
Inf. Process. Lett. 188 (2025) 106530

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

Algorithms for subgraph complementation to some classes of graphs ✩,✩✩

Dhanyamol Antony a,∗, Sagartanu Pal b,∗, R.B. Sandeep b,∗

a Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, Karnataka, India
b Department of Computer Science and Engineering, Indian Institute of Technology Dharwad, Dharwad, 580011, Karnataka, India

A R T I C L E I N F O A B S T R A C T

Keywords:

Subgraph complementation

Minimum degree

Star graphs

Diamond

Kernelization

For a class  of graphs, the objective of Subgraph Complementation to  is to find whether there exists a
subset 𝑆 of vertices of the input graph 𝐺 such that modifying 𝐺 by complementing the subgraph induced by 𝑆
results in a graph in . We obtain a polynomial-time algorithm for the problem when  is the class of graphs with
minimum degree at least 𝑘, for a constant 𝑘, answering an open problem by Fomin et al. (Algorithmica, 2020).
When  is the class of graphs without any induced copies of the star graph on 𝑡 + 1 vertices (for any constant
𝑡 ≥ 3) and diamond, we obtain a polynomial-time algorithm for the problem. This is in contrast with a result by
Antony et al. (Algorithmica, 2022) that the problem is NP-complete and cannot be solved in subexponential-time
(assuming the Exponential Time Hypothesis) when  is the class of graphs without any induced copies of the star
graph on 𝑡 + 1 vertices, for every constant 𝑡 ≥ 5.
1. Introduction

Complementation is a very fundamental graph operation and modi-

fying a graph by complementing an induced subgraph to satisfy certain
properties is a natural algorithmic problem on graphs. The operation of
complementing an induced subgraph, known as subgraph complementa-

tion, is introduced by Kamiński et al. [1] in connection with clique-width
of graphs. For a class  of graphs, the objective of Subgraph Comple-

mentation to  is to find whether there exists a subset 𝑆 of the vertices
of the input graph 𝐺 such that complementing the subgraph induced
by 𝑆 in 𝐺 results in a graph in . Fomin et al. [2] studied this prob-

lem on various classes  of graphs. They obtained that the problem can
be solved in polynomial-time when  is bipartite, d-degenerate, or co-

graphs. In addition to this, they proved that the problem is NP-complete
when  is the class of all regular graphs. Antony et al. [3] studied this
problem when  is the class of 𝐻 -free graphs (graphs without any in-

duced copies of 𝐻). They proved that the problem is polynomial-time
solvable when 𝐻 is a complete graph on 𝑡 vertices. They also proved
that the problem is NP-complete when 𝐻 is a star graph on at least 6
vertices or a path or a cycle on at least 7 vertices. Later Antony et al. [4]

proved that the problem is polynomial-time solvable when 𝐻 is paw,
and NP-complete when 𝐻 is a tree, except for 41 trees of at most 13 ver-

✩ An extended abstract of this paper has appeared in the proceedings of Eurocomb 2023.
✩✩ Partially supported by SERB MATRICS Grant MTR/2022/000692: “Algorithmic study on hereditary graph properties” and SERB Core Research Grant
CRG/2022/006770: “Bridging Quantum Physics with Theoretical Computer Science and Graph Theory”.

* Corresponding authors.

tices. It has been proved [3,4] that none of these hard problems admit
subexponential-time algorithms (algorithms running in time 2𝑜(𝑛)), as-

suming the Exponential Time Hypothesis. Subgraph complementation is
a special case of flip operation, which is a crucial operation in the study
of well-structured dense graph classes [5–7]. For further reading on var-

ious edge modification problems including subgraph complementation,
we refer to a survey by Crespelle et al. [8].

Fomin et al. [2] proved that the problem is polynomial-time solvable
not only when  is the class of 𝑑-degenerate graphs but also when  is
any subclass of 𝑑-degenerate graphs recognizable in polynomial-time.
This implies that the problem is polynomial-time solvable when  is the
class of 𝑟-regular graphs or the class of graphs with maximum degree
at most 𝑟 (for any constant 𝑟). They asked whether the problem can be
solved in polynomial-time when  is the class of graphs with minimum
degree at least 𝑟, for a constant 𝑟 (also see open problem 5.2 in [8]).
We resolve this positively and obtain a stronger result - a simple lin-

ear kernel for the following parameterized problem: Given a graph 𝐺
and an integer 𝑘, find whether 𝐺 can be transformed into a graph with
minimum degree at least 𝑘 by subgraph complementation (here the pa-

rameter is 𝑘). The result follows from an observation that if 𝐺 has at
least 6𝑘 − 5 vertices, then it is a yes-instance of the problem. Comple-
Available online 13 August 2024
0020-0190/© 2024 Elsevier B.V. All rights are reserved, including those for text and

E-mail addresses: dhanyamola@iisc.ac.in (D. Antony), 183061001@iitdh.ac.in (S

https://doi.org/10.1016/j.ipl.2024.106530

Received 1 December 2023; Received in revised form 8 August 2024; Accepted 8 Au
data mining, AI training, and similar technologies.

. Pal), sandeeprb@iitdh.ac.in (R.B. Sandeep).

gust 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:dhanyamola@iisc.ac.in
mailto:183061001@iitdh.ac.in
mailto:sandeeprb@iitdh.ac.in
https://doi.org/10.1016/j.ipl.2024.106530
https://doi.org/10.1016/j.ipl.2024.106530

D. Antony, S. Pal and R.B. Sandeep

menting this observation, we construct a no-instance of SC-to-𝑘 having
3𝑘 − 2 vertices, for every even integer 𝑘 ≥ 4.

When  is the class of graphs without any induced copies of the star

graph on 𝑡 + 1 vertices (for any fixed 𝑡 ≥ 3) and the diamond (),
we obtain a polynomial-time algorithm. When 𝑡 = 3 this graph class
is known as linear domino and is the class of line graphs of triangle-

free graphs. Cygan et al. [9] have studied the polynomial kernelization
of edge deletion problem for this target graph class. When 𝑡 = 4, the
graph class is the line graphs of linear hypergraphs of rank 3. The tech-

nique that we use is similar to that given in [3] and [4] for obtaining
polynomial-time algorithms when  is 𝐻 -free, for 𝐻 being a complete
graph on 𝑡 vertices or a paw. Our result is in contrast with the result
by Antony et al. [3] that the problem is NP-complete and cannot be
solved in subexponential-time (assuming the Exponential Time Hypoth-

esis) when 𝐻 is a star graph on 𝑡 + 1 vertices, for every constant 𝑡 ≥ 5.
Our algorithm is an XP algorithm for the parameterized version of the
problem, with parameter 𝑡.

1.1. Preliminaries

A diamond is the graph , and a star graph on 𝑡 + 1 vertices,
denoted by 𝐾1,𝑡, is the tree with 𝑡 degree-1 vertices and one degree-𝑡

vertex. The degree-𝑡 vertex of a star is known as the center of the star.

For example, 𝐾1,3, also known as a claw, is the graph . A com-

plete graph on 𝑡 vertices is denoted by 𝐾𝑡. A cluster graph is a disjoint
union of complete graphs. Equivalently, a cluster graph is a graph with
no induced path on 3 vertices. By 𝐺 we denote the complement graph
of 𝐺. The open neighborhood and closed neighborhood of a vertex 𝑣 are
denoted by 𝑁(𝑣) and 𝑁[𝑣] respectively. The underlying graph will be
evident from the context. For a subset 𝑆 of vertices of 𝐺, by 𝐺[𝑆] we
denote the graph induced by 𝑆 in 𝐺. For a graph 𝐺 and a set 𝑆 ⊆ 𝑉 (𝐺),
we define the graph 𝐺 ⊕ 𝑆 as the graph obtained from 𝐺 by comple-

menting the subgraph induced by 𝑆 , i.e., an edge 𝑢𝑣 is in 𝐺 ⊕ 𝑆 if and
only if 𝑢𝑣 is a nonedge in 𝐺 and 𝑢, 𝑣 ∈ 𝑆 , or 𝑢𝑣 is an edge in 𝐺 and
{𝑢, 𝑣} ⧵ 𝑆 ≠ ∅. The operation is called subgraph complementation. Let
 be a set of graphs. We say that a graph 𝐺 is -free if 𝐺 does not
have any induced copies of any of the graphs in . If  = {𝐻}, then
we say that 𝐺 is 𝐻 -free. The general definition of the problem that we
deal with is given below.

SC-to-: Given a graph 𝐺, decide whether there is a set 𝑆 ⊆ 𝑉 (𝐺)
such that 𝐺 ⊕ 𝑆 ∈ .

In a parameterized problem, apart from the usual input, there is an
additional integer input known as the parameter. A parameterized graph
problem is fixed-parameter tractable (FPT) if it can be solved in time
𝑓 (𝑘)𝑛𝑂(1), and belongs to the complexity class XP, if it can be solved
in time 𝑛𝑓 (𝑘), where 𝑛 is the number of vertices and 𝑓 (𝑘) is any com-

putable function. A parameterized problem admits a kernel if there is
a polynomial-time algorithm which takes as input an instance (𝐼 ′, 𝑘′)
of the problem and outputs an instance (𝐼, 𝑘) of the same problem so
that |𝐼|, 𝑘 ≤ 𝑓 (𝑘′) for some computable function 𝑓 (𝑘′), and (𝐼 ′, 𝑘′) is a
yes-instance if and only if (𝐼, 𝑘) is a yes-instance (here, 𝑘′ and 𝑘 are the
parameters). A kernel is a linear kernel if 𝑓 (𝑘′) is a linear function. It is
known that a problem admits an FPT algorithm if and only if it admits a
kernel. We refer to the book [10] for further exposition on these topics.

2. Algorithms

We obtain our results in this section. Let 𝑘 be the class of graphs
with minimum degree at least 𝑘. We prove that a no-instance of
SC-to-𝑘 cannot be very large.

Lemma 2.1. Let 𝑘 ≥ 2 and let 𝐺 be a graph with at least 6𝑘 − 5 vertices.
2

Then 𝐺 is a yes-instance of SC-to-𝑘.
Information Processing Letters 188 (2025) 106530

Proof. For a contradiction, assume that 𝐺 is a no-instance and has at
least 6𝑘 − 5 vertices. For an integer 𝑑, let 𝑀≥𝑑 and 𝑀≤𝑑 denote the set
of vertices in 𝐺 with degree at least 𝑑 and the set of vertices in 𝐺 with
degree at most 𝑑, respectively. In particular, let |𝑀≤𝑘−1| = 𝑚. Without
loss of generality, assume that 𝑚 ≥ 1. If 𝑚 > 2𝑘, then 𝐺 ⊕ 𝑀≤𝑘−1 ∈
𝑘. Therefore, 𝑚 ≤ 2𝑘. If |𝑀≤3𝑘−4| ≥ 4𝑘 − 3, then 𝐺 ⊕ 𝑀≤3𝑘−4 ∈ 𝑘.
Therefore, assume that |𝑀≤3𝑘−4| ≤ 4𝑘 − 4. Suppose 𝑀≥3𝑘−3 ≥ 2𝑘 − 𝑚.
Let 𝑀 ′

≥3𝑘−3 be any subset of 𝑀≥3𝑘−3 such that |𝑀 ′
≥3𝑘−3| = 2𝑘 − 𝑚. Let

𝑀 = 𝑀≤𝑘−1 ∪ 𝑀 ′
≥3𝑘−3. Since 𝑘 ≥ 2, 𝑀≤𝑘−1 and 𝑀≥3𝑘−3 are disjoint.

Therefore, |𝑀| = 2𝑘. Let 𝑈 be set of vertices 𝑢 ∈ 𝑀 ′
≥3𝑘−3 such that 𝑢

is adjacent to every vertex in 𝑀 ⧵ {𝑢} in 𝐺. Note that every vertex in
𝑀 ′

≥3𝑘−3 ⧵𝑈 has at least one nonneighbor in 𝐺[𝑀]. Let 𝐺′ = 𝐺 ⊕ (𝑀 ⧵
𝑈). We claim that 𝐺′ ∈ 𝑘. For a contradiction, assume that there is
a vertex 𝑣 such that the degree of 𝑣 in 𝐺′ is at most 𝑘 − 1. Clearly,
𝑣 ∈ 𝑀 ′

≥3𝑘−3 ⧵ 𝑈 . Let 𝑥 be the number of neighbors of 𝑣 in 𝐺 − 𝑀 , and
𝑦 be the number of nonneighbors of 𝑣 in 𝐺[𝑀]. Note that 𝑦 ≥ 1. We
have 𝑥 + 𝑦 ≤ 𝑘 − 1. Since 𝑣 has degree at least 3𝑘 − 3 in 𝐺, we obtain
that 𝑥 + 2𝑘 − 𝑦 − 1 ≥ 3𝑘 − 3. That is, 𝑥 − 𝑦 ≥ 𝑘 − 2. Thus we obtain that
𝑦 = 0, which is a contradiction. Hence |𝑀≥3𝑘−3| ≤ 2𝑘 −𝑚 −1. Therefore,
|𝑉 (𝐺)| = |𝑀≤3𝑘−4| + |𝑀≥3𝑘−3| ≤ 4𝑘 − 4 + 2𝑘 − 𝑚 − 1 = 6𝑘 − 𝑚 − 5 ≤
6𝑘 − 6. This gives us a contradiction. □

It is trivial to see that every graph with at least two vertices is a yes-

instance of SC-to-1. Therefore, the following discussion assumes that
𝑘 ≥ 2. Lemma 2.1 gives a polynomial-time algorithm for the problem:
If 𝐺 has at least 6𝑘 − 5 vertices, then return YES, and do an exhaustive
search for a solution otherwise. Lemma 2.1 also gives a simple linear
kernel of at most 6𝑘 − 6 vertices for the problem parameterized by 𝑘:
For an input (𝐺, 𝑘) if 𝐺 has at least 6𝑘 − 5 vertices, then return a trivial
yes-instance, and return the same instance otherwise. By Corollary 5
in [3], SC-to- and SC-to- are polynomially equivalent. Therefore,
we obtain a polynomial-time algorithm for SC-to- when  is the class
of graphs with maximum degree at most 𝑛 − 𝑘, for a constant 𝑘. It also
implies a linear kernel for the problem parameterized by 𝑘. It remains
open whether the following problem is NP-complete: Given a graph 𝐺
and an integer 𝑘, decide whether 𝐺 can be subgraph complemented to
a graph with minimum degree at least 𝑘. We note that, the problem is
NP-complete if the objective is to make the input graph 𝑘-regular [2].

It is natural to ask whether the bound on no-instances given by
Lemma 2.1 is tight or not. An attempt to answer this question gave us
a no-instance with a vertex set of cardinality more than half the bound,
for every even integer 𝑘 ≥ 4.

Lemma 2.2. There exists a graph 𝐺𝑘 having 3𝑘 −2 vertices, for every even
integer 𝑘 ≥ 4, such that 𝐺𝑘 is a no-instance of SC-to-𝑘.

Proof. The set of vertices of 𝐺𝑘 consists of three disjoint subsets 𝐴, 𝐵, 𝐶 ,
each of size 𝑘 − 1, and a vertex 𝑤. The sets 𝐴 and 𝐵 are independent
sets and 𝐴 ∪𝐵 induces a complete bipartite graph in 𝐺𝑘. The vertex 𝑤
is adjacent to every vertex in 𝐶 . The set 𝐶 induces a (𝑘∕2 − 2)-regular
graph, it is a folklore to construct such graphs, for instance, as a circulant
graph. Let 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑘−1} and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘−1}. The edges
between 𝐵 and 𝐶 contribute 𝑘∕2 towards the degree of each vertex in
𝐶 , and 𝑖 towards the degree of 𝑏𝑖, for 1 ≤ 𝑖 ≤ 𝑘 − 1. Note that 𝑘∕2(𝑘 −
1) = 1 + 2 + … + 𝑘 − 1. Such a distribution of edges can be achieved
by assigning 𝑖 neighbors for 𝑏𝑖 from 𝐶 in a round robin fashion. For
example, 𝑏1 gets 𝑐1 as a neighbor, 𝑏2 gets 𝑐2 and 𝑐3 as neighbors, and
so on, as shown in Fig. 1. This completes the construction of 𝐺𝑘 . Note
that every vertex in 𝐴 ∪ 𝐶 ∪ {𝑤} has degree 𝑘 − 1, and 𝑏𝑖 has degree
(𝑘 − 1) + 𝑖, for each 𝑏𝑖 ∈ 𝐵.

We claim that 𝐺𝑘 is a no-instance of SC-to-𝑘. For a contradiction,
assume that there exists a set 𝑆 ⊆ 𝑉 (𝐺𝑘) such that 𝐺𝑘 ⊕𝑆 ∈ 𝑘. Clearly,
𝐴 ∪ 𝐶 ∪ {𝑤} ⊆ 𝑆 . Since 𝑤 has degree 𝑘 − 1 in 𝐺𝑘 ⊕ (𝐴 ∪ 𝐶 ∪ {𝑤}), 𝑆
has a nonempty intersection with 𝐵. Assume that 𝑗 is the largest index

such that 𝑏𝑗 ∈ 𝑆 . The set 𝐵 contributes at most 𝑗 − 1 neighbors, the set

D. Antony, S. Pal and R.B. Sandeep

𝑤

𝑐2

𝑐1

𝑐3

𝑏2

𝑏1

𝑏3

𝐶𝐵𝐴

Fig. 1. A no-instance of SC-to-4.

𝐶 contributes exactly 𝑘 − 1 − 𝑗 neighbors, and 𝑤 is a neighbor of 𝑏𝑗 in
𝐺 ⊕ 𝑆 . Therefore, 𝑏𝑗 has degree at most (𝑗 − 1) + (𝑘 − 1 − 𝑗) + 1 = 𝑘 − 1
in 𝐺𝑘 ⊕ 𝑆 . This is a contradiction. □

We leave the following question open: Is it true that every graph on
at least 3𝑘 − 1 vertices is a yes-instance of SC-to-𝑘?

2.1. Destroying stars and diamonds

Let  be the class of {𝐾1,𝑡, diamond}-free graphs, for any fixed 𝑡 ≥ 3.
We give a polynomial-time algorithm for SC-to-. The concept of (𝑝, 𝑞)-
split graphs was introduced by Gyárfás [11]. For 𝑝 ≥ 1, and 𝑞 ≥ 1, if the
vertices of a graph 𝐺 can be partitioned into two sets 𝑃 and 𝑄 in such
a way that the clique number of 𝐺[𝑃] and the independence number of
𝐺[𝑄] are at most 𝑝 and 𝑞 respectively (i.e., 𝐺[𝑃] is 𝐾𝑝+1-free and 𝐺[𝑄]
is (𝑞 + 1)𝐾1-free), then 𝐺 is called a (𝑝, 𝑞)-split graph and (𝑃 , 𝑄) is a
(𝑝, 𝑞)-split partition of 𝐺. Note that split graphs are (1, 1)-split graphs.

Proposition 2.3 ([12,13,3]). For any fixed constants 𝑝 ≥ 1 and 𝑞 ≥ 1,
recognizing a (𝑝, 𝑞)-split graph and obtaining all (𝑝, 𝑞)-split partitions of a
(𝑝, 𝑞)-split graph can be done in polynomial-time.

Algorithm for SC-to-, where  is {𝐾1,𝑡, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑}-free graphs,
for any constant 𝑡 ≥ 3.

Input: A graph 𝐺.

Output: If 𝐺 is a yes-instance of SC-to-, then returns YES; oth-

erwise returns NO.

Step 1 : Let 𝑆 be the set of all degree-2 vertices of all the induced
diamonds in 𝐺. If 𝐺 ⊕ 𝑆 ∈ , then return YES.

Step 2 : Let 𝑟 be the center of any induced 𝐾1,𝑡 in 𝐺 and let 𝐼 be
the set of isolated vertices in the subgraph induced by 𝑁(𝑟) in 𝐺.
For every subset 𝑆 ⊆ 𝐼 such that |𝑆| ≥ |𝐼| − 𝑡 + 2, if 𝐺 ⊕ 𝑆 ∈ ,
then return YES.

Step 3 : For every edge 𝑢𝑣 in 𝐺, do the following:

1. If 𝑁(𝑢) ⧵ 𝑁[𝑣] or 𝑁(𝑣) ⧵ 𝑁[𝑢] does not induce a (𝑡 − 1, 𝑡 − 1)-
split graph, then continue with Step 3.

2. Compute 𝐿(𝑢𝑣), the list of all (𝑡 −1, 𝑡 −1)-split partitions of the
graph induced by 𝑁(𝑢) ⧵𝑁[𝑣].

3. Compute 𝐿(𝑢𝑣), the list of all (𝑡 −1, 𝑡 −1)-split partitions of the
graph induced by 𝑁(𝑣) ⧵𝑁[𝑢].

4. Compute 𝐿(𝑢𝑣), the list of all partitions of the graph induced
by 𝑁(𝑢) ∩ 𝑁(𝑣) into an independent set of size at most 𝑡 − 1
and the rest.

5. For every (𝑆1, 𝑇1) ∈ 𝐿(𝑢𝑣), for every (𝑆2, 𝑇2) ∈ 𝐿(𝑢𝑣), for every
(𝑆3, 𝑇3) ∈ 𝐿(𝑢𝑣), do the following:

(a) Let 𝑆 = 𝑆1 ∪𝑆2 ∪𝑆3 ∪ {𝑢, 𝑣}. If 𝐺 ⊕ 𝑆 ∈ , return YES.
3

Information Processing Letters 188 (2025) 106530

(b) For every vertex 𝑤 ∈ 𝑁[𝑢] ∩𝑁[𝑣], let 𝑆 = 𝑆1 ∪𝑆2 ∪𝑆3 ∪
{𝑢, 𝑣, 𝑤}. If 𝐺 ⊕ 𝑆 ∈ , return YES.

(c) For every edge 𝑥𝑦 in the graph induced by 𝑁[𝑢] ∩ 𝑁[𝑣],
if the graph induced by 𝐽 = 𝑁[𝑥] ∩ 𝑁[𝑦] ∩ 𝑁[𝑢] ∩ 𝑁[𝑣]
is not a split graph then continue with the current step.
Otherwise, for every split partition (𝑆4, 𝑇4) of the graph
induced by 𝐽 , let 𝑆 = 𝑆1 ∪𝑆2 ∪𝑆3 ∪𝑆4 ∪{𝑢, 𝑣}. If 𝐺⊕𝑆 ∈
, then return YES.

Step 4 : Return NO.

Lemma 2.4 and 2.5 deals with the case when 𝐺 is a yes-instance
having a solution which is an independent set, the case handled in Step
1 and 2 of the algorithm.

Lemma 2.4. Assume that 𝐺 is not diamond-free. Let 𝑆 ⊆ 𝑉 (𝐺) such that
𝐺 ⊕ 𝑆 ∈  and 𝑆 is an independent set. Then 𝑆 is the set of all degree-2
vertices of all the induced diamonds in 𝐺.

Proof. Since 𝑆 is an independent set and 𝐺 ⊕ 𝑆 ∈ , both the degree-

2 vertices of every induced diamond in 𝐺 must be in 𝑆 . Assume for a
contradiction that 𝑆 has a vertex 𝑣 which is not a degree-2 vertex of any
of the induced diamonds in 𝐺. Let 𝐷 = {𝑑1, 𝑑2, 𝑑3, 𝑑4} induce a diamond
in 𝐺, where 𝑑1 and 𝑑2 are the degree-2 vertices of the diamond. Clearly,
𝑆 ∩ 𝐷 = {𝑑1, 𝑑2}. We know that 𝑣 ≠ 𝑑1 and 𝑣 ≠ 𝑑2. If 𝑣 is not adjacent
to 𝑑3 in 𝐺, then {𝑣, 𝑑1, 𝑑2, 𝑑3} induces a diamond in 𝐺 ⊕ 𝑆 , which is a
contradiction. Therefore, 𝑣 is adjacent to 𝑑3. Similarly, 𝑣 is adjacent to
𝑑4. Then {𝑣, 𝑑1, 𝑑3, 𝑑4} induced a diamond in 𝐺, where 𝑣 and 𝑑1 are the
degree-2 vertices, which is a contradiction. □

Lemma 2.5. Assume that 𝐺 has no induced diamond but has at least one
induced 𝐾1,𝑡. Let 𝑆 ⊆ 𝑉 (𝐺) such that 𝐺 ⊕ 𝑆 ∈  and 𝑆 is an independent
set. Let 𝑟 be the center of any induced 𝐾1,𝑡 in 𝐺. Let 𝐼 be the set of isolated
vertices in the subgraph induced by 𝑁(𝑟) in 𝐺. Then 𝑆 ⊆ 𝐼 and |𝑆| ≥ |𝐼| −
𝑡 + 2.

Proof. If 𝑟 ∈ 𝑆 , then none of the vertices in 𝑁(𝑟) is in 𝑆 - recall that
𝑆 is an independent set. But then, none of the induced 𝐾1,𝑡 centered
at 𝑟 is destroyed in 𝐺 ⊕ 𝑆 . Therefore, 𝑟 ∉ 𝑆 . Since 𝐺 is diamond-free,
𝑁(𝑟) induces a cluster (graph with no induced path of length 3) 𝐽 in 𝐺.
Since 𝑟 is the center of an induced 𝐾1,𝑡 in 𝐺, there are at least 𝑡 cliques
in 𝐽 . Since 𝐺 ⊕ 𝑆 is 𝐾1,𝑡-free, 𝑆 must contain all vertices of at least
two cliques in 𝐽 . Since 𝑆 is an independent set, 𝑆 contains at least two
isolated vertices, say 𝑠1 and 𝑠2, in 𝐽 . First we prove that 𝑆 ⊆ 𝑁(𝑟). For
a contradiction, assume that there is a vertex 𝑣 ∈ 𝑆 such that 𝑣 is not
adjacent to 𝑟. Then {𝑣, 𝑠1, 𝑠2, 𝑟} induces a diamond in 𝐺 ⊕ 𝑆 , which is
a contradiction. Therefore, 𝑆 ⊆ 𝑁(𝑟). Next we prove that 𝑆 ⊆ 𝐼 . For a
contradiction, assume that there is a vertex 𝑣 ∈ 𝑆 ⧵ 𝐼 . Then 𝑣 is part of
a clique 𝐽 ′ of size at least 2 in 𝐽 . Let 𝑣′ be any other vertex in 𝐽 ′. Since
𝑆 is an independent set, 𝑣′ ∉ 𝑆 . Then {𝑣, 𝑣′, 𝑠1, 𝑟} induces a diamond in
𝐺 ⊕ 𝑆 , which is a contradiction. Therefore, 𝑆 ⊆ 𝐼 . If |𝑆| < |𝐼| − 𝑡 + 2,
then there is a 𝐾1,𝑡 centered at 𝑟 in 𝐺 ⊕𝑆 , which is a contradiction. □

Let 𝐺 be a yes-instance of SC-to-. Let 𝑆 ⊆ 𝑉 (𝐺) be such that |𝑆| ≥
2, 𝐺 ⊕ 𝑆 ∈ , and 𝑆 be not an independent set. Let 𝑢 and 𝑣 be two
adjacent vertices in 𝑆 . Then with respect to 𝑆, 𝑢, 𝑣, we can partition the
vertices in 𝑉 (𝐺) ⧵ {𝑢, 𝑣} into eight sets as given below, and shown in
Fig. 2.

• 𝑁𝑆 (𝑢𝑣) = 𝑆 ∩𝑁(𝑢) ∩𝑁(𝑣)
• 𝑁𝑆 (𝑢̄𝑣̄) = 𝑆 ∩𝑁[𝑢] ∩𝑁[𝑣]
• 𝑁𝑆 (𝑢𝑣̄) = 𝑆 ∩ (𝑁(𝑢) ⧵𝑁[𝑣])
• 𝑁𝑆 (𝑢̄𝑣) = 𝑆 ∩ (𝑁(𝑣) ⧵𝑁[𝑢])

• 𝑁𝑇 (𝑢𝑣) = (𝑁(𝑢) ∩𝑁(𝑣)) ⧵ 𝑆

• 𝑁𝑇 (𝑢̄𝑣̄) = (𝑁[𝑢] ∩𝑁[𝑣]) ⧵𝑆

• 𝑁𝑇 (𝑢𝑣̄) = (𝑁(𝑢) ⧵𝑁[𝑣]) ⧵ 𝑆

• 𝑁𝑇 (𝑢̄𝑣) = (𝑁(𝑣) ⧵𝑁[𝑢]) ⧵ 𝑆
We notice that 𝑆 = 𝑁𝑆 (𝑢𝑣) ∪𝑁𝑆 (𝑢̄𝑣̄) ∪𝑁𝑆 (𝑢𝑣̄) ∪𝑁𝑆 (𝑢̄𝑣) ∪ {𝑢, 𝑣}.

D. Antony, S. Pal and R.B. Sandeep

Fig. 2. Partitioning of vertices of 𝐺 based on 𝑆 and two adjacent vertices 𝑢, 𝑣 ∈
𝑆 . The bold lines represent the adjacency of vertices 𝑢 and 𝑣 [3].

Observation 2.6. Then the following statements are true.

(i) 𝑁(𝑢) ⧵𝑁[𝑣] induces a (𝑡 −1, 𝑡 −1)-split graph with a (𝑡 −1, 𝑡 −1)-split
partition of (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)).

(ii) 𝑁(𝑣) ⧵𝑁[𝑢] induces a (𝑡 −1, 𝑡 −1)-split graph with a (𝑡 −1, 𝑡 −1)-split
partition of (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)).

(iii) 𝑁𝑇 (𝑢𝑣) induces an independent set with at most (𝑡 − 1) vertices.

(iv) 𝑁𝑆 (𝑢̄𝑣̄) induces a clique. If 𝑥𝑦 is an edge of the clique, then 𝑁[𝑥] ∩
𝑁[𝑦] in 𝑁[𝑢] ∩ 𝑁[𝑣] induces a split graph with one split partition
being (𝑁𝑆 (𝑢̄𝑣̄), (𝑁[𝑥] ∩𝑁[𝑦] ∩𝑁[𝑢] ∩𝑁[𝑣]) ⧵ (𝑁𝑆 (𝑢̄𝑣̄))).

Proof. If 𝑁𝑆 (𝑢𝑣) has a 𝐾𝑡, then 𝑣 along with the vertices of the 𝐾𝑡 in-

duce a 𝐾1,𝑡 in 𝐺 ⊕ 𝑆 . If 𝑁𝑇 (𝑢𝑣) has an independent set of size 𝑡, then 𝑢
along with the vertices of the independent set induce a 𝐾1,𝑡 in 𝐺 ⊕ 𝑆 .
Therefore, (i) holds true. Similarly we can prove the correctness of (ii).
If there are two adjacent vertices 𝑥 and 𝑦 in 𝑁𝑇 (𝑢𝑣), then {𝑥, 𝑦, 𝑢, 𝑣} in-

duces a diamond in 𝐺 ⊕ 𝑆 . Therefore, 𝑁𝑇 (𝑢𝑣) is an independent set. If
it has at least 𝑡 vertices then there is an induced 𝐾1,𝑡 formed by those
vertices and 𝑢 in 𝐺 ⊕ 𝑆 . Therefore, (iii) holds true. If there are two
nonadjacent vertices 𝑥 and 𝑦 in 𝑁𝑆 (𝑢̄𝑣̄), then there is a diamond in-

duced by {𝑥, 𝑦, 𝑢, 𝑣} in 𝐺 ⊕ 𝑆 . Therefore, 𝑁𝑆 (𝑢̄𝑣̄) is a clique. Assume
that 𝑥, 𝑦 ∈ 𝑁𝑆 (𝑢̄𝑣̄). If 𝑥 and 𝑦 have two adjacent common neighbors 𝑥′

and 𝑦′ in 𝑁𝑇 (𝑢̄𝑣̄), then {𝑥, 𝑦, 𝑥′, 𝑦′} induces a diamond in 𝐺 ⊕𝑆 . There-

fore, 𝑁[𝑥] ∩𝑁[𝑦] ∩𝑁[𝑢] ∩𝑁[𝑣] is a split graph with one split partition
being (𝑁𝑆 (𝑢̄𝑣̄), (𝑁[𝑥] ∩𝑁[𝑦] ∩𝑁[𝑢] ∩𝑁[𝑣]) ⧵ (𝑁𝑆 (𝑢̄𝑣̄))). □

Lemma 2.7. 𝐺 is a yes-instance of SC-to- if and only if the algorithm
returns YES.

Proof. Since the algorithm returns YES only when a solution is found,
the backward direction of the statement is true. For the forward di-

rection, let 𝐺 be a yes-instance. Assume that there exists a solution 𝑆
which is an independent set. Further, assume that 𝐺 has an induced
diamond. Then by Lemma 2.4, 𝑆 is the set of all degree-2 vertices
of the induced diamonds in 𝐺. Then Step 1 returns YES. Assume that
𝐺 is diamond-free. Then by Lemma 2.5, 𝑆 ⊆ 𝐼 , where 𝐼 is the set of
isolated vertices in the graph induced by the neighbors of 𝑟, for a cen-

ter 𝑟 of an induced 𝐾1,𝑡 in 𝐺. Further |𝑆| ≥ |𝐼| − 𝑡 + 2. Then Step
2 returns YES. Let 𝑆 be a solution which is not an independent set.
Let 𝑢𝑣 be an edge in the graph induced by 𝑆 . The algorithm will dis-

cover 𝑢𝑣 in one iteration of Step 3. By Observation 2.6, we know that
the graph induced by 𝑁(𝑢) ⧵ 𝑁[𝑣] is a (𝑡 − 1, 𝑡 − 1)-split graph with
a (𝑡 − 1, 𝑡 − 1)-split partition (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)). Similarly, the graph in-

duced by 𝑁(𝑣) ⧵𝑁[𝑢] is a (𝑡 −1, 𝑡 −1)-split graph with a (𝑡 −1, 𝑡 −1)-split
partition (𝑁𝑆 (𝑢𝑣), 𝑁𝑇 (𝑢𝑣)). Further, 𝑁𝑇 (𝑢𝑣) is an independent set of
size at most 𝑡 − 1. Therefore, in one iteration of Step 3.5, we obtain
𝑆1 = 𝑁𝑆 (𝑢𝑣), 𝑆2 = 𝑁𝑆 (𝑢𝑣), and 𝑆3 = 𝑁𝑆 (𝑢𝑣). If 𝑁𝑆 (𝑢̄𝑣̄) is empty, then
Step 3.5(a) returns YES. If 𝑁𝑆 (𝑢̄𝑣̄) is a singleton set, then Step 3.5(b) re-

turns YES. Assume that |𝑁𝑆 (𝑢̄𝑣̄)| ≥ 2. By Observation 2.6, 𝑁𝑆 (𝑢̄𝑣̄) is a
clique and for every edge 𝑥𝑦 in it, the common neighborhood of 𝑥 and
4

𝑦 in 𝑁[𝑢] ∩𝑁[𝑣] is a split graph with a partition being 𝑁𝑆 (𝑢̄𝑣̄) and the
Information Processing Letters 188 (2025) 106530

rest. The algorithm will discover such an edge 𝑥𝑦 in one of the itera-

tions of Step 3.5(c) and 𝑁𝑆 (𝑢̄𝑣̄) will be discovered as 𝑆4. Then YES is
returned at Step 3.5(c). □

We notice that the number of subsets to be considered in Step 2 is
polynomial. Moreover, by Proposition 2.3, (𝑡 − 1, 𝑡 − 1)-split graphs can
be recognized in polynomial-time and all (𝑡 − 1, 𝑡 − 1)-split partitions of
a (𝑡 − 1, 𝑡 − 1)-split graph can be found in polynomial-time. Therefore,
each step in the algorithm runs in polynomial-time. Then we obtain
Theorem 2.8 from Lemma 2.7.

Theorem 2.8. Let  be the class of {𝐾1,𝑡, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑}-free graphs for any
constant 𝑡 ≥ 3. Then SC-to- can be solved in polynomial-time.

Our algorithm runs in XP-time if we consider 𝑡 as a parameter. It
remains open whether the problem is polynomial-time solvable when 
is 𝐻 -free for an 𝐻 ∈ {𝐾1,3, 𝐾1,4, diamond}.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

We thank the reviewers for helpful comments. The initial proof of a
linear kernel (Lemma 2.1), improving our quadratic kernel in an earlier
version of the paper, is given by one of the reviewers. This inspired us
to think on the tightness of the bound on no-instances, leading us to
Lemma 2.2. We appreciate and acknowledge the same.

References

[1] Marcin Kamiński, Vadim V. Lozin, Martin Milanič, Recent developments on graphs
of bounded clique-width, Discrete Appl. Math. 157 (12) (2009) 2747–2761.

[2] Fedor V. Fomin, Petr A. Golovach, Torstein J.F. Strømme, Dimitrios M. Thilikos,
Subgraph complementation, Algorithmica 82 (7) (2020) 1859–1880.

[3] Dhanyamol Antony, Jay Garchar, Sagartanu Pal, R.B. Sandeep, Sagnik Sen, R. Sub-

ashini, On subgraph complementation to H-free graphs, Algorithmica 84 (10) (2022)
2842–2870.

[4] Dhanyamol Antony, Sagartanu Pal, R.B. Sandeep, R. Subashini, Cutting a tree with
subgraph complementation is hard, except for some small trees, in: Armando Cas-

tañeda, Francisco Rodríguez-Henríquez (Eds.), LATIN 2022: Theoretical Informatics
- 15th Latin American Symposium, Guanajuato, Mexico, November 7-11, 2022,
Proceedings, in: Lecture Notes in Computer Science, vol. 13568, Springer, 2022,
pp. 3–19.

[5] Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michal
Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokolowski, Szymon
Torunczyk, Flipper games for monadically stable graph classes, in: Kousha Etes-

sami, Uriel Feige, Gabriele Puppis (Eds.), 50th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn,
Germany, in: LIPIcs, vol. 261, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023, pp. 128:1–128:16.

[6] Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, Szymon Torunczyk, Indis-

cernibles and flatness in monadically stable and monadically NIP classes, in: Kousha
Etessami, Uriel Feige, Gabriele Puppis (Eds.), 50th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn,
Germany, in: LIPIcs, vol. 261, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023, pp. 125:1–125:18.

[7] Szymon Torunczyk, Flip-width: cops and robber on dense graphs, in: 64th IEEE An-

nual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA,
USA, November 6-9, 2023, IEEE, 2023, pp. 663–700.

[8] Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, A survey
of parameterized algorithms and the complexity of edge modification, Comput. Sci.

Rev. 48 (2023) 100556.

http://refhub.elsevier.com/S0020-0190(24)00060-7/bib858BFDF53D70E133815D6F6C7D15BFB9s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib858BFDF53D70E133815D6F6C7D15BFB9s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib7DE61A84C85D718A576BEC127250E60As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib7DE61A84C85D718A576BEC127250E60As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib4B39E30E75C2E1FC7CD839DE8F0DCA0As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib4B39E30E75C2E1FC7CD839DE8F0DCA0As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib4B39E30E75C2E1FC7CD839DE8F0DCA0As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib26832EFAF28E28632D1748787C548B27s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib26832EFAF28E28632D1748787C548B27s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib26832EFAF28E28632D1748787C548B27s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib26832EFAF28E28632D1748787C548B27s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib26832EFAF28E28632D1748787C548B27s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib26832EFAF28E28632D1748787C548B27s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibF92F16067E6E3B362EF98E368AD2EF4Cs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibF92F16067E6E3B362EF98E368AD2EF4Cs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibF92F16067E6E3B362EF98E368AD2EF4Cs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibF92F16067E6E3B362EF98E368AD2EF4Cs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibF92F16067E6E3B362EF98E368AD2EF4Cs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibF92F16067E6E3B362EF98E368AD2EF4Cs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibF92F16067E6E3B362EF98E368AD2EF4Cs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib8B68E199A759F49728612609CF50DF05s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib8B68E199A759F49728612609CF50DF05s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib8B68E199A759F49728612609CF50DF05s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib8B68E199A759F49728612609CF50DF05s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib8B68E199A759F49728612609CF50DF05s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib8B68E199A759F49728612609CF50DF05s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib7DB95203455144A9E3B2BD22957CCFAAs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib7DB95203455144A9E3B2BD22957CCFAAs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib7DB95203455144A9E3B2BD22957CCFAAs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib4E4E08656FDC4E2364B7FC230D01C7F4s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib4E4E08656FDC4E2364B7FC230D01C7F4s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib4E4E08656FDC4E2364B7FC230D01C7F4s1

Information Processing Letters 188 (2025) 106530D. Antony, S. Pal and R.B. Sandeep

[9] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, Erik Jan van Leeuwen, Marcin
Wrochna, Polynomial kernelization for removing induced claws and diamonds, The-

ory Comput. Syst. 60 (4) (2017) 615–636.

[10] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, Parameterized Algorithms,
Springer, 2015.

[11] András Gyárfás, Generalized split graphs and Ramsey numbers, J. Comb. Theory,
Ser. A 81 (2) (1998) 255–261.

[12] Sudeshna Kolay, Fahad Panolan, Parameterized algorithms for deletion to (𝑟, 𝓁)-
graphs, in: Prahladh Harsha, G. Ramalingam (Eds.), 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2015, in: LIPIcs, vol. 45, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015,
pp. 420–433.

[13] Sudeshna Kolay, Fahad Panolan, Parameterized algorithms for deletion to (r, l)-
graphs, arXiv preprint, arXiv :1504 .08120, 2015.
5

http://refhub.elsevier.com/S0020-0190(24)00060-7/bib0C9CA9F7D4D1686E9367207E0EEDEF44s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib0C9CA9F7D4D1686E9367207E0EEDEF44s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib0C9CA9F7D4D1686E9367207E0EEDEF44s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibC605DFE39FD6ECF3DC56811D70DB8F61s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibC605DFE39FD6ECF3DC56811D70DB8F61s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bibC605DFE39FD6ECF3DC56811D70DB8F61s1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib1E2CE249894FEB87927D185EE4C3D74Bs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib1E2CE249894FEB87927D185EE4C3D74Bs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib216D4EDF4ED5A5B7D5D2F6D5C837410As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib216D4EDF4ED5A5B7D5D2F6D5C837410As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib216D4EDF4ED5A5B7D5D2F6D5C837410As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib216D4EDF4ED5A5B7D5D2F6D5C837410As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib216D4EDF4ED5A5B7D5D2F6D5C837410As1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib394223CFEC6A391F1A996464BF252BDFs1
http://refhub.elsevier.com/S0020-0190(24)00060-7/bib394223CFEC6A391F1A996464BF252BDFs1

	Algorithms for subgraph complementation to some classes of graphs
	1 Introduction
	1.1 Preliminaries

	2 Algorithms
	2.1 Destroying stars and diamonds

	Declaration of competing interest
	Data availability
	Acknowledgement
	References

