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For a class  of graphs, the objective of Subgraph Complementation to  is to find whether there exists a 
subset 𝑆 of vertices of the input graph 𝐺 such that modifying 𝐺 by complementing the subgraph induced by 𝑆
results in a graph in . We obtain a polynomial-time algorithm for the problem when  is the class of graphs with 
minimum degree at least 𝑘, for a constant 𝑘, answering an open problem by Fomin et al. (Algorithmica, 2020). 
When  is the class of graphs without any induced copies of the star graph on 𝑡 + 1 vertices (for any constant 
𝑡 ≥ 3) and diamond, we obtain a polynomial-time algorithm for the problem. This is in contrast with a result by 
Antony et al. (Algorithmica, 2022) that the problem is NP-complete and cannot be solved in subexponential-time 
(assuming the Exponential Time Hypothesis) when  is the class of graphs without any induced copies of the star 
graph on 𝑡 + 1 vertices, for every constant 𝑡 ≥ 5.
1. Introduction

Complementation is a very fundamental graph operation and modi-

fying a graph by complementing an induced subgraph to satisfy certain 
properties is a natural algorithmic problem on graphs. The operation of 
complementing an induced subgraph, known as subgraph complementa-

tion, is introduced by Kamiński et al. [1] in connection with clique-width 
of graphs. For a class  of graphs, the objective of Subgraph Comple-

mentation to  is to find whether there exists a subset 𝑆 of the vertices 
of the input graph 𝐺 such that complementing the subgraph induced 
by 𝑆 in 𝐺 results in a graph in . Fomin et al. [2] studied this prob-

lem on various classes  of graphs. They obtained that the problem can 
be solved in polynomial-time when  is bipartite, d-degenerate, or co-

graphs. In addition to this, they proved that the problem is NP-complete 
when  is the class of all regular graphs. Antony et al. [3] studied this 
problem when  is the class of 𝐻 -free graphs (graphs without any in-

duced copies of 𝐻). They proved that the problem is polynomial-time 
solvable when 𝐻 is a complete graph on 𝑡 vertices. They also proved 
that the problem is NP-complete when 𝐻 is a star graph on at least 6 
vertices or a path or a cycle on at least 7 vertices. Later Antony et al. [4]

proved that the problem is polynomial-time solvable when 𝐻 is paw, 
and NP-complete when 𝐻 is a tree, except for 41 trees of at most 13 ver-
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tices. It has been proved [3,4] that none of these hard problems admit 
subexponential-time algorithms (algorithms running in time 2𝑜(𝑛)), as-

suming the Exponential Time Hypothesis. Subgraph complementation is 
a special case of flip operation, which is a crucial operation in the study 
of well-structured dense graph classes [5–7]. For further reading on var-

ious edge modification problems including subgraph complementation, 
we refer to a survey by Crespelle et al. [8].

Fomin et al. [2] proved that the problem is polynomial-time solvable 
not only when  is the class of 𝑑-degenerate graphs but also when  is 
any subclass of 𝑑-degenerate graphs recognizable in polynomial-time. 
This implies that the problem is polynomial-time solvable when  is the 
class of 𝑟-regular graphs or the class of graphs with maximum degree 
at most 𝑟 (for any constant 𝑟). They asked whether the problem can be 
solved in polynomial-time when  is the class of graphs with minimum 
degree at least 𝑟, for a constant 𝑟 (also see open problem 5.2 in [8]). 
We resolve this positively and obtain a stronger result - a simple lin-

ear kernel for the following parameterized problem: Given a graph 𝐺
and an integer 𝑘, find whether 𝐺 can be transformed into a graph with 
minimum degree at least 𝑘 by subgraph complementation (here the pa-

rameter is 𝑘). The result follows from an observation that if 𝐺 has at 
least 6𝑘 − 5 vertices, then it is a yes-instance of the problem. Comple-
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menting this observation, we construct a no-instance of SC-to-𝑘 having 
3𝑘 − 2 vertices, for every even integer 𝑘 ≥ 4.

When  is the class of graphs without any induced copies of the star 

graph on 𝑡 + 1 vertices (for any fixed 𝑡 ≥ 3) and the diamond ( ), 
we obtain a polynomial-time algorithm. When 𝑡 = 3 this graph class 
is known as linear domino and is the class of line graphs of triangle-

free graphs. Cygan et al. [9] have studied the polynomial kernelization 
of edge deletion problem for this target graph class. When 𝑡 = 4, the 
graph class is the line graphs of linear hypergraphs of rank 3. The tech-

nique that we use is similar to that given in [3] and [4] for obtaining 
polynomial-time algorithms when  is 𝐻 -free, for 𝐻 being a complete 
graph on 𝑡 vertices or a paw. Our result is in contrast with the result 
by Antony et al. [3] that the problem is NP-complete and cannot be 
solved in subexponential-time (assuming the Exponential Time Hypoth-

esis) when 𝐻 is a star graph on 𝑡 + 1 vertices, for every constant 𝑡 ≥ 5. 
Our algorithm is an XP algorithm for the parameterized version of the 
problem, with parameter 𝑡.

1.1. Preliminaries

A diamond is the graph , and a star graph on 𝑡 + 1 vertices, 
denoted by 𝐾1,𝑡, is the tree with 𝑡 degree-1 vertices and one degree-𝑡

vertex. The degree-𝑡 vertex of a star is known as the center of the star. 

For example, 𝐾1,3, also known as a claw, is the graph . A com-

plete graph on 𝑡 vertices is denoted by 𝐾𝑡. A cluster graph is a disjoint 
union of complete graphs. Equivalently, a cluster graph is a graph with 
no induced path on 3 vertices. By 𝐺 we denote the complement graph 
of 𝐺. The open neighborhood and closed neighborhood of a vertex 𝑣 are 
denoted by 𝑁(𝑣) and 𝑁[𝑣] respectively. The underlying graph will be 
evident from the context. For a subset 𝑆 of vertices of 𝐺, by 𝐺[𝑆] we 
denote the graph induced by 𝑆 in 𝐺. For a graph 𝐺 and a set 𝑆 ⊆ 𝑉 (𝐺), 
we define the graph 𝐺 ⊕ 𝑆 as the graph obtained from 𝐺 by comple-

menting the subgraph induced by 𝑆 , i.e., an edge 𝑢𝑣 is in 𝐺 ⊕ 𝑆 if and 
only if 𝑢𝑣 is a nonedge in 𝐺 and 𝑢, 𝑣 ∈ 𝑆 , or 𝑢𝑣 is an edge in 𝐺 and 
{𝑢, 𝑣} ⧵ 𝑆 ≠ ∅. The operation is called subgraph complementation. Let 
 be a set of graphs. We say that a graph 𝐺 is -free if 𝐺 does not 
have any induced copies of any of the graphs in . If  = {𝐻}, then 
we say that 𝐺 is 𝐻 -free. The general definition of the problem that we 
deal with is given below.

SC-to-: Given a graph 𝐺, decide whether there is a set 𝑆 ⊆ 𝑉 (𝐺)
such that 𝐺 ⊕ 𝑆 ∈ .

In a parameterized problem, apart from the usual input, there is an 
additional integer input known as the parameter. A parameterized graph 
problem is fixed-parameter tractable (FPT) if it can be solved in time 
𝑓 (𝑘)𝑛𝑂(1), and belongs to the complexity class XP, if it can be solved 
in time 𝑛𝑓 (𝑘), where 𝑛 is the number of vertices and 𝑓 (𝑘) is any com-

putable function. A parameterized problem admits a kernel if there is 
a polynomial-time algorithm which takes as input an instance (𝐼 ′, 𝑘′)
of the problem and outputs an instance (𝐼, 𝑘) of the same problem so 
that |𝐼|, 𝑘 ≤ 𝑓 (𝑘′) for some computable function 𝑓 (𝑘′), and (𝐼 ′, 𝑘′) is a 
yes-instance if and only if (𝐼, 𝑘) is a yes-instance (here, 𝑘′ and 𝑘 are the 
parameters). A kernel is a linear kernel if 𝑓 (𝑘′) is a linear function. It is 
known that a problem admits an FPT algorithm if and only if it admits a 
kernel. We refer to the book [10] for further exposition on these topics.

2. Algorithms

We obtain our results in this section. Let 𝑘 be the class of graphs 
with minimum degree at least 𝑘. We prove that a no-instance of 
SC-to-𝑘 cannot be very large.

Lemma 2.1. Let 𝑘 ≥ 2 and let 𝐺 be a graph with at least 6𝑘 − 5 vertices. 
2

Then 𝐺 is a yes-instance of SC-to-𝑘.
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Proof. For a contradiction, assume that 𝐺 is a no-instance and has at 
least 6𝑘 − 5 vertices. For an integer 𝑑, let 𝑀≥𝑑 and 𝑀≤𝑑 denote the set 
of vertices in 𝐺 with degree at least 𝑑 and the set of vertices in 𝐺 with 
degree at most 𝑑, respectively. In particular, let |𝑀≤𝑘−1| = 𝑚. Without 
loss of generality, assume that 𝑚 ≥ 1. If 𝑚 > 2𝑘, then 𝐺 ⊕ 𝑀≤𝑘−1 ∈
𝑘. Therefore, 𝑚 ≤ 2𝑘. If |𝑀≤3𝑘−4| ≥ 4𝑘 − 3, then 𝐺 ⊕ 𝑀≤3𝑘−4 ∈ 𝑘. 
Therefore, assume that |𝑀≤3𝑘−4| ≤ 4𝑘 − 4. Suppose 𝑀≥3𝑘−3 ≥ 2𝑘 − 𝑚. 
Let 𝑀 ′

≥3𝑘−3 be any subset of 𝑀≥3𝑘−3 such that |𝑀 ′
≥3𝑘−3| = 2𝑘 − 𝑚. Let 

𝑀 = 𝑀≤𝑘−1 ∪ 𝑀 ′
≥3𝑘−3. Since 𝑘 ≥ 2, 𝑀≤𝑘−1 and 𝑀≥3𝑘−3 are disjoint. 

Therefore, |𝑀| = 2𝑘. Let 𝑈 be set of vertices 𝑢 ∈ 𝑀 ′
≥3𝑘−3 such that 𝑢

is adjacent to every vertex in 𝑀 ⧵ {𝑢} in 𝐺. Note that every vertex in 
𝑀 ′

≥3𝑘−3 ⧵𝑈 has at least one nonneighbor in 𝐺[𝑀]. Let 𝐺′ = 𝐺 ⊕ (𝑀 ⧵
𝑈 ). We claim that 𝐺′ ∈ 𝑘. For a contradiction, assume that there is 
a vertex 𝑣 such that the degree of 𝑣 in 𝐺′ is at most 𝑘 − 1. Clearly, 
𝑣 ∈ 𝑀 ′

≥3𝑘−3 ⧵ 𝑈 . Let 𝑥 be the number of neighbors of 𝑣 in 𝐺 − 𝑀 , and 
𝑦 be the number of nonneighbors of 𝑣 in 𝐺[𝑀]. Note that 𝑦 ≥ 1. We 
have 𝑥 + 𝑦 ≤ 𝑘 − 1. Since 𝑣 has degree at least 3𝑘 − 3 in 𝐺, we obtain 
that 𝑥 + 2𝑘 − 𝑦 − 1 ≥ 3𝑘 − 3. That is, 𝑥 − 𝑦 ≥ 𝑘 − 2. Thus we obtain that 
𝑦 = 0, which is a contradiction. Hence |𝑀≥3𝑘−3| ≤ 2𝑘 −𝑚 −1. Therefore, 
|𝑉 (𝐺)| = |𝑀≤3𝑘−4| + |𝑀≥3𝑘−3| ≤ 4𝑘 − 4 + 2𝑘 − 𝑚 − 1 = 6𝑘 − 𝑚 − 5 ≤
6𝑘 − 6. This gives us a contradiction. □

It is trivial to see that every graph with at least two vertices is a yes-

instance of SC-to-1. Therefore, the following discussion assumes that 
𝑘 ≥ 2. Lemma 2.1 gives a polynomial-time algorithm for the problem: 
If 𝐺 has at least 6𝑘 − 5 vertices, then return YES, and do an exhaustive 
search for a solution otherwise. Lemma 2.1 also gives a simple linear 
kernel of at most 6𝑘 − 6 vertices for the problem parameterized by 𝑘: 
For an input (𝐺, 𝑘) if 𝐺 has at least 6𝑘 − 5 vertices, then return a trivial 
yes-instance, and return the same instance otherwise. By Corollary 5 
in [3], SC-to- and SC-to- are polynomially equivalent. Therefore, 
we obtain a polynomial-time algorithm for SC-to- when  is the class 
of graphs with maximum degree at most 𝑛 − 𝑘, for a constant 𝑘. It also 
implies a linear kernel for the problem parameterized by 𝑘. It remains 
open whether the following problem is NP-complete: Given a graph 𝐺
and an integer 𝑘, decide whether 𝐺 can be subgraph complemented to 
a graph with minimum degree at least 𝑘. We note that, the problem is 
NP-complete if the objective is to make the input graph 𝑘-regular [2].

It is natural to ask whether the bound on no-instances given by 
Lemma 2.1 is tight or not. An attempt to answer this question gave us 
a no-instance with a vertex set of cardinality more than half the bound, 
for every even integer 𝑘 ≥ 4.

Lemma 2.2. There exists a graph 𝐺𝑘 having 3𝑘 −2 vertices, for every even 
integer 𝑘 ≥ 4, such that 𝐺𝑘 is a no-instance of SC-to-𝑘.

Proof. The set of vertices of 𝐺𝑘 consists of three disjoint subsets 𝐴, 𝐵, 𝐶 , 
each of size 𝑘 − 1, and a vertex 𝑤. The sets 𝐴 and 𝐵 are independent 
sets and 𝐴 ∪𝐵 induces a complete bipartite graph in 𝐺𝑘. The vertex 𝑤
is adjacent to every vertex in 𝐶 . The set 𝐶 induces a (𝑘∕2 − 2)-regular 
graph, it is a folklore to construct such graphs, for instance, as a circulant 
graph. Let 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑘−1} and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘−1}. The edges 
between 𝐵 and 𝐶 contribute 𝑘∕2 towards the degree of each vertex in 
𝐶 , and 𝑖 towards the degree of 𝑏𝑖, for 1 ≤ 𝑖 ≤ 𝑘 − 1. Note that 𝑘∕2(𝑘 −
1) = 1 + 2 + … + 𝑘 − 1. Such a distribution of edges can be achieved 
by assigning 𝑖 neighbors for 𝑏𝑖 from 𝐶 in a round robin fashion. For 
example, 𝑏1 gets 𝑐1 as a neighbor, 𝑏2 gets 𝑐2 and 𝑐3 as neighbors, and 
so on, as shown in Fig. 1. This completes the construction of 𝐺𝑘 . Note 
that every vertex in 𝐴 ∪ 𝐶 ∪ {𝑤} has degree 𝑘 − 1, and 𝑏𝑖 has degree 
(𝑘 − 1) + 𝑖, for each 𝑏𝑖 ∈ 𝐵.

We claim that 𝐺𝑘 is a no-instance of SC-to-𝑘. For a contradiction, 
assume that there exists a set 𝑆 ⊆ 𝑉 (𝐺𝑘) such that 𝐺𝑘 ⊕𝑆 ∈ 𝑘. Clearly, 
𝐴 ∪ 𝐶 ∪ {𝑤} ⊆ 𝑆 . Since 𝑤 has degree 𝑘 − 1 in 𝐺𝑘 ⊕ (𝐴 ∪ 𝐶 ∪ {𝑤}), 𝑆
has a nonempty intersection with 𝐵. Assume that 𝑗 is the largest index 

such that 𝑏𝑗 ∈ 𝑆 . The set 𝐵 contributes at most 𝑗 − 1 neighbors, the set 



D. Antony, S. Pal and R.B. Sandeep

𝑤

𝑐2

𝑐1

𝑐3

𝑏2

𝑏1

𝑏3

𝐶𝐵𝐴

Fig. 1. A no-instance of SC-to-4.

𝐶 contributes exactly 𝑘 − 1 − 𝑗 neighbors, and 𝑤 is a neighbor of 𝑏𝑗 in 
𝐺 ⊕ 𝑆 . Therefore, 𝑏𝑗 has degree at most (𝑗 − 1) + (𝑘 − 1 − 𝑗) + 1 = 𝑘 − 1
in 𝐺𝑘 ⊕ 𝑆 . This is a contradiction. □

We leave the following question open: Is it true that every graph on 
at least 3𝑘 − 1 vertices is a yes-instance of SC-to-𝑘?

2.1. Destroying stars and diamonds

Let  be the class of {𝐾1,𝑡, diamond}-free graphs, for any fixed 𝑡 ≥ 3. 
We give a polynomial-time algorithm for SC-to-. The concept of (𝑝, 𝑞)-
split graphs was introduced by Gyárfás [11]. For 𝑝 ≥ 1, and 𝑞 ≥ 1, if the 
vertices of a graph 𝐺 can be partitioned into two sets 𝑃 and 𝑄 in such 
a way that the clique number of 𝐺[𝑃 ] and the independence number of 
𝐺[𝑄] are at most 𝑝 and 𝑞 respectively (i.e., 𝐺[𝑃 ] is 𝐾𝑝+1-free and 𝐺[𝑄]
is (𝑞 + 1)𝐾1-free), then 𝐺 is called a (𝑝, 𝑞)-split graph and (𝑃 , 𝑄) is a 
(𝑝, 𝑞)-split partition of 𝐺. Note that split graphs are (1, 1)-split graphs.

Proposition 2.3 ([12,13,3]). For any fixed constants 𝑝 ≥ 1 and 𝑞 ≥ 1, 
recognizing a (𝑝, 𝑞)-split graph and obtaining all (𝑝, 𝑞)-split partitions of a 
(𝑝, 𝑞)-split graph can be done in polynomial-time.

Algorithm for SC-to-, where  is {𝐾1,𝑡, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑}-free graphs, 
for any constant 𝑡 ≥ 3.

Input: A graph 𝐺.

Output: If 𝐺 is a yes-instance of SC-to-, then returns YES; oth-

erwise returns NO.

Step 1 : Let 𝑆 be the set of all degree-2 vertices of all the induced 
diamonds in 𝐺. If 𝐺 ⊕ 𝑆 ∈ , then return YES.

Step 2 : Let 𝑟 be the center of any induced 𝐾1,𝑡 in 𝐺 and let 𝐼 be 
the set of isolated vertices in the subgraph induced by 𝑁(𝑟) in 𝐺. 
For every subset 𝑆 ⊆ 𝐼 such that |𝑆| ≥ |𝐼| − 𝑡 + 2, if 𝐺 ⊕ 𝑆 ∈ , 
then return YES.

Step 3 : For every edge 𝑢𝑣 in 𝐺, do the following:

1. If 𝑁(𝑢) ⧵ 𝑁[𝑣] or 𝑁(𝑣) ⧵ 𝑁[𝑢] does not induce a (𝑡 − 1, 𝑡 − 1)-
split graph, then continue with Step 3.

2. Compute 𝐿(𝑢𝑣), the list of all (𝑡 −1, 𝑡 −1)-split partitions of the 
graph induced by 𝑁(𝑢) ⧵𝑁[𝑣].

3. Compute 𝐿(𝑢𝑣), the list of all (𝑡 −1, 𝑡 −1)-split partitions of the 
graph induced by 𝑁(𝑣) ⧵𝑁[𝑢].

4. Compute 𝐿(𝑢𝑣), the list of all partitions of the graph induced 
by 𝑁(𝑢) ∩ 𝑁(𝑣) into an independent set of size at most 𝑡 − 1
and the rest.

5. For every (𝑆1, 𝑇1) ∈ 𝐿(𝑢𝑣), for every (𝑆2, 𝑇2) ∈ 𝐿(𝑢𝑣), for every 
(𝑆3, 𝑇3) ∈ 𝐿(𝑢𝑣), do the following:

(a) Let 𝑆 = 𝑆1 ∪𝑆2 ∪𝑆3 ∪ {𝑢, 𝑣}. If 𝐺 ⊕ 𝑆 ∈ , return YES.
3
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(b) For every vertex 𝑤 ∈ 𝑁[𝑢] ∩𝑁[𝑣], let 𝑆 = 𝑆1 ∪𝑆2 ∪𝑆3 ∪
{𝑢, 𝑣, 𝑤}. If 𝐺 ⊕ 𝑆 ∈ , return YES.

(c) For every edge 𝑥𝑦 in the graph induced by 𝑁[𝑢] ∩ 𝑁[𝑣], 
if the graph induced by 𝐽 = 𝑁[𝑥] ∩ 𝑁[𝑦] ∩ 𝑁[𝑢] ∩ 𝑁[𝑣]
is not a split graph then continue with the current step. 
Otherwise, for every split partition (𝑆4, 𝑇4) of the graph 
induced by 𝐽 , let 𝑆 = 𝑆1 ∪𝑆2 ∪𝑆3 ∪𝑆4 ∪{𝑢, 𝑣}. If 𝐺⊕𝑆 ∈
, then return YES.

Step 4 : Return NO.

Lemma 2.4 and 2.5 deals with the case when 𝐺 is a yes-instance 
having a solution which is an independent set, the case handled in Step 
1 and 2 of the algorithm.

Lemma 2.4. Assume that 𝐺 is not diamond-free. Let 𝑆 ⊆ 𝑉 (𝐺) such that 
𝐺 ⊕ 𝑆 ∈  and 𝑆 is an independent set. Then 𝑆 is the set of all degree-2 
vertices of all the induced diamonds in 𝐺.

Proof. Since 𝑆 is an independent set and 𝐺 ⊕ 𝑆 ∈ , both the degree-

2 vertices of every induced diamond in 𝐺 must be in 𝑆 . Assume for a 
contradiction that 𝑆 has a vertex 𝑣 which is not a degree-2 vertex of any 
of the induced diamonds in 𝐺. Let 𝐷 = {𝑑1, 𝑑2, 𝑑3, 𝑑4} induce a diamond 
in 𝐺, where 𝑑1 and 𝑑2 are the degree-2 vertices of the diamond. Clearly, 
𝑆 ∩ 𝐷 = {𝑑1, 𝑑2}. We know that 𝑣 ≠ 𝑑1 and 𝑣 ≠ 𝑑2. If 𝑣 is not adjacent 
to 𝑑3 in 𝐺, then {𝑣, 𝑑1, 𝑑2, 𝑑3} induces a diamond in 𝐺 ⊕ 𝑆 , which is a 
contradiction. Therefore, 𝑣 is adjacent to 𝑑3. Similarly, 𝑣 is adjacent to 
𝑑4. Then {𝑣, 𝑑1, 𝑑3, 𝑑4} induced a diamond in 𝐺, where 𝑣 and 𝑑1 are the 
degree-2 vertices, which is a contradiction. □

Lemma 2.5. Assume that 𝐺 has no induced diamond but has at least one 
induced 𝐾1,𝑡. Let 𝑆 ⊆ 𝑉 (𝐺) such that 𝐺 ⊕ 𝑆 ∈  and 𝑆 is an independent 
set. Let 𝑟 be the center of any induced 𝐾1,𝑡 in 𝐺. Let 𝐼 be the set of isolated 
vertices in the subgraph induced by 𝑁(𝑟) in 𝐺. Then 𝑆 ⊆ 𝐼 and |𝑆| ≥ |𝐼| −
𝑡 + 2.

Proof. If 𝑟 ∈ 𝑆 , then none of the vertices in 𝑁(𝑟) is in 𝑆 - recall that 
𝑆 is an independent set. But then, none of the induced 𝐾1,𝑡 centered 
at 𝑟 is destroyed in 𝐺 ⊕ 𝑆 . Therefore, 𝑟 ∉ 𝑆 . Since 𝐺 is diamond-free, 
𝑁(𝑟) induces a cluster (graph with no induced path of length 3) 𝐽 in 𝐺. 
Since 𝑟 is the center of an induced 𝐾1,𝑡 in 𝐺, there are at least 𝑡 cliques 
in 𝐽 . Since 𝐺 ⊕ 𝑆 is 𝐾1,𝑡-free, 𝑆 must contain all vertices of at least 
two cliques in 𝐽 . Since 𝑆 is an independent set, 𝑆 contains at least two 
isolated vertices, say 𝑠1 and 𝑠2, in 𝐽 . First we prove that 𝑆 ⊆ 𝑁(𝑟). For 
a contradiction, assume that there is a vertex 𝑣 ∈ 𝑆 such that 𝑣 is not 
adjacent to 𝑟. Then {𝑣, 𝑠1, 𝑠2, 𝑟} induces a diamond in 𝐺 ⊕ 𝑆 , which is 
a contradiction. Therefore, 𝑆 ⊆ 𝑁(𝑟). Next we prove that 𝑆 ⊆ 𝐼 . For a 
contradiction, assume that there is a vertex 𝑣 ∈ 𝑆 ⧵ 𝐼 . Then 𝑣 is part of 
a clique 𝐽 ′ of size at least 2 in 𝐽 . Let 𝑣′ be any other vertex in 𝐽 ′. Since 
𝑆 is an independent set, 𝑣′ ∉ 𝑆 . Then {𝑣, 𝑣′, 𝑠1, 𝑟} induces a diamond in 
𝐺 ⊕ 𝑆 , which is a contradiction. Therefore, 𝑆 ⊆ 𝐼 . If |𝑆| < |𝐼| − 𝑡 + 2, 
then there is a 𝐾1,𝑡 centered at 𝑟 in 𝐺 ⊕𝑆 , which is a contradiction. □

Let 𝐺 be a yes-instance of SC-to-. Let 𝑆 ⊆ 𝑉 (𝐺) be such that |𝑆| ≥
2, 𝐺 ⊕ 𝑆 ∈ , and 𝑆 be not an independent set. Let 𝑢 and 𝑣 be two 
adjacent vertices in 𝑆 . Then with respect to 𝑆, 𝑢, 𝑣, we can partition the 
vertices in 𝑉 (𝐺) ⧵ {𝑢, 𝑣} into eight sets as given below, and shown in 
Fig. 2.

• 𝑁𝑆 (𝑢𝑣) = 𝑆 ∩𝑁(𝑢) ∩𝑁(𝑣)
• 𝑁𝑆 (𝑢̄𝑣̄) = 𝑆 ∩𝑁[𝑢] ∩𝑁[𝑣]
• 𝑁𝑆 (𝑢𝑣̄) = 𝑆 ∩ (𝑁(𝑢) ⧵𝑁[𝑣])
• 𝑁𝑆 (𝑢̄𝑣) = 𝑆 ∩ (𝑁(𝑣) ⧵𝑁[𝑢])

• 𝑁𝑇 (𝑢𝑣) = (𝑁(𝑢) ∩𝑁(𝑣)) ⧵ 𝑆

• 𝑁𝑇 (𝑢̄𝑣̄) = (𝑁[𝑢] ∩𝑁[𝑣]) ⧵𝑆

• 𝑁𝑇 (𝑢𝑣̄) = (𝑁(𝑢) ⧵𝑁[𝑣]) ⧵ 𝑆

• 𝑁𝑇 (𝑢̄𝑣) = (𝑁(𝑣) ⧵𝑁[𝑢]) ⧵ 𝑆
We notice that 𝑆 = 𝑁𝑆 (𝑢𝑣) ∪𝑁𝑆 (𝑢̄𝑣̄) ∪𝑁𝑆 (𝑢𝑣̄) ∪𝑁𝑆 (𝑢̄𝑣) ∪ {𝑢, 𝑣}.
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Fig. 2. Partitioning of vertices of 𝐺 based on 𝑆 and two adjacent vertices 𝑢, 𝑣 ∈
𝑆 . The bold lines represent the adjacency of vertices 𝑢 and 𝑣 [3].

Observation 2.6. Then the following statements are true.

(i) 𝑁(𝑢) ⧵𝑁[𝑣] induces a (𝑡 −1, 𝑡 −1)-split graph with a (𝑡 −1, 𝑡 −1)-split 
partition of (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)).

(ii) 𝑁(𝑣) ⧵𝑁[𝑢] induces a (𝑡 −1, 𝑡 −1)-split graph with a (𝑡 −1, 𝑡 −1)-split 
partition of (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)).

(iii) 𝑁𝑇 (𝑢𝑣) induces an independent set with at most (𝑡 − 1) vertices.

(iv) 𝑁𝑆 (𝑢̄𝑣̄) induces a clique. If 𝑥𝑦 is an edge of the clique, then 𝑁[𝑥] ∩
𝑁[𝑦] in 𝑁[𝑢] ∩ 𝑁[𝑣] induces a split graph with one split partition 
being (𝑁𝑆 (𝑢̄𝑣̄), (𝑁[𝑥] ∩𝑁[𝑦] ∩𝑁[𝑢] ∩𝑁[𝑣]) ⧵ (𝑁𝑆 (𝑢̄𝑣̄))).

Proof. If 𝑁𝑆 (𝑢𝑣) has a 𝐾𝑡, then 𝑣 along with the vertices of the 𝐾𝑡 in-

duce a 𝐾1,𝑡 in 𝐺 ⊕ 𝑆 . If 𝑁𝑇 (𝑢𝑣) has an independent set of size 𝑡, then 𝑢
along with the vertices of the independent set induce a 𝐾1,𝑡 in 𝐺 ⊕ 𝑆 . 
Therefore, (i) holds true. Similarly we can prove the correctness of (ii). 
If there are two adjacent vertices 𝑥 and 𝑦 in 𝑁𝑇 (𝑢𝑣), then {𝑥, 𝑦, 𝑢, 𝑣} in-

duces a diamond in 𝐺 ⊕ 𝑆 . Therefore, 𝑁𝑇 (𝑢𝑣) is an independent set. If 
it has at least 𝑡 vertices then there is an induced 𝐾1,𝑡 formed by those 
vertices and 𝑢 in 𝐺 ⊕ 𝑆 . Therefore, (iii) holds true. If there are two 
nonadjacent vertices 𝑥 and 𝑦 in 𝑁𝑆 (𝑢̄𝑣̄), then there is a diamond in-

duced by {𝑥, 𝑦, 𝑢, 𝑣} in 𝐺 ⊕ 𝑆 . Therefore, 𝑁𝑆 (𝑢̄𝑣̄) is a clique. Assume 
that 𝑥, 𝑦 ∈ 𝑁𝑆 (𝑢̄𝑣̄). If 𝑥 and 𝑦 have two adjacent common neighbors 𝑥′

and 𝑦′ in 𝑁𝑇 (𝑢̄𝑣̄), then {𝑥, 𝑦, 𝑥′, 𝑦′} induces a diamond in 𝐺 ⊕𝑆 . There-

fore, 𝑁[𝑥] ∩𝑁[𝑦] ∩𝑁[𝑢] ∩𝑁[𝑣] is a split graph with one split partition 
being (𝑁𝑆 (𝑢̄𝑣̄), (𝑁[𝑥] ∩𝑁[𝑦] ∩𝑁[𝑢] ∩𝑁[𝑣]) ⧵ (𝑁𝑆 (𝑢̄𝑣̄))). □

Lemma 2.7. 𝐺 is a yes-instance of SC-to- if and only if the algorithm 
returns YES.

Proof. Since the algorithm returns YES only when a solution is found, 
the backward direction of the statement is true. For the forward di-

rection, let 𝐺 be a yes-instance. Assume that there exists a solution 𝑆
which is an independent set. Further, assume that 𝐺 has an induced 
diamond. Then by Lemma 2.4, 𝑆 is the set of all degree-2 vertices 
of the induced diamonds in 𝐺. Then Step 1 returns YES. Assume that 
𝐺 is diamond-free. Then by Lemma 2.5, 𝑆 ⊆ 𝐼 , where 𝐼 is the set of 
isolated vertices in the graph induced by the neighbors of 𝑟, for a cen-

ter 𝑟 of an induced 𝐾1,𝑡 in 𝐺. Further |𝑆| ≥ |𝐼| − 𝑡 + 2. Then Step 
2 returns YES. Let 𝑆 be a solution which is not an independent set. 
Let 𝑢𝑣 be an edge in the graph induced by 𝑆 . The algorithm will dis-

cover 𝑢𝑣 in one iteration of Step 3. By Observation 2.6, we know that 
the graph induced by 𝑁(𝑢) ⧵ 𝑁[𝑣] is a (𝑡 − 1, 𝑡 − 1)-split graph with 
a (𝑡 − 1, 𝑡 − 1)-split partition (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)). Similarly, the graph in-

duced by 𝑁(𝑣) ⧵𝑁[𝑢] is a (𝑡 −1, 𝑡 −1)-split graph with a (𝑡 −1, 𝑡 −1)-split 
partition (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)). Further, 𝑁𝑇 (𝑢𝑣) is an independent set of 
size at most 𝑡 − 1. Therefore, in one iteration of Step 3.5, we obtain 
𝑆1 = 𝑁𝑆 (𝑢𝑣), 𝑆2 = 𝑁𝑆 (𝑢𝑣), and 𝑆3 = 𝑁𝑆 (𝑢𝑣). If 𝑁𝑆 (𝑢̄𝑣̄) is empty, then 
Step 3.5(a) returns YES. If 𝑁𝑆 (𝑢̄𝑣̄) is a singleton set, then Step 3.5(b) re-

turns YES. Assume that |𝑁𝑆 (𝑢̄𝑣̄)| ≥ 2. By Observation 2.6, 𝑁𝑆 (𝑢̄𝑣̄) is a 
clique and for every edge 𝑥𝑦 in it, the common neighborhood of 𝑥 and 
4

𝑦 in 𝑁[𝑢] ∩𝑁[𝑣] is a split graph with a partition being 𝑁𝑆 (𝑢̄𝑣̄) and the 
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rest. The algorithm will discover such an edge 𝑥𝑦 in one of the itera-

tions of Step 3.5(c) and 𝑁𝑆 (𝑢̄𝑣̄) will be discovered as 𝑆4. Then YES is 
returned at Step 3.5(c). □

We notice that the number of subsets to be considered in Step 2 is 
polynomial. Moreover, by Proposition 2.3, (𝑡 − 1, 𝑡 − 1)-split graphs can 
be recognized in polynomial-time and all (𝑡 − 1, 𝑡 − 1)-split partitions of 
a (𝑡 − 1, 𝑡 − 1)-split graph can be found in polynomial-time. Therefore, 
each step in the algorithm runs in polynomial-time. Then we obtain 
Theorem 2.8 from Lemma 2.7.

Theorem 2.8. Let  be the class of {𝐾1,𝑡, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑}-free graphs for any 
constant 𝑡 ≥ 3. Then SC-to- can be solved in polynomial-time.

Our algorithm runs in XP-time if we consider 𝑡 as a parameter. It 
remains open whether the problem is polynomial-time solvable when 
is 𝐻 -free for an 𝐻 ∈ {𝐾1,3, 𝐾1,4, diamond}.
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