃2 + γ2
q/4 + 2ϵ2d

, (35b)

σ+
0 = iϵd

γq/2− i∆̃

∆̃2 + γ2
q/4 + 2ϵ2d

, (35c)

σ−
0 = −iϵd

γq/2 + i∆̃

∆̃2 + γ2
q/4 + 2ϵ2d

, (35d)

X0 = − g0
ωm

(σz + 1/2)

= −2
2g0ϵ

2
d

ωm(∆̃2 + γ2
q/4 + 2ϵ2d)

. (35e)

Here we define ∆̃ = ∆− g0X0.
Next, we compute the first-order coefficients, in partic-

ular σ−
− , the quantity that is measured experimentally.

In order to compute this, we compare the coefficients
of e−iδpt from Supplementary Equation 32(a) and (b),
and substitute the steady-state amplitudes from Supple-
mentary Equation 35. Thus, we arrive at the following
equations

−iωmP− = −iδpX− (36a)

−iδpP− = −iωmX− − ig0σ
z
− − γmP− (36b)

− iδpσ
+
− = (−i∆− γq/2)σ

+
− + ig0X0σ

+
−

+ ig0X−σ
+
0 − iϵdσ

z
− (36c)

− iδpσ
−
− = (i∆− γq/2)σ

−
− − ig0X0σ

−
−

− ig0X−σ
−
0 + iϵdσ

z
− + iϵpσ

z
0 (36d)

− iδpσ
z
− = −γqσ

z
− − 2iϵd(σ

+
− − σ−

−) − 2iϵpσ
+
0 (36e)
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From Supplementary Equation 36(a) and (b) we get

X− = B4σ
z
−, (37)

where

B4 = − ig0

iωm + (γm − iδp)
δp
ωm

.

From Supplementary Equation 36(c) and (e) and using
the solution of X− form Supplementary Equation 37, we
arrive at

σ+
− = B5σ

z
−, (38a)

σz
− = B6σ

−
− +B7. (38b)

Here,

B5 =
iϵd −B4ϵdg0(γq/2− i∆̃)/(∆̃2 + γ2

q/4 + 2ϵ2d)

γq/2− i(δp − ∆̃)
,

B6 =
2iϵd

γq − iδp + 2iϵdB5
,

and

B7 =
2ϵpϵd

(γq − iδp + 2iϵdB5)

(γq/2− i∆̃)

(∆̃2 + γ2
q/4 + 2ϵ2d)

Finally, from Supplementary Equation 36(c) we com-
pute the analytical expression of σ−

− . It is given by

B8σ
−
− =

(
iϵd −

g0ϵdB4(γq/2 + i∆̃)

∆̃2 + γ2
q/4 + 2ϵ2d

)
B7 − iϵp, (39)

where

B8 = γq/2− i(∆̃ + δp)−(
iϵd −

g0ϵdB4(γq/2 + i∆̃)

∆̃2 + γ2
q/4 + 2ϵ2d

)
B6. (40)

Here, σz
0 has been approximated to be −1, assuming the

pump strength ϵd to be comparatively low than decay
rates. Additionally, in the experimental setup of Device-
2, it holds that g0 and ϵd are much smaller than γq. Con-

sequently, we can approximate ∆̃ ≈ ∆. For a red detuned
pump signal, i.e. ∆ = ωd − ω̃q = ωm, the expression of
σ−
− can be computed from Supplementary Equation 39.

This expression (with a normalization factor) is used to
fit the data points in Fig. 2(e) of the main text, resulting
in the solid black curve.

Supplementary Note 4. Backaction from a weakly
nonlinear-Kerr mode

In this section, we analyze the backaction exerted on
the mechanical resonator arising due to the optomechan-
ical interaction of the polariton modes. Because of large
spectral separation, we solely focus on the upper po-
lariton mode, leading to a simplified two-mode analysis.
Considering the upper polariton mode as a weak-Kerr os-
cillator, in a frame rotating at the pump frequency, the
Hamiltonian of the system can be expressed as

H = −∆â†+â+ − K+

2
â†+â

†
+â+â+ + ωmb̂†b̂

+ g+ â†+â+(b̂+ b̂†) + ϵ (â+ + â†+), (41)

where K+ is the Kerr-nonlinearity of the upper polariton
mode, ϵ is the drive strength of the pump, ∆ = ωd − ω+

is the drive detuning, and the rest of the symbols have
their usual meaning.
The quantum Langevin equations of the system are

given by

˙̂a+ = −i [â+,H]− κ

2
â+ +

√
κex âin +

√
κ0 f̂in, (42a)

˙̂
b = −i

[
b̂,H

]
− γ

2
b̂+

√
γm b̂in, (42b)

where âin and f̂in are noise operators of the polari-

ton mode, b̂in is noise operator of the mechanical mode,
κ(γm) is the decay rate of the polariton (mechanical)
mode, and κex(κ0) is the total external (internal) de-
cay rates of the polariton mode, respectively. Using the
Hamiltonian in Supplementary Equation 41 and Supple-
mentary Equation 42, we obtain the equations of motion
(EOM) of both modes:

˙̂a+ = (i∆− κ

2
)â+ + iK+â

†
+â+â+ − ig+â+(b̂+ b̂†)

+ ϵ+
√
κex âin +

√
κ0 f̂in, (43a)

˙̂
b = (−iωm − γm

2
)b̂− ig+â

†
+â+ +

√
γm b̂in. (43b)

By defining the mean field occupation of the polariton
mode and the mechanical mode as α and β, respectively,
we arrive at the following semi-classical equations of mo-
tion:

α̇ = (i∆− κ

2
)α+ iK+ |α|2 α− ig+α(β + β∗) + ϵ, (44a)

β̇ = (−iωm − γm
2

)β − ig+ |α|2 . (44b)
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In the steady state of the system, these equations become
α̇ = 0, β̇ = 0. Solving these, we find the steady state field
amplitude ᾱ and β̄.

Next, we assume an ansatz solution of Supplementary
Equation 43, where we write down the fields as a combi-
nation of steady state amplitude and a fluctuation term,

i.e. â+ = ᾱ + δâ+, and b̂ = β̄ + δb̂. Substituting these
ansatz to Supplementary Equation 43, and ignoring the
higher order fluctuation terms, we get the EOMs as

δ̇â+ =
[
i∆̃− κ

2

]
δâ++ iηδâ†+− iG(δb̂+δb̂†)+

√
κex âin

+
√
κ0 f̂in, (45a)

δ̇â†+ =
[
−i∆̃− κ

2

]
δâ†+ − iη∗δâ+ + iG∗(δb̂+ δb̂†)+

√
κex â†in +

√
κ0 f̂†

in, (45b)

˙
δb̂ =

[
−iωm − γm

2

]
δb̂− iG∗δâ+− iGδâ†++

√
γm b̂in,

(45c)

˙
δb̂† =

[
iωm − γm

2

]
δb̂† + iGδâ†+ + iG∗δâ+

+
√
γm b̂†in, (45d)

where ∆̃ = ∆ + 2K+ |ᾱ|2 − g+(β̄ + β̄∗), G = g+ᾱ and
η = K+ᾱ

2.
Next, we perform Fourier transform of the above equa-

tions by defining the transformation as x[ω] = F [x(t)] =∫ +∞
−∞ x(t)eiωtdt. Using the identities (x†)[ω] = (x[−ω])†,

and F [ẋ(t)] = −iωF [x(t)], the new set of equations of
motion in frequency domain become

[
χ−1
c −iη
iη∗ χ̃−1

c

] [
δâ+[ω]

(δâ†+)[ω]

]
= −i

[
G G

−G∗ −G∗

] [
δb̂[ω]

(δb̂†)[ω]

]
+

[ √
κex âin[ω] +

√
κ0 f̂in[ω]√

κex (â†in)[ω] +
√
κ0 (f̂†

in)[ω]

]
(46)

[
χ−1
m 0
0 χ̃−1

m

] [
δb̂[ω]

(δb̂†)[ω]

]
= −i

[
G∗ G
−G∗ −G

] [
δâ+[ω]

(δâ†+)[ω]

]
+

[ √
γm b̂in[ω]√
γm (b̂†in)[ω]

]
, (47)

where χ−1
c [ω] = (−i(ω + ∆̃) + κ/2), χ̃−1

c [ω] = (−i(ω −
∆̃) + κ/2) represent dressed mode’s susceptibilities and
χ−1
m [ω] = (−i(ω−ωm)+ γm/2), χ̃−1

m [ω] = (−i(ω+ωm)+
γm/2) represent the mechanical susceptibilities.

To find the effective dynamics of the mechanical res-

onator, we first solve Supplementary Equation 46, and

substitute the solution of (δâ+)[ω] and (δâ†+)[ω] in Sup-
plementary Equation 47. This leads to the simplified
equations of the mechanical mode as,

[
−i(ω − ωm) + γm

2 +Σc[ω] Σc[ω]
−Σc[ω] −i(ω + ωm) + γm

2 − Σc[ω]

] [
δb̂[ω]

(δb̂†)[ω]

]
=

√
γm

[
B̂in[ω]

(B̂†
in)[ω]

]
. (48)

The quantity defined as Σc[ω] = 2i|G|2[∆̃ −
|η|][1/χcχ̃c − |η|2]−1 represents the modification in the
mechanical resonator’s dynamics due to nonlinear Kerr
mode. The frequency shift and the effective optomechan-
ical damping rate of the mechanical resonator is given by,
δωm = Im(Σc[ωm]) and Γm = γm + 2×Re(Σc[ωm]), re-
spectively. These two quantities are plotted for Device-2
parameters in Supplementary Figure 4 as a function of
pump strength and detuning. It illustrates how the back-
action effect evolves as parameters change.

In Fig. 3(a) of the main text, we plot Γm and δγm
as solid black lines using Device-1’s parameters. Simi-

larly, by using the parameters of Device-2, the boundary
of mechanical instability is derived from the threshold
Re(Σc[ω]) = −γm/2 and it is plotted as the solid black
line in Fig. 3(c) of the main text. The same is shown in
Supplementary Figure 4 as the gray curve. By replacing
K+ = 0 in the expression of Σc[ωm], we can calculate the
boundary of mechanical instability for a linear EM mode
coupled to the mechanical resonator. It is shown as the
dashed curve in Fig. 3(c) of the main text.
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Supplementary Figure 4. Backaction from weak Kerr oscillator model: Colorplot in (a) and (b) shows the effective
mechanical linewidth Γm = γm + 2×Re(Σc[ωm]) and optomechanical frequency shift δωm = Im(Σc[ωm]), respectively. To
maintain the visibility of small variations, the color scale in (a) is truncated at ±100 Hz. The gray curve in (a) denotes the
contour of Γm = 0. These quantities are computed from a model where the EM mode is considered as an anharmonic oscillator,
and it is longitudinally coupled to the mechanical resonator. The parameters used to compute these quantities are taken from
device-2, and they are given by γm/2π ∼ 6 Hz, ωm/2π ∼ 3.97 kHz, K+/2π ∼ 8.55 MHz, κ/2π ∼ 9 MHz and g+/2π ∼ 45 kHz.

Supplementary Note 5. Linear stability test using
semi-classical analysis of three-mode system

We start with the Hamiltonian of the three-mode sys-
tem consisting of a linear cavity, transmon qubit, and a
mechanical resonator. In the presence of a drive signal,
it can be written as

H = ωca
†a+ωqc

†c− αT

2
c†c†cc+ J(ac† + a†c)+ωmb†b

+ g0c
†c(b+ b†) + ϵ(aeiωdt + a†e−iωdt), (49)

where J is the coupling strength between cavity and
transmon, g0 is the electromechanical coupling between
the transmon and the mechanical resonator, αT is the
transmon anharmonicity, a(a†), c(c†) and b(b†) are the
annihilation(creation) operators of cavity, transmon, and
mechanical modes with resonant frequencies of ωc, ωq and
ωm, respectively. A pump signal is continuously applied
to the cavity with strength ϵ and frequency ωd. In the
rotating frame of pump frequency, the Hamiltonian be-
comes

H = −∆1a
†a−∆2c

†c− αc

2
c†c†cc+ J(ac† + a†c)

+ ωmb†b+ g0c
†c(b+ b†) + ϵ(a+ a†), (50)

where ∆1 = (ωd − ωc) and ∆2 = (ωd − ωq).
Writing the Heisenberg-Langevin equations and us-

ing semi-classical approximation, we get the steady state
equation of motions as

α̇′ = −(κb/2− i∆1)α
′ − iJζ − iϵ, (51a)

ζ̇ = −[γ/2−i∆2−2iαT |ζ|2+ig0ζ(β+β∗)]−iJα′, (51b)

β̇ = −(−γm/2 + iωm)β − ig0|ζ|2, (51c)

where ⟨a⟩ = α′, ⟨c⟩ = ζ and ⟨b⟩ = β are the mean values.
Subsequently, representing the steady-state ampli-

tudes in complex form as α′ = x + iy, ζ = p + iq, and
β = u+ iv, we get the following sets of equations

ẋ = ḟ1 = −κb

2
x−∆1y + Jq (52a)

ẏ = ḟ2 = +∆1x− κb

2
y − Jp− ϵ (52b)

ṗ = ḟ3 = −γ

2
p+

(
−∆2 − 2αT (p

2 + q2) + 2g0u
)
q + Jy

(52c)

q̇ = ḟ4 = −γ

2
q −

(
−∆2 − 2αT (p

2 + q2) + 2g0u
)
p− Jx

(52d)

u̇ = ḟ5 = −γm
2

u+ ωmv (52e)

v̇ = ḟ6 = −ωmu− γm
2

v − g0(p
2 + q2) (52f)

For the steady-state solution or the fix point of the
system, we set the first derivatives to zero i.e., ẋ = ẏ =
ṗ = q̇ = u̇ = v̇ = 0. It leaves us with

γ2
m

4ωm
u+ ωmu− g0

(
Jκbϵ

2AB
p(u) +

J∆1ϵ

AB
q(u)

)
= 0, (53)
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where

A =
κ2
b

4
+ ∆2

1

B =

(
γ

2
+

J2κb

2A

)
,

C = −∆2 − 2αT (p
2 + q2) + 2g0u+

J2∆1

A
.

Here,

p(u) = −
(
J∆1C

A + JκbB
2A

)
ϵ

B2 + C2
,

and

q(u) =

(−J∆1B
A + JκbC

2A

)
ϵ

B2 + C2
.

By finding the roots of Supplementary Equation53, the
fixed points x, y, p, q, u and v can be obtained. Consider-
ing the steady-state values as (x̄, ȳ, p̄, q̄, ū, v̄), the nature
of these points can be understood by perturbing these
points and finding the time evolution of the perturbation.
Defining the perturbation as zi = ki − k̄i, where ki for
i = 1, 2, 3, 4, 5, 6 corresponds to (x, y, p, q, u, v), respec-
tively. Subsequently, the time evolution of perturbation

zi is obtained as,

żi = k̇i ≈ fi|k̄ +
∑
i

(ki − k̄i)
∂fi
∂ki

|k̄i
. (54)

This gives

d

dt


z1
z2
z3
z4
z5
z6

 =



∂f1
∂x

∂f1
∂y

∂f1
∂p

∂f1
∂q

∂f1
∂u

∂f1
∂v

∂f2
∂x

∂f2
∂y

∂f2
∂p

∂f2
∂q

∂f2
∂u

∂f2
∂v

∂f3
∂x

∂f3
∂y

∂f3
∂p

∂f3
∂q

∂f3
∂u

∂f3
∂v

∂f4
∂x

∂f4
∂y

∂f4
∂p

∂f4
∂q

∂f4
∂u

∂f4
∂v

∂f5
∂x

∂f5
∂y

∂f5
∂p

∂f5
∂q

∂f5
∂u

∂f5
∂v

∂f6
∂x

∂f6
∂y

∂f6
∂p

∂f6
∂q

∂f6
∂u

∂f6
∂v




z1
z2
z3
z4
z5
z6

 .

(55)

Upon substituting the values of fi ’s and evaluating
the derivative at the steady state points, we get

d

dt


z1
z2
z3
z4
z5
z6

 = S


z1
z2
z3
z4
z5
z6

 . (56)

The S-matrix governs the evolution of the perturba-
tion, and it is given by

S =


−κb

2 −∆1 0 J 0 0
∆1 −κb

2 −J 0 0 0
0 J −γ

2 − 4αT p̄q̄ −∆2 − 2αT p̄
2 − 6αT q̄

2 + 2g0ū 2g0q̄ 0
−J 0 ∆2 + 6αT p̄

2 + 2αT q̄
2 − 2g0ū −γ

2 + 4αT p̄q̄ −2g0p̄ 0
0 0 0 0 −Γ

2 ωm

0 0 −2g0p̄ −2g0q̄ −ωm −Γ
2

 . (57)

The Supplementary Equation 56 has the solution of
the form z(t) =

∑
i biwie

λit, where bi’s are the constant
of integration, λi’s are the eigenvalues of the matrix S
and wi’s are the corresponding eigenvectors. Thus, any
eigenvalue of the S with a positive real part will cause
the solution for z(t) to grow exponentially, resulting in
instability. Thus, this becomes a criterion for identifying
the unstable points.

Fig. 6(c) of the main text shows the result of such a
calculation for Device-2. The parameters used for the
calculation are mentioned below. A bare cavity decay
rate of κb ∼ 8 MHz and transmon dissipation rate of
γ ∼ 12 MHz is used for the calculation. The electrome-
chanical coupling between the transmon and mechanical
resonator is set to 300 kHz, which was estimated from the
upper-polariton mode’s flux responsivity, given in Sup-
plementary Figure 3. It is evident that a semi-classical

description of the system is not sufficient to understand
the experimental observation of mechanical parametric
instability.

Supplementary Note 6. Modelling of the instability
region using polariton basis

We find out in the previous section that a classical de-
scription of the system fails to describe the experimental
observation. Therefore, a quantum mechanical descrip-
tion of electrical modes is necessary to explain the obser-
vations at low to moderate pump powers. This is done by
treating each transition into their two-level subspace. Al-
ternatively one can treat the electrical modes as a multi-
level atom. However, such an analysis quickly becomes
intractable. We justify the validity of two-level model
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using the fact that a pump near a certain transition fre-
quency only drive that particular transition occurs due
to the large spectral separation compared to their decay
rates. In addition, these transitions are flux tunable as
shown in the Fig. 4(a) of the main text, resulting in cou-
pling with the mechanical resonator. Thus, the full sys-
tem can be treated as a multiple two-level systems (TLS)
independently coupled to the mechanical resonator with
a certain coupling strength. We separately compute the
region of mechanical instability for each TLS and super-
pose them together to compute the full instability phase

space diagram.
We begin the theoretical analysis by computing the fre-

quency ωi and electromechanical coupling strength gi for
each TLS. The transition frequencies ωi’s are obtained
from the difference of eigenenergies of the transmon-
cavity system. The Hamiltonian of the transmon-cavity
system (ignoring the mechanical resonator) is given by
H = ωca

†a+ωqc
†c−αT

2 c†c†cc+J(ac†+a†c), where â and ĉ
are the ladder operators of cavity and transmon, respec-
tively. We write the Hamiltonian up to two-excitation
subspace and subsequently diagonalize it to find the en-
ergy eigenvalues. It is given by

H =


0 0 0 0 0 0
0 ωq J 0 0 0
0 J ωc 0 0 0

0 0 0 2 (ωq − αc)
√
2J 0

0 0 0
√
2J ωc + ωq

√
2J

0 0 0 0
√
2J 2ωc


Diagonalization−−−−−−−−−−→


0 0 0 0 0 0
0 E1 0 0 0 0
0 0 E2 0 0 0
0 0 0 E3 0 0
0 0 0 0 E4 0
0 0 0 0 0 E5

 , (58)

where Ei’s are a function of ωq, ωc, αT and J . Using these
energy eigenvalues, we obtain the transition frequencies
ωi’s by calculating the difference between the relevant
energy eigenvalues, as shown by the arrows in Supple-
mentary Figure 5. In terms of notation used in the main
text, the frequencies ω−, ω+, ω−α, and ω−β correspond
to ω1, ω2, ω3, and ω4, respectively.

 Eigenstates

0

E1

E2

E3

E4

E5

ω1 ω2

ω3 ω4

Supplementary Figure 5. Eigenstates: Energy eigenstates
of the cavity-transmon system. The energies are indicated on
the right, while the eigenstates are labeled on the left. ωi’s
represent the transition energies, and the arrows point to the
appropriate eigenstates for the specific transition.

Next, we determine the electromechanical coupling
strengths for each transition. In the presence of mag-
netic field the transmon frequency becomes a function of
mechanical displacement x, i.e. ωq(x) ≈ ωbare

q + Gqx.
Consequently, the transition frequencies become a func-
tion of mechanical displacement as well, since they rely

on ωq. Therefore, by doing Taylor’s expansion of ωi’s up
to first order in x, we get

ωi ≈ ωi|x=0 +G′
ix. (59)

Here, G′
i = ∂ωi

∂x

∣∣
x=0

is the frequency shift per unit
displacement. Thus, the electromechanical coupling
strength for i’th transition is then given by

gi =
∂ωi

∂x
xzpf =

∂ωi

∂Φ

∂Φ

∂x
xzpf = GiB

∥lxzpf , (60)

where Gi = dωi/dΦ is the flux responsivity. Since Gi’s
are a function of ωq, we can estimate the remainder by
computing the value of any one of the Gi. Here, G2 is
essentially the flux responsivity of the upper polariton
mode, and it is measured experimentally, as shown in
Supplementary Figure 3. From this known value of G2

we calculate the remaining Gi’s and hence the coupling
strength gi.
The Hamiltonian of any specific two-level system takes

the form (in the interaction picture)

H = −∆i
σz
i

2
+ωmb†b+

gi
2
(σz

i +1)(b+ b†)+ ϵi(σ
+
i +σ−

i ),

(61)
where ∆i = (ωd − ωi), ωd is the drive frequency and

ωi is the frequency of the i’th transitions, gi is the single
photon electromechanical coupling , and ϵi is the drive
amplitude.
In order to find the phase diagram of unstable response

of the mechanical resonator, we follow the same approach
as described in the previous section. It starts with writ-
ing the Heisenberg-Langevin equation for of σ’s and b,
followed by deriving the steady state equation of motion
of the mean values of the operators:
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σ̇z
i = −i(2ϵσ+ − 2ϵσ−)− γi(σ

z
i + 1), (62a)

σ̇−
i = −i(−∆iσ

−
i + gixσ

−
i − ϵσz

i )− (
γi
2

+ γϕ
i )σ

−
i , (62b)

σ̇+
i = i(−∆iσ

+
i + gixσ

+
i − ϵσz

i )− (
γi
2

+ γϕ
i )σ

+
i , (62c)

ḃ = −i
gi
2
(σz

i + 1) + ωmb− γm
2

b. (62d)

Here we use the notations σ and b in place of of ⟨σ⟩
and ⟨b⟩ to represent the mean values. γi and γϕ are the
energy dissipation rate and the dephasing rate of the i’th
transition. We write the mean values in complex form
as σz = s, σ+ = p′ + iq′, and b = u + iv. It is followed
by the calculation of fixed points, which is carried out
by setting the first time derivative of the mean values to
zero. It leaves us with(γi

2
+ γϕ

i

)
q′(s) = −∆ip

′(s) + 2giu(s)p
′(s)− ϵs, (63)

where

q′(s) =
γi
4ϵ

(s+ 1),

u(s) = −
gi
2 (s+ 1)
γ2
m

4ωm
+ ωm

,

v(s) = −
giγm

4ωm
(s+ 1)

γ2
m

4ωm
+ ωm

,

and

p′(s) = −q′(s)
−∆i + 2giu(s)

γi/2 + γϕ
i

.

Subsequently, we determine the nature of these fixed
points by finding the time evolution of a small perturba-
tion. Following the same approach given in the previous
section, we compute the evolution matrix of the pertur-
bation. It is given by

S =


−γi 0 4ϵi 0 0

0 −(γi/2 + γϕ
i ) ∆i − 2giu −2giq

′ 0

−ϵ ∆+ 2giu −(γi/2 + γϕ
i ) 2gip

′ 0
0 0 0 −γm

2 ωm

−gi/2 0 0 −ωm
−γm

2


(64)

If the real part of the eigenvalue becomes positive for a
certain value of ∆ and ϵ, we denote that point in the
phase space as unstable. Hence, we compute the me-
chanical instability phase diagram of the four relevant
two-level systems with frequencies ω1, ω2, ω3, and ω4.

Subsequently, we plot all four regions together, resulting
in the green shaded area in Fig. 6(b) of the main text.
It is evident from the transmission spectrum of

Fig. 4(b) in the main text that the linewidths associ-
ated with each transition are not equal. The higher-level
transitions have larger linewidth compared to the lower-
level transitions. The energy decay rates and dephasing
rates used to compute Fig. 6(b) of the main text are

given by γ1 ∼ 10 MHz, γϕ
1 ∼ 4 MHz, γ2 ∼ 10 MHz,

γϕ
2 ∼ 4 MHz, γ3 ∼ 18 MHz, γϕ

3 ∼ 8 MHz, γ4 ∼ 14 MHz,

and γϕ
4 ∼ 9 MHz. The onset of instability for each tran-

sition depends on these decay rates, as observed in the
Fig 6(b) of the main text.
In addition, the onset of instability depends on the

thermal occupation of the eigenstates. The ground and
excited state occupation of a certain TLS determines the
probability of transition when subjected to a drive. Since
|+⟩ and |−⟩ have much smaller thermal occupations than
|g⟩, the higher transitions with frequencies of ω3 and ω4

are less likely to occur than lower transitions with fre-
quencies of ω1 and ω2. While computing the instabil-
ity boundary, we consider 82% thermal occupation in |g⟩
while 10% and 8% occupation in |−⟩ and |+⟩, respec-
tively. These values were inspired from the numerical
calculation of Fig. 5(b) in the main text, which resulted
in a good match with the experiment. The eigenstates
|α⟩, |β⟩ and |γ⟩ are considered to have zero thermal oc-
cupation due to the high value of their energy.

Supplementary Note 7. Data recording procedure

We describe the details of the data gathering routine
for CEQA and power spectral density (PSD) measure-
ments. For the CEQA experiment, we use a vector net-
work analyser(VNA) to measure the probe transmission,
whereas a separate signal generator supplies the pump
signal. Both microwave units are synchronized using the
10 MHz reference signal. Since we use very low probe
powers, we record three traces of the transmissions, which
are later averaged to reduce the trace noise. The mea-
surements are taken at a bandwidth of 10 Hz to improve
the signal-to-noise ratio.
To measure the optomechanical backaction, we record

the power spectral density (PSD) of the outgoing mi-
crowave signal using a signal analyzer. For Fig. 3(a)
of the main text, the PSD is recorded at a resolution
bandwidth (RBW) of 3 Hz and with 200 averages, which
takes 2 minutes to acquire each data point. The PSD is
recorded around mechanical sideband frequency ωd+ωm

with 1 kHz span, where ωd is the pump frequency.
For the data corresponding to mechanical instability in

Fig. 3(b) and (c) of the main text, the PSD is recorded
in a span of 30 MHz around the pump frequency ωd. The
spectrum analyzer RBW is set to 5 kHz and average to
1000. For instability results shown in Fig. 5(a) and (c)
of the main text, we record the PSD neighboring two
mechanical sidebands ωd ± 2ωm successively with a span
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Supplementary Figure 6. Mechanical sideband ampli-
tude: A representative plot of first (blue) and second (green)
mechanical sideband amplitude as a function of pump power.
The abrupt change in the peak amplitude (at Pi = −33 dBm)
of the sidebands is used to define the critical power for the
onset of the instability.

of 2 kHz, resolution bandwidth of 5 Hz, and trace average
of 10. We define the unstable response when the second
mechanical sideband (ωd±2ωm) shows an abrupt change,
as shown in Supplementary Figure 6.
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