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Topological quantum numbers are often used to characterise the topological order of
phase having protected gapless edge modes when the system is kept in a space with the

boundary. The famous examples in this category are the quantized electrical Hall con-
ductance and thermal Hall conductance, which encodes the topological order of integer

and fractional quantum Hall states. Here, we review the recent thermal transport study

of integer and fractional quantum Hall states realized in graphene-based van der Waals
heterostructures.
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1. Introduction

Topological properties of the electronic phases are often encoded in the quantized

physical quantity, such as electrical Hall conductance and thermal Hall conductance.

Although the notion of the topology in condensed matter physics was introduced

long back in 1972 by J. Michael Kosterlitz and David J. Thouless[1, 2], the first

experimental discovery of the topological quantum liquid was realized by Klaus von

Klitzing and coworkers in silicon field-effect transistor at low temperature and sub-

jected to a high magnetic field. They found that the Hall conductance was precisely

quantized in an integer multiple of the G0 = e2

h [3] (where h is Planck’s constant and

e is the elementary electronic charge.), accompanied by the vanishing longitudinal

resistivity. This phenomenon is known as the integer quantum Hall (IQH) effect

and is the first experimentally observed topological phase of electrons in a solid.

For this discovery, Klaus von Klitzing received the Nobel Prize in Physics in 1985.

With improved sample quality, in 1982, Tsui, Stormer, and Gossard observed that
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in addition to the integer quantum Hall plateau, a new plateau appeared beyond

the conventional sequence of the integer quantum Hall state. It was quantized at the

value ρxy = h
3e2 accompanied by a minimum in ρxx[4]. Furthermore, with improve-

ment in sample quality, the plateaus were observed at ρxy = h
νe2 = p

q
h
e2 accompanied

by vanishing ρxx, where ν is the filling factor, p and q are positive integer numbers.

A few examples in this series are ν = 1/5, 1/3, 2/5, 3/7, 4/9, 5/9, 3/5, 4/7, 2/3, ...

in the lowest Landau level and ν = 4/3, 5/3, 7/5, 5/2, 12/5, 13/5, ... in the higher

Landau levels[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The observation of the

quantum Hall plateaus at the fractional filling is known as fractional quantum Hall

(FQH) effect and lead to the another Nobel prize in physics in 1998. It is one of the

most correlated states observed in condensed matter systems. In contrast to the

integer quantum Hall states, a single-particle phenomenon, the fractional quantum

Hall phase is a highly correlated state of the electrons. It emerges when the Landau

levels are partially filled.

The transition from one IQH or FQH plateau to another IQH or FQH plateau is

a classic example of topological phase transition between two gapped bulk phases,

each characterized by a different topological order. To probe the topological order

of these phases, at first, one would naively expect to use an experimental technique

that directly probes the bulk of these gapped phases. However, it turns out to be

tedious and difficult to probe the bulk. Thanks to the bulk-edge correspondence

principle, the topological order of bulk can also be accessed by studying the gapless

edge modes at the physical boundary of the system, which is relatively easy to

probe compared to the gapped bulk state. Theoretically, the gapless edge modes

can be probed via quantized electrical Hall conductance and thermal Hall conduc-

tance. However, till now, most of our understanding of the topological order of

IQH and FQH effects comes from electrical Hall conductance measurements, which

is quite successful for the IQH phase and particle-like FQH phases, hosting only

downstream edge modes. However, the transport properties become quite complex

for hole-conjugate states hosting counter-propagating edge modes, which demands

the measurement of quantized thermal Hall conductance.

This article reviews the electronic thermal conductance study of the integer and

several fractional quantum Hall states in graphene-based devices. By contrast to the

conventional two-dimensional electron gas in GaAs/AlGaAs, the linear, Dirac-like

spectrum of low energy excitations and the pseudospin degeneracy make single-layer

graphene (SLG) a unique, truly two-dimensional “relativistic” electronic system.

The π Berry’s phase in graphene gives rise to Landau Levels structure, which is

no longer evenly spaced. The Landau levels in graphene have four-fold internal

degeneracy: two for spin and two for valley degree of freedom. As a result of the

Dirac-like dynamics, the Hall conductivity σxy exhibits an unconventional sequence

of the quantization. Furthermore, the high mobility and gate tunability of the carrier

density in graphene over a wide range provides a huge experimental phase space

for the study of the symmetry-broken integer quantum Hall (IQH) and fractional

quantum Hall phases (FQH). Since the unique band structure and the spin-valley
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degeneracy of graphene are quite different from the conventional GaAs/AlGaAs

2D gas, it is worth starting with the basics of single-particle band structure, and

resulting Landau Levels dispersion in the magnetic field. Next, we briefly describe

the effect of the symmetry breaking and its signature in the transport experiments,

mainly in electrical conductance. Then, we discuss the emergence of the fractional

quantum Hall states in single-layer graphene. Next, we discuss the topological order

of the QH states and their detection schemes. Later on, we provide a detailed

discussion of the electronic thermal conductance measurement scheme of QH states,

which is the central core of this review article. After the technical introduction of

the measurement scheme, we will describe the results obtained from the three sets

of thermal conductance measurements of integer and fractional quantum Hall states

in single-layer and bilayer graphene. Finally, we end the review with a discussion on

the impact of the experimental work discussed in this article and future endeavours.

2. Anomalous quantum Hall effect in graphene

2.1. Single particle band structure of ‘Single layer graphene

In single-layer graphene, carbon atoms are arranged in a honeycomb lattice struc-

ture as shown in 1 (a). To describe its lattice vectors, one can think of it as a

triangular lattice with two sublattice basis A and B. The unit lattice vectors can

be written as

a1 =
a

2

(
3,
√
3
)
, a2 =

a

2

(
3,−

√
3
)
. (1)

where a = 1.42 Å is the carbon-carbon bond length. The corresponding recip-

rocal lattice vectors are given by

b1 =
2π

a

(
1,
√
3
)
, b2 =

2π

a

(
1,−

√
3
)
. (2)

The first Brillouin zone (BZ) of the graphene lattice is shown in Fig. 1(b). There

are six corners in the first BZ, out of which only two points, known as ‘Dirac points’,

K andK
′
are non-equivalent. The positions ofK andK

′
points in momentum space

are given by

K =
2π

3a

(
1, 1/

√
3
)
, K′ =

2π

3a

(
1,−1/

√
3
)
. (3)

SLG’s low energy band structure can be calculated using the tight-binding ap-

proach. For the scope of this review, we account for only the first three nearest

neighbour sites, which are

δ1 =
a

2

(
1,
√
3
)
, δ2 =

a

2

(
1,−

√
3
)
, δ3 = −a (1, 0) . (4)

The tight binding Hamiltonian accounting only the first three NN can be written

in the basis of the wave-function amplitudes on the two sublattices ΦA and ΦB , as

follow;



July 9, 2024 1:16 WSPC/INSTRUCTION FILE MPLB

4 Saurabh Kumar Srivastav and Anindya Das

A B

δ1

δ2

δ3

a1

a2

kx

ky

b1

b2

Γ

K

K’

M

(a) (b)

a=1.42 Å 

Fig. 1. (a) Carbon atoms are arranged in a honeycomb lattice structure. It can be thought of as

two interpenetrating triangular lattices. Two nonequivalent sites are named A (red) and B (black),

separated by distance a = 1.42Å. a1 and a2 are the lattice vectors and δi, i = 1, 2, 3 are the nearest
neighbor vectors. (b) b1 and b2 are the reciprocal lattice vectors. The region bounded by the

hexagon boundary lines is the first Brillouin zone. The gap between the conduction and valence

band vanishes at the Dirac point lattice vectors K and K
′
. The figure is adapted from Saurabh

Kumar Srivastav’s PhD Thesis (2022). Reprinted with permission from the Indian Institute of

Science[17].

ĤSLG = −γ0
(

0 f(k)

f∗(k) 0

)
(5)

where γ0 = 2.8 eV is the nearest neighbour hopping between site A↔ B. and

f(k) = e−ik.δ1 + e−ik.δ2 + e−ik.δ3 (6)

The resulting eigenvalues of the Hamiltonian(5) have two eigenvalues, which become

identically zero at K and K
′
points in the Brillouin zone. In most cases, only the

low-energy bands around these points (K and K
′
), known as Dirac points and

Valley in the Brillouin zone, are important. The low-energy Hamiltonian around

these Dirac points can be written as

ĤSLG = ℏvF
(

0 ξkx − iky
ξkx + iky 0

)
(7)

where vF = 3γ0a/2ℏ ≃ 1 × 106 m/s and ξ = ±1 for K/K
′
point. The eigenvalues

of the Hamiltonian(7) around K point is given by;

E±(k) = ±ℏvF |k| (8)
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The resulting low-energy band dispersion of graphene has a four-fold degeneracy,

2 for the spin flavour and 2 for the Valley flavour. In the presence of a magnetic field

perpendicular to the graphene plane B = Bẑ, the band dispersion gets modified;

Following the minimal coupling approach of the vector potential A = (−By, 0, 0);
the Hamiltonian(7) around K point can be written in terms of the defined operator

π → (px − eBy + ipy = −iℏ∂x − eBy + ℏ∂y) and π† → (px − eBy − ipy = −iℏ∂x −
eBy − ℏ∂y). The resulting Hamiltonian in the magnetic field near the Dirac point

K is given by

HSLG,K = vF

(
0 π†

π 0

)
(9)

Operator π and π† act as a creation and annihilation operator respectively, such

that

πψN = −
√
2iℏ
lB

√
NψN−1, (10)

π†ψN =

√
2iℏ
lB

√
N + 1ψN+1, (11)

πψ0 = 0 (12)

Here, ψN (x, y) is the scalar orbital Landau level wavefunction;

ψN (x, y) =
1√

2N (N !)
√
π
e

ipxx
ℏ HN

(
y

lB
− lBk

)
exp

[
− 1

2

(
y

lB
− lBk

)2]
(13)

where lB =
√
ℏ/eB is the magnetic length scale, N is the Landau level index and

HN is N th Hermite polynomial. The resulting eigenvalues are given by,

ϵN = sign(N)

√
2ℏvF
lB

√
|N | = sign(N)

√
2ℏv2F eB|N | (14)

The eigenstates at K point are given by

∀N ≥ 1 : ΦN,± =
1√
2

(
ΨN

∓iΨN−1

)
(15)

N = 0 : Φ0 =
1√
2

(
Ψ0

0

)
(16)

whereas near K′ point, eigenstates are

∀N ≥ 1 : ΦN,± =
1√
2

(
±iΨN−1

ΨN

)
(17)

N = 0 : Φ0 =
1√
2

(
0

Ψ0

)
(18)



July 9, 2024 1:16 WSPC/INSTRUCTION FILE MPLB

6 Saurabh Kumar Srivastav and Anindya Das

 (e
V)

B (T)

-0.2

-0.1

0.0

0.1

0.2

0 2 4 6 8 10

N = 0

N = +1
N = +2
N = +3

N = -3
N = -2
N = -1

 (e
V)

-0.2

-0.1

0.0

0.1

0.2

Density of states (a.u.)

N = 0

N = +1
N = +2
N = +3

N = -3
N = -2
N = -1

(a)                             (b)                                                                                  (c)

Fig. 2. (a) In the presence of a magnetic field, Landau level forms at discrete energy intervals.

(b) Landau level spectrum is plotted for both conduction and valence band as a function of
the magnetic field B for different Landau Level index N . Here, Landau level energy disperses as

ϵ = sgn(N)
√

2ℏv2F eB|N | and as a result energy gap reduces as one approaches higher Landau

levels. It is in sharp contrast to conventional two-dimensional electron gas, where the energy gap

remains the same irrespective of the Landau level index. The presence of zero energy Landau level,

equally shared by electron and hole, also makes SLG a unique two-dimensional material. (c) The
corresponding density of states of Landau levels after incorporating the Lorentzian broadening of

the 3meV for each Landau level for B = 10 T. The figure is adapted from Saurabh Kumar Sri-

vastav’s PhD Thesis (2022). Reprinted with permission from the Indian Institute of Science[17].

It should be noted that for all Landau level N ≥ 1, the electronic density is

shared by both sublattice site A and B. However, for N = 0 state, near K/K′

valley, electronic density only resides on the sublattice A/B. The resulting Landau

level energy spectrum and the density of states are plotted in Fig. 2(b) and (c),

respectively. The presence of the zero energy Landau level (ZLL) and four-fold spin

valley degeneracy of SLG, the Hall conductivity σxy exhibits an unconventional

sequence of the quantization described by[18, 19, 20, 21, 22, 23, 24, 25]

σxy = ±4

(
N +

1

2

)
e2

h
(19)

It should be noted that the Landau level’s wavefunction in SLG differs significantly

from the conventional GaAs/AlGaAs. First, here, for SLG, the wavefunction of the

N th Landau level has the orbital component of the N th and N th − 1 conventional

Landau level, except ZLL. This difference can lead to different values of Haldane

pseudopotentials for the LLs with different orbital structures and hence affects the

sequence of the FQH states in different LLS. The second major difference, which

is more pronounced in ZLL is the different sublattice structure of wavefunctions

near degenerate K and K′. As a consequence, it affects the valley and or spin

symmetry-breaking of ZLL and the ground state of ν = 0 insulating state.
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2.2. Symmetry breaking and quantum Hall Ferromagnetism

Along with the unconventional sequence of the QH plateaus due to the π Berry’s

phase, the spin and valley degeneracy makes graphene a wonderful system for

observing the rich physics associated with the multicomponent quantum Hall

phases[26, 27, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. In SLG, the rel-

evant energy scales are the Landau quantization energy ϵN (cyclotron energy)

and the long-range Coulomb interaction EC = e2

ϵlB
. At low magnetic fields, ϵN

and EC do not depend on the spin or valley degrees of freedom. So the com-

bined spin-valley flavour degeneracy can be described in terms of a single approx-

imate SU(4) isospin symmetry which corresponds to the invariance of long-range

electron-electron (EC) interaction under a rotation within the fourfold spin/valley

internal space. However, the long-range Coulomb interaction (EC) can drive the

system through a ferromagnetic instability, in which the order parameter corre-

sponds to a finite polarization in a specific direction within the SU(4) isospin space

[26, 27, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. At the integer fillings within a

partially filled quartet Landau levels, this order parameter is predicted to lead to

a finite gap for charged excitations and a robust quantum Hall effect for integers

outside the sequence described in Eqn. 19. The exact SU(4) polarization for a given

sample depends on the interplay between the anisotropies arising from the SU(4)

symmetry-breaking term like Zeeman splitting, lattice scale interactions and even

the disorder (that might not break the SU(4) symmetries). Fig. 3(c) shows the plot

of transverse conductance as a function of the back gate voltage at B = 9.8 T and

40 mK of bath temperature for a single layer graphene device encapsulated between

the two hexagonal boron nitride substrate (hBN). In addition to the conventional

plateaus at 2 e2

h , 6
e2

h , 10
e2

h , well-developed symmetry broken plateaus of N = 0 and

N = 1 LLs are also seen.

3. Fractional quantum Hall effect in single-layer graphene

At the partial filling of LLs, when the kinetic energy is completely quenched,

electron-electron interaction leads to the emergence of fractional quantum Hall

(FQH) states. Due to the approximate SU(4) symmetry of SLG, the symmetry

breaking at partial filling of LLS is quite complex. It can lead to a condition

where multiple possible orders, such as single-component and multi-component

FQH states, compete with each other for the ground state. The experimental ap-

pearance or absence of the FQH sequences in SLG can be mainly explained either

via a single-component or multi-component composite fermion (CF) model. Con-

ventionally, in single component CF model, each electron captures an even number,

say 2p, of the quantized vortices(or flux quanta) and turns itself into weakly inter-

acting topological particles, known as composite fermions (CF). Due to the vortex

attachment, weakly interacting CFs experience an effective magnetic field B∗, which
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Fig. 3. (a) In absence of any interaction, the single particle spectrum of Landau levels gives the

quantum Hall plateaus at g
(
N + 1

2

)
e2

h
, where g = 4 is the four fold spin-valley degeneracy and N

is the Landau level index. The distance between the quantum Hall plateaus along the density axis

is defined by the density of states gB
ϕ0

on each Landau level, which remarkably does not depend

on the zero field spectrum of the system. Here, B is the magnetic field and ϕ0 = h
e

is the flux
quantum. In addition to the plateaus in transverse conductance, the corresponding sequence of the

Landau levels are shown in magenta and green for holes and electrons, respectively. (b) However, in

presence of interactions and high magnetic field, the four-fold spin valley degeneracy breaks, which
leads to the observation of the plateaus at the integer values outside the conventional sequence.

The schematic shows the energy spectrum for the spin (I) or valley(II) polarization for the Landau

levels after spin-valley symmetry breaking. Two different possible scenarios associated with two
sequences of edge states are labelled by I and II, respectively, In the schematic, the edge states’

spin and valley polarization are denoted by ↑ / ↓ and ±, respectively .(c) Transverse conductance

is plotted as function of the back gate voltage at B = 9.8 T and 40 mK of bath temperature for

a single layer graphene device. In addition to the conventional plateaus at 2 e2

h
, 6 e2

h
, 10 e2

h
, one

can clearly observe the well developed symmetry broken plateaus of N = 0 and N = 1 Landau

levels. The figure is adapted from Saurabh Kumar Srivastav’s PhD Thesis (2022). Reprinted with
permission from the Indian Institute of Science[17].

is related to the externally applied field B via a relation[39, 40];

B∗ = B − 2pρϕ0 (20)

where ρ is the electron density, ϕ0 = h/e is the flux quantum and 2p is an even

integer. Equivalently, one can write that electrons at filling factor ν convert into a

composite fermion with filling ν∗, related via

ν =
ν∗

2pν∗ ± 1
(21)

This single-component non-interacting CF model accurately describes the sequence

and hierarchy of FQH states observed between 0 < ν < 1 of SLG[41, 42, 43].

However, FQH states observed experimentally between 1 < ν < 2 raise concern

over the applicability of single component CF model in this branch of symmetry-

broken LLs[44, 45, 46]. Particularly, the absence of ν = 5/3 was quite surprising.

Since 5/3 = 2−1/3 is closest to the conventional 1/3 state, naively one would expect

to observe well-developed FQH states at ν = 5/3. Furthermore, the emergence of

only even numerator states with a step of 2 between the consecutive FQH states in
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1 < ν < 2, suggests the partial lifting of four-fold spin and valley and a transition

into an approximate SU(2) symmetry phases. Careful observation of the emergent

FQH states suggests that these responses have close analogies with the IQH effect

of real electrons observed in SLG with a four-fold degeneracy of LLs. Within the

CF picture, these states are usually described via a two-component CF model,

similar to what has been used to explain the sequence of multicomponent FQH

states observed in AlAs and strained silicon[47, 48]. To date, many properties of

the ground states and the excitation of FQH states in graphene are unknown and

demand a detailed and systematic investigation.

4. Topological order and its Detection in integer and fractional

quantum Hall states

In the topological phase of matter, some of the physical properties remain insensitive

to the local perturbations of the system[49, 50, 51]. These physical properties may

include fractionalization[49], long-range quantum entanglement[51], and topological

degeneracies in the energy spectrum of the system[49, 50, 51]. Mathematically,

the topological order of a quantum phase is usually characterized by some of the

topological invariant numbers. Topological invariant numbers are often used to

characterize the class of topological order of phase that has protected gapless edge

modes when the system is kept on a space with the boundary[49, 50, 51]. The integer

and fractional quantum Hall phases are the first set of the discovered topologically

ordered phases that have protected gapless edge modes at their boundary. Usually,

the knowledge of the topological order of the IQH and FQH states demands a

detailed understanding of the charge and statistics of the anyons, which exist in the

gapped bulk of the 2D electron liquid. However, accessing the bulk of the 2D electron

liquid in the experiment is challenging. Thanks to the bulk-edge correspondence

principle, the topological order of the gapped bulk of IQH and FQH phases can be

determined by examining the physics of the gapless edge modes.

4.1. Edge states in Integer and fractional quantum Hall states

Similar to the IQH case (Fig. 4(a)), the charge density for the particle-like FQH

states (ν < 1/2) drops monotonically from its bulk values to zero as one approaches

the edge from the bulk[52], as shown in Fig. 4(b, c) for ν = 1/3, 2/5. It leads to

the emergence of the one-dimensional downstream edge modes near the physical

boundary of the sample[52], as shown in Fig. 4(e, f) for ν = 1/3, 2/5. The applied

magnetic field’s direction dictates the edge modes’ downstream chirality[53, 54].

However, the charge density profile does not decrease monotonically for the hole-

conjugate FQH states (1/2 < ν < 1). For example, at ν = 2/3, the filling factor

increases from 2/3 to 1 and then drops back to zero[52]. In other words, 2/3 liquids

can be considered an FQH state of ν = 1/3 holes in the IQH state at ν = 1 electron

liquid. As a consequence, two counter-propagating edge modes of charge e with

conductance e2/h and charge −e/3 with conductance e2/3h emerge at the sample
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boundary[52, 55]. Fig. 5(a, b) shows the schematics of charge density profiles and

edge states of the ν = 2/3 FQH state. However, in the presence of the disorder-

dominated random inter-edge tunnelling between, Kane-Fisher-Polchinski[56] found

a decoupled charge mode of conductance 2e2/3h and a neutral mode, which does

not carry any charge but can carry the energy. The schematics of such normalized

edge modes are shown in Fig. 5(c, d).

Since the neutral modes do not couple with the charged excitations of the ex-

ternal probes, it becomes challenging to detect them via the conventional elec-

trical conductance measurement. Although several proposals were made to see

the neutral modes which involve the measurement of the tunnelling exponent in

constrictions[57], looking for resonance in long constriction[58], and looking for the

heating effects on shot noise[59, 60], the first experimental proof was demonstrated

by Bid et al.;[61] for filling factor ν = 2/3, 3/5, and 5/2 in GaAs/AlGaAs sample.

This experiment involved an upstream quantum point contact (QPC) constriction

from an energized ohmic contact. An excited neutral mode emanates from the ‘hot

spot’ at the source, propagates upstream along the edge, and impinges on a par-

tially pinched QPC. This leads to observed current fluctuations. Recently, upstream

neutral modes for ν = 2/3, 3/5 mode have been also observed in bilayer graphene

devices[62].

4.2. Detection of topological order

Quantized electrical and thermal Hall conductance in quantum Hall states have

been known for a long time back theoretically[63, 64] since their first set of experi-

mental observations. Although electrical Hall conductance has been widely used to

understand the topological order of a quantum Hall state, it is insufficient in the hi-

erarchical fractional quantum Hall states, where the edge structure is complicated,

and transport may occur via the downstream and upstream modes. The electrical

Hall conductance only reveals the number and the conductance of the downstream

charged chiral edge modes. Still, it is independent of the edge modes’ total number,

chirality, and character. By contrast, the quantized thermal Hall conductance is

not only sensitive to the downstream charged modes, it can also detect the other

upstream modes, including the chargeless neutral modes, which are not detectable

in electrical Hall conductance measurement[63, 64, 65].

Similar to the quantization of electrical conductance, the quantized thermal

conductance of a single ballistic channel only depends on the fundamental con-

stants of nature and is given by κ0T =
π2k2

B

3h T , where kB and h are the Boltz-

mann’s and Planck’s constant, respectively. If multiple downstream edge modes

exist, such as IQH and particle-like FQH states, quantized thermal conductance

becomes GQ = Ndκ0T , where Nd is the total number of downstream edge modes.

However, the situation becomes complex in the inter-mode tunnelling between

counter-propagating edge modes at certain fillings, such as for 2/3 and 3/5, where

some chiral edge modes propagate in the upstream direction. In 1997, Kane and
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Fig. 4. (a) charge density profile of ν = 1, (b) ν = 1/3, and (c) ν = 2/5 states near the edge.
In these states, charge density and potential profile drops monotonically to zero. The schematic

of the downstream edge modes at the physical boundary of the sample is shown in (d),(e), and

(f) for ν = 1, 1/3, and ν = 2/5 states, respectively. The conductance of downstream edge modes
in integer (ν = 1) and ν = 1/3 particle-like states are e2/h and e2/3h, respectively. For ν = 2/5

state, two downstream edge modes with conductance e2/15h (shown with blue dashed colour:

inner mode) and e2/3h (shown with red colour: outer mode), respectively.The figure is adapted
from Saurabh Kumar Srivastav’s PhD Thesis (2022). Reprinted with permission from the Indian

Institute of Science[17].

Fisher derived the quantized thermal Hall conductance for the abelian fractional

quantum Hall states for an ideal impurity-free edge[64]. For the FQH states with

counter-propagating edge modes, their analysis assumes a substantially longer edge

propagation length than the thermal equilibration length. They found that quan-

tized thermal Hall conductance at any filling of abelian FQH state is given by[64]

GQ = (Nd−Nu)κ0T , where Nd and Nu are the numbers of the downstream and up-

stream edge modes, respectively. However, if the edge propagation length is smaller

than the thermal equilibration length (lH), thermal Hall conductance takes the

value of GQ = (Nd +Nu)κ0T . Since quantized GQ depends on the Nd and Nu, it

can also be used as a powerful experimental tool to detect the upstream neutral

modes and hence the exact topological order of complex FQH states, which were

not possible in electrical conductance measurements. Furthermore, in contrast to

quantized electrical conductance, quantized thermal conductance remains indepen-

dent of the statistics of the carriers. It remains the same for the fermions, bosons,

anyons [64, 66] except in the case of the Majorana mode, where the quantized ther-

mal conductance becomes half of its quantum limit,[67, 68, 69, 70, 71]. It makes

the thermal conductance measurement a powerful technique which can be used to

distinguish non-abelian order of even-denominator FQH states. Usually, the non-

abelian order of FQH state, such as 5/2 is believed to host the Majorana modes in
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Fig. 5. (a) charge density profile of ν = 2/3 at the sharp edge. (b) A schematic of the bare

edge modes, with conductance e2/h (downstream mode shown with red colour: outer mode)

and e2/3h (upstream mode shown by blue dashed colour: inner mode), respectively. (c) charge
density profile of ν = 2/3 at a disordered edge. In the presence of the disordered dominated

tunnelling between the counter-propagating bare edge modes, one gets a decoupled charge mode

of conductance 2e2/3h and an upstream neutral mode, which does not carry any charge but
can support the energy transport. (d) The schematic of the decoupled downstream charged mode

with conductance 2e2/3h (shown with red colour: outer mode) and upstream neutral mode (shown

with blue colour: inner mode). The figure is adapted from Saurabh Kumar Srivastav’s PhD Thesis
(2022). Reprinted with permission from the Indian Institute of Science[17].

its edge structure[72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]. Hence the observation

of the half-quantized thermal conductance will be the smoking-gun evidence of the

Majorana mode. Experimentally, the half quantum of the thermal conductance has

been measured at 5/2 FQH state in GaAs/AlGaAs based two-dimensional electron

gas[84].

4.3. Measurement of quantized thermal conductance in IQH and

FQH states

Different from electrical conductance measurement, quantized thermal conductance

measurement is complicated and tricky. It is evident from the fact that although

the quantization of the electrical and thermal conductance of the IQH and FQH
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(a) (b)
enJQ

e-phJQ

Fig. 6. (a) Basic principle of thermal conductance measurement of QH states. A micrometre size

metallic floating contact is heated to TM by injecting a known Joule power JQ. The temperature

of the floating contact is set by the heat balance equation JQ = nJe
Q + Je−ph

Q , where nJe
Q is the

electronic contribution to heat flow via n ballistic QH edge channels from floating contact to cold

bath at temperature T0 and Je−ph
Q is the transfer of heat from the hot electrons in floating contact

toward the cold phonon bath at temperature T0. (b) Extracted electronic heat current factor αn

(shown by symbols) defined as nJe
Q/(T 2

M − T 2
0 ) normalized by π2k2B/6h is plotted as a function

of the total number of channel n. The grey line shows the predictions for the quantum limit of

the heat flow. The figure is adapted from Jezouin et al. (2013). Reprinted with permission from

AAAS.

states has been known for decades, the first experimental measurement of quantized

thermal conductance of quantum Hall states was reported 33 years after the first

experimental demonstration of the IQH states in the pioneering work of Jezouin et

al. [85] in GaAs/AlGaAs based two-dimensional electron gas. The basic principle

of the experimental set-up is shown in Fig. 6(a). In this measurement scheme,

a micrometer-sized metallic floating reservoir is connected to the cold electronic

reservoir via an adjustable number n of the ballistic QH edge channels and a phonon

cold bath at temperature T0. The electron temperature of the floating metallic

reservoir is heated to a temperature TM by injecting a known joule heating power

JQ to it. The temperature of the floating reservoir is determined by a heat balance

equation given by;

JQ = Je
Q + Je−ph

Q = 0.5Nκ0(T
2
M − T 2

0 ) + Je−ph
Q (22)

Here, the first and the second terms in this heat balance equation correspond

to the electronic contribution to heat flow via N ballistic edge channel and heat

loss due to electron-phonon coupling from the floating reservoir to the phonon cold

bath. The central result of Jezouin et al. is shown in Fig. 6(b), where αn measured

electronic thermal conductance normalized by 0.5κ0 is plotted as a function of the

n number of the ballistic edge channel. The unit slope of the experimental fit data
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Fig. 7. Schematic of the graphene device with thermal conductance measurement setup. The device
is set in the integer QH regime at filling factor ν = 1, where one chiral edge channel (line with

arrow) propagates along the edge of the sample. The current IS is injected (black line) through the

contact ‘S’, which is absorbed in the floating reservoir (orange contact). The chiral edge channel
(red line) at potential VM and temperature TM leave the floating reservoir and terminates into

two cold grounds (CGs). The blue lines show the cold edges (without current) at temperature

T0. The resulting increase in the electron temperature TM of the floating reservoir is determined
from the measured excess thermal noise at contact T . A resonant (LC) circuit, situated at contact

T , with resonance frequency f0 ≈ 750 kHz, filters the signal, which is amplified by the cascade

of amplification chain (cryogenic (cold) preamplifier placed at 4K plate and a room temperature
amplifier). A ceramic capacitance of 10 nF was introduced between the sample and inductor to

block the DC current along the measurement line. Last, the amplified signal is measured by a

spectrum analyzer. The figure is adapted from Saurabh Kumar Srivastav’s PhD Thesis (2022).
Reprinted with permission from the Indian Institute of Science[17].

corresponds to the theoretically expected quantized limit on the thermal conduc-

tance. Later, a similar measurement was extended to the FQH regime by Banerjee

et al. [86, 84] in the same system. Banerjee et al. [86] demonstrated the universal-

ity of the quantized thermal conductance for the anyonic heat flow. They further

reported the observation of a half-integer of the quantized thermal conductance for

even-denominator FQH state 5/2 [84]. The measured thermal conductance value of

2.5κ0T was interpreted as the particle–hole Pfaffian (PH-Pfaffian) topological order

of 5/2 state. As mentioned above, the experiments by Jezouin et al. and Banerjee

et al. were performed in GaAs/AlGaAs based two-dimensional electron gas.

Although The quantization of the electrical Hall conductance in graphene, a

van der Waals material was reported in 2005 by A. Geim and Philip Kim group

separately[87, 88], the first experiment of quantized thermal conductance in QH

states in graphene was reported in 2019[89]. In this experiment, graphene was

encapsulated between two hexagonal boron nitride substrates and was gated by

either the SiO2/Si gate or the graphite back gate. In addition to having the Hall

probe metallic contacts, a micron-size metallic floating contact was connected in

the middle of the graphene flake via one-dimensional edge contact. It is important
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to emphasize that below the metallic floating reservoir, the graphene region was

entirely etched, and after applying the sufficient magnetic field and the gate volt-

ages, the QH edge channels directly terminate and leave the floating reservoir from

one side of the graphene chamber to the other side. To heat the floating reservoir,

a DC current IS was injected at contact ‘S’ as shown in Fig. 7. This setup helps to

create a hot reservoir at milli-Kelvin temperature. The cold-grounded (CG) metal

contacts, as shown in Fig. 7, serve as a cold reservoir. Now, one has two reservoirs

of different temperatures. To extract the thermal conductance, one needs to know

the thermal current flowing between the two reservoirs via the electronic channel

and the electron temperatures of the reservoir.

4.4. Determination of the thermal current JQ:

The thermal current flowing between the two reservoirs can be easily estimated for

integer and particle-like fractional quantum Hall states, where only downstream

edge mode exists. In this scenario, all dissipated power near the floating contact

is used entirely to heat the metallic floating contact. Hence, the thermal current

flowing between two reservoirs will be exactly the same as the total dissipated power

near the floating contact. A DC current IS injected at the source contact S (Fig. 7)

flows from the source contact S to the floating reservoir along the chiral QH edge

channels.

The outgoing current from the floating reservoir splits into two equal parts, each

propagating along the outgoing chiral edge from the floating reservoir to the cold

grounds. The floating reservoir reaches a new equilibrium potential VM = IS
2νG0

=
VS

2 ( where G0 = e2/h) with the filling factor ν of graphene determined by the

VBG, whereas the potential of the source contact is VS = IS
νG0

. Thus, the power

input to the floating reservoir is Pin = 1
2 (ISVS) =

I2
S

2νG0
, where the pre-factor of 1/2

results because half power dissipates at the back of source contact (7). Similarly,

the outgoing power from the floating reservoir is Pout = 1
2 (2 × IS

2 VM ) =
I2
S

4νG0
.

Thus, the resultant injected power dissipation in the floating reservoir due to joule

heating is JQ = Pin − Pout =
I2
S

4νG0
.

However, the situation may be complicated in hole-conjugate fractional quantum

Hall states like ν = 2/3, which also supports the upstream and downstream modes.

The downstream and upstream modes can have different chemical potentials near

the metallic floating contact and the source contact. Due to the charge tunnelling

between the counter-propagating modes, the edge channel attains the equilibrium

chemical potential for the propagation length larger than the charge equilibration

length (lceq). In this scenario, the total dissipated joule power also remains the

same. Still, some portion is dissipated in the tunnelling regions outside the ohmic

reservoirs, and the rest is dissipated in the floating metallic contact. In this case,

one can not equate the total dissipated power to the thermal current JQ. However,

suppose one assumes that all heat from the charge equilibration region returns to

the nearby ohmic reservoirs. In that case, one can safely use the formula derived for
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the integer and particle-like fractional quantum Hall states. Such an assumption is

justified if the charge equilibration length is much smaller than the reservoir size.

Fortunately, the charge equilibration length in a graphene-based system is expected

to be quite small; hence, we can safely equate the total dissipated power near the

floating contact to the thermal current JQ. Here we would also like to define the

characteristic length scales like charge and thermal equilibration length, which will

be extensively used in this review.

Charge equilibration length (lceq): Charge equilibration length (lceq) is de-

fined as the minimum propagation length required to achieve the complete volt-

age equilibration between the counter-propagating edge modes. In other words, all

counter-propagating edge modes should attain the same electrostatic voltage after

a propagation length of lceq.

Thermal equilibration length (lHeq): Thermal equilibration length (lHeq) is

defined as the minimum propagation length required to achieve the same temper-

ature between the counter-propagating edge modes. In other words, all counter-

propagating edge modes should attain the same temperature profile after a propa-

gation length of lHeq.

4.5. Determination of the electron temperatures TM :

The resulting increase in the electron temperature TM of the floating contact was

determined by measuring the excess thermal noise at contact ‘T’. To avoid the

contribution from the 1/f noise, a resonant L//C tank circuit was used to shift

the operating frequencies close to the 0.7 MHz regimes. The circuit consists of

an inductor made of superconducting NbTi wire, and the capacitance developed

along the coaxial line connecting the sample to the cryogenic amplifier. A ceramic

capacitance of 10 nF was also introduced between the sample and inductor to

block the DC current along the measurement line and isolate the DC voltage at the

cryogenic amplifier gate port from the sample bias voltage. The output voltage from

the cryogenic amplifier was further amplified using a room-temperature voltage

amplifier. After the second amplification stage, the resulting signal was measured

using a spectrum analyzer. The measured excess noise at contact ‘T’ is related to

the electron temperature (TM ) of the floating contact via the relation,

SI = νkB(TM − T0) (23)

where ν is the bulk filling of the QH state. Furthermore, it is worth emphasising the

various conditions that need to be fulfilled to justify the use of noise thermometry

for electron temperature (TM ) determination.

Continuous energy levels: The energy level spacing of the micron size

metallic floating contact must be negligible compared to the other relevant en-

ergy scales. Since, in typical graphene devices, edge contacts are mainly made via

gold, one can easily estimate the energy level spacing. Using the density of states

(DE ≃ 1.14×1047J−1m−3), for the gold and the typical volume of the Ω ≈ 0.5µm3,
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the average energy level spacing becomes ∼ 1/(DE × Ω) ∼ kB × 1.45µK, which is

much smaller than the typical electron temperature 8− 40 mK ranged achieved in

thermal conductance measurement set-up. Hence, for micron-sized floating contact,

one can safely ignore the issues related to the discrete energy levels of the floating

metallic contact in our devices.

Quasi-equilibrated electronic distribution function: The metallic floating

contact will act as a hot reservoir only if it has a well-defined quasi-equilibrated

electronic distribution characterized by temperature TM . For the realization of such

a quasi-equilibrium regime, the hot electrons must dwell in metallic floating con-

tact sufficiently longer than the electron-electron interaction (thermalization) time

scale. The dwell time can be calculated as; tdwell = DEΩh
N [85, 90], where DE is

the electronic density of states per unit volume per unit energy, Ω is the volume

of micron-size floating contact, h is the Planck’s constant and N is the number of

channels leaving the floating contact. In typical graphene devices used for thermal

conductance measurement, the floating contact has a volume Ω ≈ 0.5µm3, mostly

made of gold. Using the typical density of states for gold DE ≃ 1.14×1047J−1m−3,

estimated dwell time was found to be tdwell ≃ 40µs
N , which is much larger than

the typical electron-electron interaction time of the order of 10 ns range for gold

at a temperature down to few milli-kelvin[91]. This firmly establishes the quasi-

equilibrium hypothesis that the electron’s energy distribution in the micron size

ohmic contact is a hot Fermi distribution function characterized by a temperature

TM .

High-quality ohmic contact between the metallic floating reservoir

and graphene channel: As mentioned, since the electron temperature determi-

nation relies on excess thermal noise measurement, other unwanted noise sources

should be avoided. One such factor is that the metallic floating reservoir should

make good quality ohmic contact with graphene to minimise the current reflection,

which otherwise will generate unwanted Shot noise. Thanks to the development

of a high-quality ohmic one-dimensional edge contact technique for graphene, the

minimal reflection coefficient was obtained, which was negligible for all devices used

for the thermal conductance measurements in literature.

5. Universality of quantized heat flow in graphene

5.1. Thermal conductance of Integer quantum Hall states

We will first discuss the results reported for the Integer quantum Hall states in

graphene. Fig. 8(a) shows the quantum Hall response of the device as a function of

back-gate voltage at 9.8 T of the magnetic field at ∼ 40 mK of the bath temperature.

In addition to the signature QH plateau of SLG at 2 e2

h , 6
e2

h , 10
e2

h , QH plateaus at

1 e2

h , 4
e2

h , 5
e2

h , are also visible, which are associated with the degeneracy lifting of

zeroth and first Landau levels of the single layer graphene.

To measure the thermal conductance, the central floating contact was heated
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to a temperature TM due to the Joule dissipation JQ near the floating contact.

The plot of TM against the JQ is shown in Fig. 8(b). To extract the electronic

contribution to the thermal conductance of the QH states, JQ can be plotted

against the T 2
M − T 2

0 and the slope of the linear fit provides the value of the

quantized thermal conductance GQ provided the electron-phonon cooling contri-

bution (Je−ph
Q ) is negligible. Experimentally, It was found that Je−ph

Q is negligi-

ble for the typical device geometry till ∼ TM = 100 mK[89]. However, to com-

pletely rule out any electron-phonon cooling (Je−ph
Q ) contribution, dissipated joule

power between the two QH filling factors was subtracted at constant TM under

the assumption that the Je−ph
Q does not depend on the number of edge channels

leaving the floating contact. The resulting plot between λ = ∆JQ/0.5κ0 (where

∆JQ = JQ(νi, TM ) − JQ(νj , TM ) = 0.5∆Nκ0(T
2
M − T 2

0 ) ) vs T 2
M − T 2

0 is shown

in Fig. 8(c). From the slope of the curve (m), thermal conductance per ballistic

channel was calculated as GQ = (m/∆N)κ0T and found to be ≈ 1κ0T as predicted

theoretically. This plot is the first experimental demonstration of the quantized

heat flow for integer quantum Hall states in graphene since its first mechanical

exfoliation isolation. This experiment also emphasized that the universality of the

quantized heat flow is the same for intrinsic QH states (ν = 2, 6) and symmetry-

broken quantum Hall states (ν = 1) in graphene devices, as expected.

5.2. Thermal conductance of particle-like fractional quantum Hall

states (ν = 4/3)

The four-fold unique spin valley degeneracy of single-layer graphene distinguishes

it from the conventional GaAs/AlGaAs system. In the regime of fractional quan-

tum Hall states, the presence of a large magnetic field can give rise to different

possibilities of the symmetry breaking of the internal four-fold degeneracy, such as

the complete lifting of the spin and valley degeneracy, hence the emergent FQH

states will be either spin or valley polarised. Another possibility includes the de-

generacy lifting of only one flavour, either spin or valley and hence, the emergent

FQH phases preserve the approximate SU(2) symmetry in the remaining flavour

sector. In addition to these two possibilities, there might be a scenario where none

of the spin and valley flavours degeneracy is broken. Consequently, the emergent

FQH phases have mixed spin-valley flavours. The earlier transport experiments and

the local compressibility measurements suggest that while the FQH states with fill-

ing 0 < ν < 1 follow the standard sequence of non-interacting single component

two flux composite fermion model, only the even numerator FQH states emerge

for the filling 1 < ν < 2, suggesting the possibility of two-component composite

fermion model, with an approximately SU(2) symmetric states for the interacting

electrons. This complexity or richness of FQH states in graphene raised concern

over the universality of the quantized heat flow for FQH states in graphene.

The earlier experimental result of the heat flow measurement for the particle-like

FQH state (ν = 4/3)[89] in an hBN encapsulated graphite back-gated single-layer
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Fig. 8. (a) Gate response of SiO2/Si gated hBN encapsulated graphene device at B = 9.8 T. Clear

signature plateaus in conductance (marked with red arrows) at ν = 2, 6, and 10 are observed in

the unit of e2

h
. In addition to these, well-developed broken symmetric plateaus (marked with blue

arrows) at 1 e2

h
, 4 e2

h
, and 5 e2

h
are also visible. (b) The increased temperatures TM of the floating

reservoir are plotted (solid circles) as a function of dissipated power JQ for ν = 1 (N = 2), 2

(n = 4) and 6 (N = 12), respectively, where n = 2ν is the total outgoing channels from the
floating reservoir. (c) The λ = ∆JQ/(0.5κ0) is plotted as a function of T 2

M for ∆N = 2 (between

ν = 1 and 2), and 8 (between ν = 2 and 6), respectively in red and black solid circles, where

∆JQ = JQ(νi, TM ) − JQ(νj , TM ). The solid lines are the linear fittings to extract the thermal
conductance values. Slope of these linear fits are 1.92 and 7.92 for ∆N = 2, and 8, respectively,

which gives the GQ = 0.96κ0T , and 0.99κ0T for single edge mode, respectively.The figure is

adapted from Srivastav et al. (2019) [89]. Reprinted with permission from AAAS

graphene device is shown in Fig. 9. Fig. 9(a) shows the QH plateau of ν = 4/3 FQH

state between the integer plateau of ν = 1 and 2. Fig. 9(b) shows the plot of JQ (solid

circles) as a function of T 2
M − T 2

0 for ν = 1, 4
3 , and 2 over the temperature window

where the curve is linear, implying the dominance of the electronic contribution to

the heat flow. The solid lines in Fig. 9(b) represent the linear fits (in 0.5κ0) and

give the values of 2.04, 4.16 and 4.04, which corresponds to GQ = 1.02, 2.08 and

2.02κ0T for ν = 1, 4
3 , and 2, respectively. Conventionally, ν = 4

3 , is thought of as

1 + 1/3. As a result, one would expect two downstream charge modes, one integer

and one fractional (inner ν = 1
3 with effective charge, e∗ = e

3 ). If the universality

of quantized heat flow is preserved, the thermal conductance of ν = 4
3 should be

the same as ν = 2 having two integer downstream charge modes. This is indeed the

same as shown in Fig. 9(b). For ν = 4/3, GQ was found to be (2.02±0.02)κ0T . This

measurement established the universality of the quantized thermal conductance in

graphene for both integer and fractional QH edges.

6. Non-equilibrated heat transport for hole-conjugate fractional

quantum Hall states

Till now, we have mostly discussed the thermal conductance for the integer and

particle-like FQH states, where only downstream edge modes exist. However, the

situation becomes complex for hole-conjugate FQH states, where the edge struc-

ture is complicated and hosts the downstream and upstream edge modes. One such

paradigmatic FQH phase emerges at ν = 2/3, consisting of counter-propagating

1 (downstream) and 1
3 (upstream) modes [52]. Although the thermal conductance
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Fig. 9. (a) Gate response of SiO2/Si gated hBN encapsulated graphene device at B = 9.8 T. Clear

signature plateaus in conductance (marked with red arrows) at ν = 2, 6, and 10 are observed in

the unit of e2

h
. In addition to these, well-developed broken symmetric plateaus (marked with blue

arrows) at 1 e2

h
, 4 e2

h
, and 5 e2

h
are also visible. (b) JQ (solid circles) is plotted as a function of

T 2
M − T 2

0 for ν = 1, 4/3 and 2 and shown up to TM ∼ 60-70mK. The solid lines are the linear

fit to extract the slopes, which give the thermal conductance values of 1.02, 2.08 and 2.02κ0T

for ν = 1, 4
3
, and 2, respectively. Thermal conductance values are quantized for ν = 1 and 2,

and, more importantly, the values are the same for both ν = 4/3 and 2 plateaus. The inset shows

the corresponding downstream charge modes for integer and fractional edges. The dashed curve
represents the theoretically predicted contribution of heat coulomb blockade for ν = 1, showing

its negligible contribution to the net thermal current. The figure is adapted from Srivastav et al.

(2019) [89]. Reprinted with permission from AAAS

for 2/3 state was measured in widely studied GaAs/AlGaAs structure[86], nothing

was known in the case of graphene for hole-conjugate states. The first experimen-

tal report on the measurement of thermal conductance for hole-conjugate FQH

states (ν = 5/3, 8/3) in bilayer graphene was reported in 2021[92], which shows

a remarkably different result. Fig.10(a) shows the plot of the conductance versus

gate voltage of an hBN encapsulated graphite gated bilayer graphene device at

B = 10 T and a bath temperature of 30 mK in the hole-doping region. In addition

to the integer QH plateaus at ν = 1, 2, and 3, well developed FQH plateau emerges

at ν = 4/3, 5/3, and 8/3. Conventionally, 5/3 and 8/3 states can be considered

1+2/3 and 2+2/3 states, respectively. So, normally, one would expect that edge

the structure of ν = 5/3(8/3) should host one(two) downstream integer modes of

conductance e2/h, one downstream fractional edge mode of conductance 2/3(e2/h)

and one upstream neutral modes, which does not carry any charge but can support

the heat flow. Counting of all these edge modes provides Nd = 2 and Nu = 1 for 5/3

state, and Nd = 3 and Nu = 1 for 8/3 state, respectively. If one naively expects the

full thermal equilibration between these edge modes, GQ for these hole-conjugate

FQH states is expected to be |Nd −Nu|κ0T , which should be 1κ0T and 2κ0T , for

5/3 and 8/3, respectively. Fig.10(b) shows the plot of JQ with T 2
M −T 2

0 for ν = 5/3

(red), 7/3 (black) and 8/3 (blue). The filled circles are the experimental data points
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Fig. 10. (a) Conductance GS is plotted as a function of back gate voltage. The robust fractional

plateaus at ν = 5
3

e2

h
, 7

3
e2

h
, 8

3
e2

h
with weaker plateau ∼ 4

3
e2

h
clearly visible along with the integer

QH plateaus at ν = 1, 2, and 3. (b) JQ (solid circles) as a function of T 2
M − T 2

0 for ν = 5/3 (red),

7/3 (black) and 8/3 (blue). The solid magenta, brown, red and blue lines represent GQ = 1κ0T ,

2κ0T , 3κ0T and 4κ0T , respectively. The linear fits of the solid circles give GQ = 3.03, 2.96 and
4.03κ0T for ν = 5/3, 7/3 and 8/3, respectively. (b) λ = ∆JQ/(0.5κ0) as a function of T 2

M for

∆ν = 5/3−1 (red) and ∆ν = 8/3−2 (black), where ∆JQ = JQ(νi, TM )−JQ(νj , TM ). Solid lines

represent linear fits. Extracted values of GQ of the 2/3-like FQH states are 2.02κ0T and 2.06κ0T
for ∆ν = 5/3 − 1 and ∆ν = 8/3 − 2, respectively. The figure is adapted from Srivastav et al.

(2021) [92]. Reprinted with permission from American Physical Society.

and the solid magenta, brown, red and blue lines represent the theoretical lines of

JQ for GQ = 1κ0T , 2κ0T , 3κ0T and 4κ0T , respectively. As clearly evident from the

plots(See Fig. 10(b)), the measured GQ for ν = 5/3, and 8/3 strikingly matches

with (Nd + Nu)κ0T (3κ0T for 5/3 and 4κ0T for 8/3), rather than the expected

topological quantum number of |Nd − Nu|κ0T = 1κ0T , and 2κ0T , respectively.

Fig. 10(c) shows the plot λ = ∆JQ/(0.5κ0) as a function of T 2
M for two different

configurations of ∆ν = 5
3 − 1 (red) and 8

3 − 2 (black) to extract the contribution

of the partially filled Landau level with ν = 2
3 out of the data for 5

3 and 8
3 . Linear

fits give 2.02κ0T and 2.06κ0T , respectively, for GQ of the ν = 2
3 state. This value

is markedly inconsistent with the values dictated by the topology (0κ0T in long

length limit) and the observation of Banerjee et al. (2017) in GaAs/ AlGaAs sam-

ple, which report the GQ ≈ 0.33κ0T and interpret the equilibrated heat flow of the

counter-propagating edge modes expected for 2/3 state, i.e. GQ = (Nd −Nu)κ0T .

It is important to emphasize that the measured value of the electrical conductance

for 5/3 and 8/3 states in bilayer graphene in this experiment matches very well

with the expected value of the equilibrated value of the electrical conductance. The

theoretical study of this observed phenomenon in bilayer graphene pointed towards

the diverging thermal equilibration length lHeq while charge equilibration length lCeq
remains finite near the disorder fixed point[92]. The same experiment was repeated

for the fractional states observed in the electron doping regime, and the observed

results were the same. This is particularly important because the fractional states

at the same fillings observed in electron and hole doping correspond to a different

set of the orbital index in bilayer graphene. This experiment provides the first ex-

perimental notion of the different charges and the heat equilibration length for the

counter-propagating edge modes in QH phases. A similar result was also reported
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by G. L. Bretona et al. [93] in the first cool-down of their device.

7. Determination of topological edge quantum numbers

Although the measured values of GQ = 3κ0T and 4κ0T for 5/3 and 8/3 states,

respectively, in bilayer graphene by Srivastav et al. (2021) are well explained by the

non-equilibrated values of the heat flow of counter-propagating edge modes for 2/3

edge structure, it does not entirely rule out the possibility of two co-propagating

downstream edge modes of electrical conductance of 1/3 e2/h per edge mode[54].

Measuring the electrical or thermal conductance quantization is essential to de-

termine its edge structure. For example, non-equilibrated and equilibrated charge

transport for 2/3 FQH state with counter-propagating edge modes should corre-

spond to the two terminal electrical conductances of 4/3 e2/h and 2/3 e2/h, respec-

tively. However, experimentally, such a crossover of electrical conductance between

two asymptotic limits was never observed for intrinsic 2/3 bulk filling. This may

correspond to either the charge equilibration length being very short in conven-

tional devices and limiting such crossover or the 2/3 edge structure comprising two

downstream edge modes of electrical conductance 1/3 e2/h each. This dilemma

was answered in the temperature-dependent study of quantized thermal conduc-

tance for 1/3, 2/5, 2/3, and 3/5 FQH states in a single-layer graphene device[94],

which is discussed now. Fig. 11(a) shows the gate response of the extremely clean

hBN encapsulated graphite gated single-layer graphene device at B=10 T. Robust

fractional plateaus at ν = 1
3
e2

h , 2
5
e2

h , 3
5
e2

h , and ∼ 2
3
e2

h clearly visible along with the

integer QH plateau at ν = 1 (black curve). These QH plateaus are accompanied

by the vanishing longitudinal resistance (red curve), establishing the robustness of

the FQH states. The thermal conductance for the fractional states for ν = 1/3

(red), 2/5 (blue), 2/3 (magenta), and 3/5 (black) is plotted as a function of the

bath temperature in Fig. 11(b). As evident from this plot, for ν = 1/3 (red) and

2/5 (blue) (no counter-propagating edge modes) the values GQ (1κ0T and 2κ0T ,

respectively) remain independent of the bath temperature. On the other hand, hole-

conjugate states showed surprising results. GQ for 2/3 and 3/5 (hole-like states with

CP modes) was found to be 2κ0T and 3κ0T respectively, at 20 mK of bath temper-

ature and match well with non-equilibrated regimes (Nd + Nu)κ0T . Surprisingly,

as the temperature increases, GQ starts decreasing, eventually taking the value of

the equilibrated regime (Nd − Nu)κ0T . In contrast to these hole-like fillings, GQ

at 1/3 and 2/5 fillings (without CP modes) remains robustly quantized at Ndκ0T

independent of temperature.

These results can be understood from the expected edge structures and their

corresponding thermal conductance values for the studied FQH states in Fig. 11(c).

For the electron-like 1/3 and 2/5 states, there are only downstream modes with

Nd = 1 and 2, respectively, and thus, the expected GQ should be 1κ0T and 2κ0T ,

respectively, and should remain independent of the temperature. This is seen in the

experiment as evident from Fig. 11(b). This behaviour is analogous to integer QH
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Fig. 11. (a) QH response of the device. Robust fractional plateaus at ν = 1
3

e2

h
, 2

5
e2

h
, 3
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h
, and

∼ 2
3

e2

h
clearly visible along with the integer QH plateau at ν = 1 (black curve). The vanishing

longitudinal resistance (red curve) accompanies the QH plateaus at these fillings. (b)Thermal

conductance GQ, plotted as a function of the bath temperature for ν = 1/3 (red), 2/5 (blue),
3/5 (black), and 2/3 (magenta). The horizontal dashed lines correspond to quantized GQ values.

The solid curves (black and magenta) are theoretical fits of the data to extract out temperature

scaling exponents of thermal equilibration length. (c) Edge structures of the studied FQH states.
Solid black and dashed red arrows represent downstream and upstream modes, respectively. The

two right-most columns show expected values of the thermal conductance GQ (in units of κ0T ) in

the two limiting regimes of the heat transport. The figure is adapted from Srivastav et al. (2022)
[94]. Reprinted with permission from Springer Nature.

states, where all edge modes propagate downstream. In contrast, for the hole-like

3/5 state, the temperature dependence crossover of GQ from one quantum value to

another rules out the possibility of having only downstream modes. Furthermore,

the measured values of 3κ0T and 1κ0T , respectively, perfectly match with the non-

equilibrated ((Nd +Nu)κ0T ) and equilibrated (|Nd −Nu|κ0T ) regimes of GQ with

Nd = 1 and Nu = 2. Similarly, for 2/3, experimental observation rules out the

theoretical model with only downstream modes and supports the crossover from

the non-equilibrated regime of GQ to the equilibrated regime with Nd = Nu = 1.

The equilibrated transport in this situation is diffusive, so GQ is expected to tend to

zero relatively slowly (as ∼ 1/L) in the long-length limit. Since the device channel

length L used in experiment[94] is limited to ∼ 5 µm, it is presumably the reason

for a finite value of ∼ 0.5κ0T at Tbath ∼ 60 mK. Thus, measuring the quantized

values of GQ in two regimes determines the exact edge quantum number and, hence,

the topological order of the FQH states. Such a systematic crossover study of GQ

between its asymptotic regime of heat equilibration opens a new route for finding

the topological order of exotic even-denominator FQH states, like 5/2, 3/2, and

so on. Recently, G. L. Bretona et al. [93] also reported a transition from a non-

equilibrated heat regime to an equilibrated heat regime of GQ for 8/3 states in a

graphene device. This crossover was achieved in a different cooldown of the same

sample.

7.1. Absence of edge reconstruction

In quantum Hall physics, the issue of edge reconstruction may raise concerns over

the validity of the bulk-edge correspondence principle. Specifically, it has been pro-
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posed that edge reconstruction might occur in various QH states[95, 96]. Here, it

should be emphasized that the experimental crossover of thermal conductance for

hole-conjugate FQH states in two regimes and the temperature independence of

thermal conductance for particle-like FQH states also suggest the absence of edge

reconstruction in graphene devices. For example, for the ν = 1/3 state, the edge re-

construction would increase the total number of modes from 1 to 3. This would lead

to a crossover from GQ = 3κ0T at lower temperatures (non-equilibrated regime)

to GQ = 1κ0T at higher temperatures (equilibrated regime), which is very differ-

ent from what was observed (GQ = 1κ0T at all temperatures). Similarly, for the

ν = 2/3 state, edge reconstruction would increase the number of modes from 2 to

4. This would mean that, at low temperatures (the non-equilibrated regime), the

thermal conductance value will be GQ = 4κ0T . By the same token, for the ν = 3/5

edge (proposed to have 3 edge channels), non-equilibrated heat transport would give

rise to GQ = 5κ0T . No traces of these values were observed in our measurements.

These results strongly suggest the absence of edge reconstruction in the measured

graphene devices.

8. Conclusions

The quantized thermal conductance measurement is a very powerful technique for

determining the topological order of the complex fractional QH phases. The experi-

mental verification of the universality of quantized thermal conductance in graphene

is an exciting development. The results covered in this review are a remarkable

manifestation of an interplay of equilibration and topology in FQH transport. The

charge transport in QH in graphene is always in the equilibrated regime in the

existing devices to date, the heat transport shows a crossover between the non-

equilibrated to the equilibrated heat transport regime. Both asymptotic limits of

the thermal equilibration are encoded by topologically quantized heat conductances

determined by the topological edge quantum numbers. The experimental reports

discussed in this review should also be relevant to other FQH states realized in differ-

ent host materials. Particularly, the temperature dependence crossover of quantized

thermal conductance in two asymptotic regimes of the thermal equilibration can be

used to settle the debate on the ground state of non-Abelian ν = 5/2 FQH states.

Till now, the interpretation of the measured thermal conductance 5
2κ0T at ν = 5/2

is based on the assumptions about the presence, absence, or partial character of

thermal equilibration [97, 98, 99, 100]. In particular, the technique discussed in this

review can also probe the thermal conductance of various quantum anomalous Hall

phases observed recently in twisted bilayer graphene and twisted MoTe2 systems.
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