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Abstract

We introduce time-varying extremum graph (TVEG), a topological structure to support visualization and analysis of a time-
varying scalar field. The extremum graph is a substructure of the Morse-Smale complex. It captures the adjacency relationship
between cells in the Morse decomposition of a scalar field. We define the TVEG as a time-varying extension of the extremum
graph and demonstrate how it captures salient feature tracks within a dynamic scalar field. We formulate the construction of
the TVEG as an optimization problem and describe an algorithm for computing the graph. We also demonstrate the capabilities
of TVEG towards identification and exploration of topological events such as deletion, generation, split, and merge within a
dynamic scalar field via comprehensive case studies including a viscous fingers and a 3D von Kdrmdn vortex street dataset.

CCS Concepts

* Human-centered computing — Visualization techniques; Scientific visualization;

1. Introduction

The study and development of effective methods for analysis and
visualization of time-varying scalar fields continues to be a chal-
lenging problem due to the geometric complexity of the data. The
study of many scientific processes naturally requires the computa-
tion or measurement of scalar fields and their time-varying coun-
terparts. A comprehensive analysis of a time-varying field benefits
from a global view as compared to independent analysis of the indi-
vidual time steps. An animation helps the user gain a cursory under-
standing but a feature-directed approach towards visualization and
analysis of the field is required for a comprehensive understand-
ing. Efficient representation of features in the data and methods for
tracking their evolution are crucial ingredients of such an approach.
Data is continuously increasing in size and becoming feature rich,
necessitating methods for succinct and abstract representations of
the features and their evolution. Topological structures like the per-
sistence diagram, Reeb graph, contour tree, and Morse-Smale (MS)
complex were developed to address this challenge.

Some of these topological structures have also been extended to
time-varying fields [CSEMO06, EHM™*08, OHW*15]. Such a time-
varying structure may be used for identifying and tracking the tem-
poral evolution of the features and to analyze events such as cre-
ation and deletion, split and merge. Existing time-varying struc-
tures based on persistence diagrams and Reeb graphs need to be
explicitly augmented in order to incorporate the geometric context.
The MS complex includes such geometric context but they addi-
tionally represent a significantly large number of higher dimen-
sional cells. Further, they are not stable in the presence of noise
— small variations in the input scalar field may result in significant
changes in the complex because of their dependence on the gra-
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dient field. The extremum graph serves as a via media, because it
captures the geometric context while the structure is small in size
as it does not contain the higher dimensional cells unlike the MS
complex. Figure 1 shows a 2D scalar field whose topological fea-
tures are represented by its critical points (maxima and minima).
The extremum graph 1(e) represents the peaks and the adjacency
relationship between the regions associated with them.

In this paper, we present the time-varying extremum graph
(TVEG), an extension of extremum graph that facilitates visual anal-
ysis of time-varying scalar fields. TVEG captures temporal events
like creation/destruction, merge/split of topological features that
are represented within the extremum graph at individual time steps.
Figure 2 shows a 2D time-varying scalar field and its associated ex-
tremum graph at each time step. The temporal arcs of the TVEG cor-
respond to split, merge, and continuation of a collection of topolog-
ical features. A monotonic path of temporal arcs is called a TVEG
track. The extremum graphs endow the TVEG tracks with a rich ge-
ometric context that supports the study of the track neighborhood
and the analysis of topological features within the neighborhood.

1.1. Related work

Extremum graphs. The extremum graph was introduced by Cor-
rea et al [CLB11] as an intermediate step in the construction of
topological spines, an augmented visual representations of topo-
logical features on the plane. It plays a central role in the design
of methods for comparative analysis, has been applied to detect
periodicity and to track features in time-varying data [NTN15], for
symmetry detection [TN13], and towards analysis and visualization
of high dimensional functions [LWM*19].
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(a) Scalar field f

(b) Critical points

(c) MS complex

i

(e) Extremum graph

(d) MS complex, simplified

(f) Extremum graph, simplified

Figure 1: Extremum graph of a 2D scalar field. (a) Scalar field f
defined on a 2D domain, shown using both a color map and sur-
face height. (b) Critical points of f: maxima (red), saddles (green),
and minima (blue). (c),(d) MS complex and simplified MS complex
obtained by canceling critical point pairs including p and its adja-
cent saddle. The MS complex segments the domain into monotonic
regions. (e),(f) Extremum graph, original and simplified, of f em-
bedded within the domain represents the peaks and adjacency re-
lationship between their corresponding segments. We consistently
use the (me= =) color map for the scalar field.

Tracking based on topology of isosurfaces. Many methods use
isosurfaces as representatives for features of interest and track
them. Shamir et al. [SBS02] describe a method to progressively
track isosurfaces in time-varying scalar fields by combining spatial
and temporal propagation followed by a step for tracking changes
in topology. Sohn and Bajaj [SBO5] address the problem of find-
ing correspondences between isosurfaces at a fixed isovalue across
time. They do so by defining spatial overlaps between sublevel and
superlevel sets and constructing a topology change graph (TCG).
Both papers [SBS02, SB05] showcase the utility of the proposed
method by tracking vortices in turbulent vortex data. More details
regarding isosurface topology based tracking can be found in the
comprehensive survey by Mascarenhas and Snoeyink [MS09].

Tracking based on topological structures. Various methods have
been proposed in the literature to track features captured by topo-
logical structures. Laney et al. [LBM™*06] use the MS complex
to define and represent bubbles in the mixing envelope of hy-
drodynamic instabilities and track them over time. Bremer et
al. [BWP*10] use the Morse complex to define features, followed
by a hierarchical representation and construction of tracking graphs
to track the evolution of combustion in lean premixed hydrogen
flames. Bremer et al. [BWT™11] facilitate exploration and anal-

ysis of burning cells from turbulent combustion simulation. We-
ber et al. [WBD*11] track burning regions by extracting isovol-
umes in a 4D space-time temperature field, followed by construc-
tion of Reeb graphs of time defined on the 4D domain. They con-
vert a 4D tracking problem into the computation of the Reeb graph.
Widanagamaachchi et al. [WCPB12] use correspondences between
branches of merge trees followed by progressive construction of
tracking graphs to track features in combustion simulations. In sub-
sequent work [WCK*15], they present methods to handle temporal
artifacts, perform temporal simplification, and track embedded fea-
tures via a parameter independent approach and apply it to track
extinction holes in turbulent combustion simulations. Saikia and
Weinkauf [SW17] use merge trees to represent multi-scale fea-
tures and use a global shortest path formulation together with dy-
namic time warping to identify similar spatio-temporal structures.
Lukasczyk et al. [LWM™*17, LGW*19] use a nesting tree, a vari-
ant of the merge tree, to capture hierarchical features and track
them in dynamic nested tracking graphs. Soler et al. [SPCT18]
use lifted Wasserstein matcher to find temporal correspondences
between critical points and track features. Many other works pro-
pose different forms of tracking graphs to support the study of
evolving topological features [KW18,SHD* 18, SHC* 19, MSN24].
Tracking features in vector fields is also an active area of re-
search [TWSHO02, TS03, GTS04, RKWHI11].

Time-varying topological structures. Many time-varying coun-
terparts of topological structures have been proposed to facilitate
analysis of feature rich data. Cohen-Steiner et al. [CSEMO06] de-
scribe an algorithm to update persistence diagrams and use it to
study protein folding trajectories. Edelsbrunner et al. [EHM™*08]
apply Jacobi curves [EHO04] to track the temporal evolution of Reeb
graphs by describing a complete characterization of the combina-
torial changes that occur in the Reeb graph of a time-varying scalar
field. Oesterling et al. [OHW*15] introduced time-varying merge
trees, which provides a topological summary of time-varying scalar
fields, and showcase its utility with an application to analysis of
time-varying high dimensional point clouds. Wang et al. [WRS*13]
describe methods to robustly track critical points in 2D time-
varying vector fields. They introduce two notions of robustness,
static and dynamic, to understand temporal stability of critical
points and provide tools to visualize them.

The above-mentioned methods and topological structures are
based on isosurfaces, critical points, persistence diagrams, and vari-
ants of Reeb graphs (namely, Reeb graphs, merge trees, and con-
tour trees). Following Yan et al. [YMS*21], they may be catego-
rized as diagram based or graph based structures. The diagram and
graph based structures do not consider geometry, which is crucial
in many applications, in contrast to complex based structures such
as the MS complex or the extremum graph. The extremum graph
captures the spatial connections between a maximum and all sad-
dles in the neighborhood, has a natural embedding in the domain,
and can be computed efficiently. Correa et al. [CLB11] demonstrate
via examples, the additional geometric structure that is captured in
the extremum graph as compared to the contour tree. There are
no time-varying extensions for complex based structures for scalar
fields [YMS*21]. Previous work on vector field topology have con-
sidered the time-varying scenario and tracked critical points along
with saddle connections [TWHSO04]. This paper attempts to take a
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(a) Time-varying field with extremum graphs

(b) Temporal arcs of TVEG

Figure 2: TVEG of a 2D time-varying scalar field. (a) Three time
steps fi1, f2, f3 of a time-varying scalar field together with the re-
spective extremum graphs GI,GZ,G3 embedded in the domain.
Each peak is associated with a unique segment. Maxima are shown
in red, saddles in green. (b) A subset of the temporal arcs of the
TVEG. Green arcs correspond to a feature in G! that splits into two
in G* and continues in G>. The orange arcs correspond to two fea-
tures in G that continue onto G* but merge in G>. The gray arcs
correspond to a continuation of a feature from G' onto G*. The
remaining (gray) arcs that correspond to continuation of features
and the saddle critical points are not shown for clarity.

step towards filling the gap in the context of scalar fields by intro-
ducing a time-varying structure based on extremum graphs.

1.2. Contributions

We introduce the time-varying extremum graph (TVEG), a topo-
logical structure for representing the combinatorial structure of
the Morse decomposition of a scalar field and its evolution over
time. We discuss its applications to feature exploration and track-
ing. While tracking is an important application, TVEG is not limited
to tracking. It is a data structure that stores a dynamic graph with
potential for enabling various applications and supporting a wide
variety of queries. Key contributions of this paper include

e A definition of a novel topological structure, the time-varying
extremum graph (TVEG).

e An algorithm for constructing the TVEG based on a formulation
as an optimization problem.

e Application to the study of interesting features and topological
events in synthetic and simulation datasets that demonstrate the
utility of the topological structure.

2. Background

In this section, we introduce the relevant background on Morse
functions and MS complex that will be required to define the time-
varying extremum graph and to describe methods for computing
the graph.
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2.1. Morse-Smale complex

A Morse-Smale (MS) complex is a data structure that represents
topological features in a scalar field by segmenting it into regions
of uniform gradient flow, see Figure 1(c). Formally, given a func-
tion f: M — R defined on an n-dimensional manifold M repre-
senting the scalar field, a critical point of f is a point where the
gradient becomes zero, V f = 0. Other points of the domain are
called regular. Consider a maximal curve &(r) parameterized by r
that satisfies %&(r) =V f(&(r)) at each point on &. Such a curve on
M passes through regular points and is called an integral line. The
limit points of an integral line are exactly the critical points of f.
The collection of all integral lines that begin at a critical point p is
referred to as the ascending manifold of p. Similarly, the collection
of all integral lines that terminate at a critical point p is referred
to as the descending manifold of p. A function f is called a Morse
function if all its critical points are non-degenerate, i.e., the Hessian
matrix comprising the second order partial derivatives is nonsingu-
lar. The critical points of a Morse function f are classified based
on their Morse index, which counts the number of negative eigen-
values of the Hessian (i.e., the number of independent directions
along which the function f decreases). The index of a minimum is
0 and index of a maximum is n. Other critical points are referred to
as k-saddles, where 1 < k <n—1 is the Morse index.

The ascending manifold of an index-k critical point has dimen-
sion n — k whereas its descending manifold has dimension k. The
collection of ascending manifolds partition the domain of f into
valley-like regions. Similarly, the collection of descending mani-
folds partition the domain of f into mountain-like regions. These
partitions are called the Morse decomposition. The overlay of the
ascending and descending manifolds results in a partition of the
domain of f into a collection of monotonic regions. Each segment
in the overlay is defined as a collection of integral lines that share
a common origin and destination. For example, in Figure 1(c), the
collection of integral lines that begin at a minimum and terminate at
a maximum constitutes a 2-dimensional cell. The MS complex rep-
resents the combinatorial structure of the overlay. A k-dimensional
cell of the complex represents a monotonic region of the overlay.
The MS complex of a 2-dimensional Morse function consists of 0-,
1-, and 2-cells. We refer to the O-cells as nodes and 1-cells as arcs.

The MS complex provides a comprehensive description of the
topology of a scalar field and hence used for several applications.
However, the complexes are large and often not amenable to direct
visualization and interactive exploration, even for medium sized
data. Noise in the data manifests as spurious saddle points and an
exponential increase in number of cells of the complex, causing
further impediment to the generation of meaningful visualizations.

2.2. Topological simplification

Topological noise can be removed by simplifying the MS com-
plex using a sequence of critical point pair cancellation opera-
tions [EHZ03]. The cancellation operations are scheduled based on
the notion of persistence [ELZ02]. Topological persistence quanti-
fies the relative importance of a pair of critical points that are con-
nected by an arc in the MS complex in terms of the absolute differ-
ence between their function values. The MS complex is simplified
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by repeatedly canceling critical point pairs based on the increas-
ing order of their persistence. A cancellation operation removes
the two critical points, the arc connecting them, arcs incident on
the two critical points, and reconnects the surviving critical points
in the neighborhood [EHZ03, GNP*06, SPN*15, PBMS*22]. The
MS complex in Figure 1(c) is simplified by canceling a maximum-
saddle pair, resulting in the MS complex in Figure 1(d). The sim-
plification removes the peak p and merges its associated segment
with the adjacent segments.

2.3. Extremum graph

As observed by Correa et al. [CLB11], interesting and meaning-
ful topological structures within a scalar field are often associated
with extrema. This observation serves as a motivation to introduce a
topological abstraction called the extremum graph. The extremum
graph is a substructure of MS complex that captures the connec-
tivity between maxima and saddles (maximum graph) or between
minima and saddles (minimum graph). In this paper, we focus on
the maximum graph while referring to it as the extremum graph
to simplify terminology. The node set V of an extremum graph
G(V,E) consists of the maxima and n — 1-saddles of f. The set E
consists of arcs (m;, s ;) between maxima and . — 1-saddles. If a pair
of maxima my,my € V are adjacent to a common saddle s, namely
both (my,s;) and (my,s1) belong to E, then the segments associ-
ated to m; and my are adjacent to each other. The extremum graph
may be simplified by simplifying the corresponding MS complex.
Figure 1(e) shows the extremum graph of a 2D scalar field and
Figure 1(f) shows the simplified extremum graph obtained by can-
celing a maximum-saddle pair.

3. TVEG: definition and construction

We describe a design of TVEG for representing the temporal dy-
namics of a time-varying scalar field 7. The design aims to capture
the temporal dynamics of both individual topological features and
of a cluster of features that lie within a spatial neighborhood. We
require that temporal slices of the TVEG at all sampled time steps of
F result in an extremum graph. The node set of the TVEG consists
of maxima and (n — 1)-saddles of F at every time step. An arc in
the TVEG either belongs to an extremum graph of F restricted to
a given time step or is a temporal arc that connects nodes between
two consecutive time steps.

Let G'(V',E") denote the extremum graph of F at a given time
stept, 1 <t < T.The TVEG G*(V*,E*) is a graph that contains
all G' as subgraphs in addition to arcs between nodes from con-
secutive time steps. Thus, the node set V* can be expressed as
v =UL, v = {UL,M", UL, $'}. We further distinguish be-
tween the maxima and (n — 1)-saddles of V7, and collect them into
sets M' and §', respectively. The arc set E* can be expressed as
E* = {UL, E",U," A"}, consisting of two types of arcs namely
the extremum graph arcs E’ and the temporal arcs A’. An arc in
E' connects a maximum and a (n — 1)-saddle. A temporal arc in
A" represents the correspondence between two maxima that lie in
extremum graphs of two consecutive time steps. In other words, an
element e = (m?,mtjﬂ) € A’ represents a correspondence between

maxima m} € M' and mtjJrl eM ™ Asa design consideration, for

Figure 3: TVEG nodes and arcs. A subset of a TVEG between two
time steps t and t + 1. Sets {m,...,m5} and {s},sh} consists of
maxima and (n— 1)-saddles from the extremum graph at time step t.
Sets {m’lﬂ,ml;l,mg“} and {sﬁ“,s’zﬂ} are maxima and saddles
of the extremum graph at time step t + 1. Arcs of the extremum
graph are shown in blue, temporal arcs as green dashed edges,
and connections to nodes outside the figure are shown as black
dashed edges. Maxima m, and mt3 do not have a suitable temporal

correspondence and hence die at time step t whereas m’z'H is born.

Maxima my and m§ merge into mgﬂ.

each maximum m} € M' we allow at most two temporal correspon-
dences with maxima in time step # + 1 with the goal of allowing the
representation of split events. The selection of the temporal arcs is
formally described in Section 3.1.

Figure 3 shows a subgraph of a TVEG consisting of temporal
arcs between time steps ¢ and ¢ + 1. Note that A’ does not include
temporal arcs between saddles. Maxima exhibit relatively higher
stability over time in terms of spatial movement when compared to
saddles. So, we chose to restrict temporal correspondence to those
between maxima. The arcs set A’ of G* can be effectively used
to represent the temporal variation in F together with topological
events such as split, merge, generation, and deletion of features. In a
given time step #, critical points that have no correspondences with
critical points in time steps # — 1 and 7+ 1 constitute generation and
deletion events, respectively. A critical point from time step ¢ that
has multiple correspondences with critical points in time step t — 1
or ¢ + 1 constitutes a merge or split event, respectively.

Figure 2 illustrates how the TVEG captures the different events in
a 2D time-varying scalar field. Arcs in E’ (light-gray) connect max-
ima with saddles within a time step. Arcs in A’ (green, orange, gray)
highlight temporal arcs that capture different topological events.

3.1. Temporal correspondence

A temporal arc represents the correspondence between a pair of
maxima from two consecutive time steps. We now elaborate upon
an optimization criterion that determines the temporal arcs.

We define the temporal arc set A’ as the maximum cardinality set
of arcs between maxima iz} in time step ¢ and their correspondences
in time step 7+ 1 that satisfy some constraints, see Equation 1.
Equation 2 describes correspondences between a maximum ) and
two maxima, mtT Uand mtj;rl, from time step ¢ + 1. The scores asso-
ciated with the two correspondences are expressed as the smallest
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and second smallest value of an objective function over all maxima
m'T1 e M1 subject to structural constraints listed in Equation 3.
The objective function for the scores consists of four components —
functional persistence of the maxima P, function value at maxima
J, spatial separation between the maxima D, and neighborhood
N of the maxima within the respective extremum graphs G’ and
G'*!. The structural constraints disallow ‘z’-shaped configurations,
thereby ensuring that no arc participates simultaneously in both a
merge and split event.

max |A|, where

+1 +1
A'C U Ll (i Y M
m‘EM’
mi = argmin  (P(mf,m) + T (mb,m )+
m’frlEM’“

Db, m ) + N (il m))

@3]
m’;'1 = argmin (73(mf,mtj'H ) +\7(m§,m;+l)+
mrl eM'+1 \m";lr]
Dom, )+ N ()
subject to the constraint that
3)

(m, t+1)§ZAl and (m, ’+1)§ZA’ for all mj, € M" \ m]

As a maximum cardinality set, A’ includes all temporal arcs de-
fined in Equations 1 and 2 that satisfy the constraint in Equation 3.
We allow for two correspondences between nz; and maxima in time
step £ + 1, thereby supporting the representation of split events. Due
to this design consideration, m} will be incident on at most two
edges from A’. The framework is designed to support larger num-
ber of correspondences per maximum if desired. However, a larger
number of correspondences results in increased complexity of the
resulting TVEG tracks, which may be difficult to analyze and cause
visual clutter. The extremum graphs restricted to each time step
are an important component of TVEG. These extremum graphs are
simplified prior to TVEG construction, which removes critical point
pairs that are functionally similar and hence reduces the number of
potential correspondences.

The persistence component P (i, mth) of the objective func-

tion is equal to the absolute difference between the topological per-
sistence of mj and m';" ! The functional component 7 (!, m;'H )=
|f(mb) — f(m| I*1)| measures the absolute difference between func-
tion values at the maxima. The distance component D (i}, m’jﬂ) is
equal to the Euclidean distance between the maxima. The neighbor-
hood component A/ (nz}, ’“) = In(m}) —n(m ’J“)| where 1 (m)
for a maximum m is deﬁned as M(m) = Lien(m) | f(m) — f(@)] i.e.,
the sum of absolute difference of function values between the max-
imum m and all saddles in its neighborhood N(m). While the first
three components depend exclusively on the maxima and the topo-
logical feature that they represent, the component A captures the
differences between the local connectivity of the maxima in con-
secutive steps. Hence, this component is crucially dependent on the
extremum graph. Topological persistence is a good stable measure
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of the topological feature represented by a maximum-saddle pair,
and hence included in the objective function. The functional and
spatial components are local properties of the maxima that incor-
porates finer grained analysis of similarity and correspondence be-
tween consecutive time steps. Finally, the fourth component helps
capture topological similarity in terms of the neighborhood of the
maxima within the respective extremum graphs.

In order to reduce the effect of noise on the score, low persis-
tent maxima are canceled in a first step based on a user speci-
fied persistence threshold and the objective function is computed
post-simplification [ELZ02, EHZ03]. Critical point pair cancella-
tions are performed independently within the two time steps.

Algorithm 1: TEMPORALARCS

Input : A set of extremum graphs [G”,... G|
Output: Temporal arc set A™
Topological event sets £™*, £, £%* and £8*

1 Initialization: A «— @; A" + &: M « o, M! « o

/+ Initialize M° as maxima set of GP x/
2 MO MP
/* Initialize all topological event sets x/

3 {Sm*78s*’5d*7gg*} - g

4 fori<— p+1tordo

/+ Initialize M' as maxima set of G */
s | MM

6 | S+« ComMPUTESCORES(M®,M")

7 S « FILTERSCORES(S)

/+ Compute the temporal arc set A’ */
8 foreach (m°,m',s) € S do
9 ‘ Al AU (m® mb)
10 end

/+ Detect topological events */

11 E™ < DETECTMERGE(S, i)
12 &’ «+ DETECTSPLIT(S, i)

3 | &« DETECTDEL(S,M",)
4 | &%« DETECTGEN(S,M' i)

/* Remove z-shape configurations. */
15 W<+ EMNE*
16 repeat
17 w <~ MAXSCOREEDGE(W)
18 Al A"\ w
19 EM,E¥ + UPDATEMERGESPLITEDGES (£, % w)
20 W< EMNES
21 until W =0

/* Populate temporal arc set x/
2 A — A UA

/+ Update topological event sets x/

23 gm* — gm* Ug"‘l

2 EF % UES

25 g gt ygd

26 E8* — E8TUES

/* Re-initialize for next iteration */
27 Al — o, MO — M!

28 end
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Table 1: List of different attributes of the critical points.

Fields | Description
id | A unique id assigned to the critical point
index | Index
X% | Coordinates
pers | Topological persistence
N | Neighborhood contribution
ascmfold | Ascending manifold
dscmfold | Descending manifold
geom | Ascending / Descending manifold geometry
t | The time stamp of the scalar field

3.2. Computation

We compute TVEG in two steps. The first step constructs the ex-
tremum graphs for all the time steps of the time-varying scalar field
F by either employing the approach of Correa et al. [CLB11] or
computing the MS complex [SN12,DFRS14,BGL* 18] and extract-
ing the substructure. The topology toolkit (TTK) [TFL*17] also
provides an implementation of the algorithm to compute MS com-
plex and its substructures based on a discrete Morse theoretic ap-
proach [SN12]. In either case, the graph is simplified using a per-
sistence threshold 0 to remove noise. Corresponding to each node
of the extremum graph, we store a tuple that contains attributes re-
lated to the critical point (see Table 1). An arc connecting a pair of
critical points v',v? is stored in E as (v'.id,v?.id).

The second step computes the correspondences between max-
ima from consecutive time steps. We now describe the algorithm
TEMPORALARCS (Algorithm 2) that computes and records tem-
poral arcs of the TVEG for all pairs of consecutive time steps over a
given range 1 < p < r < T. Apart from computing temporal arcs,
it also detects and records topological events across all time steps
such as merge, split, deletion, and generation in the sets £™*, £,
E% and £%*, respectively. TEMPORALARCS begins by initializing
the set A’ that stores all temporal arcs, sets M° and M that store
the collection of maxima in the two time steps, and sets for record-
ing topological events. Iterating over pairs of consecutive time steps
(lines 4-28), the algorithm computes the correspondence scores for
all maxima using COMPUTESCORES (Algorithm 2). The scores
are recorded in S, and further refined using FILTERSCORES (Al-
gorithm 3) based on a threshold derived from the variance of the
scores. The score computation and refinement is described later in
this section. After refinement, S records the set of correspondences
and scores and set A’ is updated with the temporal arcs.

Next, all topological events between time steps ¢ and ¢ + 1 are
recorded in sets £”,°, €%, and £ (lines 11-14). £™,£%,£%, and
&8 correspond to merge, split, deletion and generation sets respec-
tively. Algorithms 5-8 in the supplementary material compute these
sets. We then resolve any co-occurrences of merge and split or ‘z’-
shaped configurations between two time steps (lines 15-21). These
co-occurrences are recognized as a subset of the intersection of ™
and £°. This subset is computed using a greedy approach that itera-
tively removes the largest score edge in a *z’-configuration from A’.
Finally, the set A™* containing temporal correspondences over all
iterations, the sets containing topological events per iteration, and

the global containers for arcs and events are updated (lines 22-26).
We refer the reader to the supplementary material for the descrip-
tions of the individual subroutines. TEMPORALARCS computes the
global temporal arc set of a TVEG in quadratic time O(nz), where
n=max |M'|,p <t < r, the largest cardinality of the maxima sets
over all time steps in the given input time range [p, r].

Score computation. The subroutine COMPUTESCORES (Algo-
rithm 2) uses Equation 2 to compute correspondence scores be-
tween two sets of maxima M° and M'. For each maximum m° €
MP, it iterates exhaustively over all maxima in M ) computes the
objective function from Equation 2 using the attributes (pers, X,
F (%), M), and records them. The distance component is computed
as the Euclidean distance between pair of maxima. The neighbor-
hood component is computed by considering the local neighbor-
hood contribution M of the maxima. The two lowest scores are
identified for m” and finally the output S containing the correspon-
dences and their scores is returned as a set of tuples (mo,m1 ,s) of
length three. In practice, to ensure that the addition of the four com-
ponents in Equation 2 is meaningful, we normalize them so that the
values lie within [0, 1].

Score refinement. The set of scores returned by CoOM-
PUTESCORES (Algorithm 2) need to be further refined to assess
whether a particular correspondence is meaningful and should be
retained within S. The refinement may lead to topological events
such as deletion and generation. FILTERSCORES (Algorithm 3)
processes the input set S and refines the set based on a threshold.
The procedure records all scores in a list )/, computes the mean(u)
and the standard deviation(c) of scores, and sets the threshold
to u+ o. Finally, all tuples corresponding to scores greater than or
equal to T are removed from S.

Optimal temporal arcs. The TVEG computation is not set up as
a global optimization problem. Instead, TVEG computation pro-
gresses by focusing on a pair of consecutive time steps within a
single iteration (Lines 4-27 of TEMPORALARCS). This focus im-
plies that the identification of temporal arcs within a single iteration
is not affected by and does not affect arcs computed between other
pairs of time steps. Furthermore, the algorithm can be time efficient
and scalable for datasets of larger sizes and complexity. Algorithm
TEMPORALARCS is an exact implementation of the optimization
criteria from Equations 1- 3 and computes an optimal set of arcs.

3.3. TVEG supported queries

The TVEG serves as a data structure that can support various visual-
ization and data related queries. These queries can be broadly clas-
sified as temporal or spatiotemporal in nature. For instance, a typ-
ical temporal query can help identify TVEG tracks that are longer
than a certain specified threshold. Topological events, specifically
splits, merges, deletions, and generations can be quickly identified
from simple temporal queries on TVEG tracks. One spatiotempo-
ral query helps identify the TVEG tracks that have the least spatial
deviation along time. These simple queries can help identify max-
ima that exhibit stable behavior along the TVEG tracks and provide
meaningful insights about their role in the temporal behavior of
data. Additional queries include selection of tracks and the asso-
ciated extremum graph neighborhood lying within a user specified
spatial neighborhood or time interval.

© 2024 The Author(s)
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Topological events and how they affect the combinatorial struc-
ture of the extremum graph can help explain global changes within
the data. Using spatiotemporal queries, one can observe structural
changes within the extremum graph as it evolves over time. Fur-
ther, identifying similar TVEG tracks based on topological or geo-
metric criteria followed by a clustering procedure helps study data
dynamics. Observing groups of similar TVEG tracks together with
the extremum graphs helps identify and understand the correlation,
if any, between the temporal changes in structure within extremum
graph neighborhoods and the global variations in data dynamics.
This may be followed by a focused study of the temporal behavior
of a particular neighborhood within the extremum graphs. Complex
queries can be formed as a combination of the queries mentioned
above, and hence support fine grained analysis of the data.

3.4. TVEG visualization

The visualization of the TVEG tracks consists of an overview via a
representation of space-time and, optionally, direct embedding of
extremum graphs in space for individual time steps. The overview
is provided by a collective representation of all temporal arcs. In
this representation, the 3D domain of the scalar field is scaled along
the z-axis, and all instances of the domain over time are stacked
along the z-axis to represent the space-time domain. Figure 5 shows
one such scaled domain in the brown box together with the ex-
tremum graph at that time step. Additional examples can be found
in Figures 9(a) and 10. An extremum graph is considered as a basic
unit in the visual representation of the TVEG. As a consequence of
this simple representation, the time axis coincides with the z-axis
and the evolution of the extremum graph within the TVEG is de-
picted along the z-axis. This design strategy helps reduce clutter in
the visualization, which may occur if the temporal arcs do not align
with one of the spatial axis. Scaling down the 3D domain along
z-axis reduces the size of the spatial edges thereby rendering the
temporal arcs to be visually prominent.

4. Case studies

We demonstrate the utility of TVEG on a synthetic sum of 3D Gaus-
sians dataset consisting of spatiotemporal movement of the cen-
tres of eight 3D Gaussians, a viscous fingers dataset [Scil6] that
simulates the temporal mixing of salt and water resulting in finger
like spatial structures, and a 3D Bénard-von Kdrmén vortex street
dataset [SW17, vEWTSO08]. The above-mentioned datasets are 3D
time-varying scalar fields, so we use PYMS3D [SN12] to compute
the extremum graph as a substructure of the MS complex for all
time steps (see supplementary material). It is likely that multiple
saddles are adjacent to a given pair of maxima. In all experiments,
we retain the saddle with the highest function value to record the
adjacency between the segments associated with the maxima, and
discard the other saddles to reduce clutter. The case studies demon-
strate how the rich geometric context provided by the extremum
graphs supports an effective analysis of the TVEG tracks.

The TVEG is computed using the algorithm TEMPORALARCS
described in Section 3.2. The time required for TVEG computa-
tion would naturally depend on the complexity presented by each
dataset. The average time taken to compute TVEG for the 3D Gaus-
sian, viscous fingers, and vortex street data are 0.92 ms, 24.62 ms
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and 18.67 ms, respectively. A detailed report on the running times is
available in the supplementary material. The extremum graph is as-
sumed to be available as input for the TVEG computation. PYMS3D
takes an average of 1.85 s and 1.02 s to compute the extremum
graph for the 3D Gaussians and viscous fingers datasets, and takes
6.58 s for the more complex vortex street dataset. Alternative meth-
ods are available to compute the extremum graph [ASN23] effi-
ciently without explicit construction of the MS complex.

4.1. Moving Gaussians

The first case study consists of experiments on a synthetic dataset
called Gauss8 defined on a 128 x 128 x 128 grid over 50 time steps.
It represents the movement of eight 3D Gaussians whose centres
move along predetermined paths while being restricted to the x =0
plane. The dataset is defined as the sum of eight 3D Gaussians,
whose maxima are located exactly at the Gaussian centres. The tra-
jectories of the centres are designed to induce multiple topological
events such as merges and splits. Figure 4 shows three time steps
that exhibit splits and merges together with a change in the numbers
and locations of maxima.

Figure 5 shows an overview of TVEG tracks. All maxima (red) in
the extremum graph lie on the plane x = 0 as expected and continue
to be restricted to the plane over time, as is evident from the flat
appearance of the temporal TVEG tracks outlined by the cyan box.
We demonstrate the utility of TVEG tracks via two tasks on Gauss8.

Topological event detection. The merges and splits among the
Gaussians can be visually identified from the TVEG tracks in Fig-
ure 5. From the overview of the temporal tracks (Figure 5, top-
right) computed over the entire time range of 50 steps, we ob-
serve multiple merges followed by splits. We note an increasing
number of cross correspondences as the tracks approach a merge
event or subsequent to a split event. The existence of such cross
temporal arcs between corresponding maxima over a time range
can indicate gradually decreasing spatial distance between global
components such as super-level sets eventually leading to topo-
logical merges/splits. A specific track segment of interest, A, is
highlighted. The maxima merge, die, and are born at time steps
9,10,11. We choose an isosurface extracted at scalar value 21 to
visualize the field. Each component of the isosurface associated
with a maximum is identified by computing the intersection with
the descending 3-manifold of the maximum. The blobs merge and
subsequently split corresponding to the topological events in the
extremum graph. Along track A, the maxima are colored to indi-
cate their temporal correspondence. The corresponding maxima in
the scalar domain and their associated isosurface components are
also highlighted with the same color. The purple maximum contin-
ues between time steps 9 and 10, whereas the orange maxima in
time step 9 merge in time step 10. As a result of this interaction one
component of the isosurface in time step 10 is jointly represented
by the purple and orange maxima. The purple maximum vanishes
between time steps 10 and 11 and a new yellow maximum appears,
resulting in an isosurface component splitting into two. The TVEG
tracks help interpret the topological events.

Similarity pattern within extremum graphs. The tracks of the
Gaussian centres in Gauss8 are designed to be symmetrical as can
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Figure 4: Dynamics in a synthetic sum of Gaussians dataset Gauss8. The data is visualized by displaying the intersection of descending
3-manifolds of maxima with volume enclosed by the isosurface at scalar value 21. The resulting blobs merge over time to form larger
components and subsequently split into multiple components. The merge and split behavior is also observable from the extremum graphs.

Gaussian TVEG tracks for 50 time steps
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Figure 5: Temporal tracks from the TVEG of Gauss8. The 3D domain is scaled along the z-axis and stacked to visualize the tracks over time.
(top-right) A view of the stacked domains from the top, along the y-axis, shows the tracks over all time steps. A subset of TVEG tracks (Y)
that exhibits symmetry along time is highlighted in blue. (middle) Track A is a subset of a longer track, consisting of time steps 9-11 and
includes merge and split events. Inset depicts the blobs in the corresponding time steps 9, 10, and 11. Track B (red), a subset of Y, is selected
to showcase the structural similarity between extremum graphs (inset) sampled at time steps 15, 16, and 17.

be seen in the overview of the tracks over 50 time steps (Figure 5,
top-right). One such temporally symmetric region is labelled as Y
(blue) within the overview. We studied structural changes within
the extremum graphs from the time range when the TVEG tracks
exhibit symmetry. One such segment, track B (red), is highlighted
to demonstrate the result of the study and three time steps (15, 16,
and 17) from this segment are shown. Maxima that belong to track
B are highlighted within the extremum graph using a red enclosing
circle. One neighboring saddle and a maximum in the neighbor-
hood of the saddle are also highlighted using a red circle. We ob-
serve a structural similarity between the highlighted regions of the
extremum graphs in these time steps. This observation suggests that

temporal geometric patterns within TVEG tracks, if any, are indica-
tive of a repetitive local structural pattern within the corresponding
extremum graphs over time.

Comparison with Lifted Wasserstein Matcher. The Lifted
Wasserstein Matcher (LWM) provides an efficient method to track
topological features via critical points by computing an optimal
matching between critical points of the scalar field in two consecu-
tive time steps [SPCT18]. The matching follows from a generaliza-
tion of the Wasserstein distance between the persistence diagrams
representing the two scalar fields. The methodology for tracking
employed in the LWM is also based on a combination of topologi-
cal and geometrical criteria. The LWM is a good exemplar method
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Figure 6: Tracks obtained by (a) TVEG and (b-d) LWM for the
Gauss8 dataset. All maxima in the first time step are shown as
red spheres. The postprocessing step is applied with two different
distance thresholds, 0.08 - diag and 0.15 - diag. Here, diag is the
length of the long diagonal of the data domain. Individual LWM
track components are shown in distinct color and the arcs inserted
by the postprocessing step are shown in black.

for comparing results because of the similarity between the two ap-
proaches. In addition to topological persistence and spatial location
of the critical points, TVEG incorporates local neighborhood infor-
mation of the critical points and function value differences.

The LWM is implemented as a part of TTK [TFL*17] and is
available as an open source software. We use TTK 0.9.9 to com-
pute the tracks. LWM is executed using the recommended parame-
ter values: extrema weight = 1.0, saddle weight 0.1, x,y,z weights
=1.0,1.0,1.0. To facilitate comparison, we embed the tracks in the
domain. To ensure a meaningful comparison, we also implement
the postprocessing strategy discussed in the LWM description but
unavailable in the TTK implementation. Further, the TVEG tracks
are computed using only the top temporal correspondence, which
does not capture the splits.

We study the similarities and differences between the TVEG
tracks with those reported by LWM, see Figure 6. Overall, the set
of tracks reported by the two methods are similar, which serves
as a validation. The video in the supplementary material shows the
TVEG tracks annotated with the extremum graph for each time step.
The isosurface at a fixed value of 20 (mid-point of the scalar range)
is rendered to visually present the topological events.

The TVEG tracks handle merge events directly. The latter half of
the GaussS8 dataset is a time reversal of the first half. So, the split
events in the first half become merge events in the latter half. The
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resulting collection of tracks form a single connected component.
The set of LWM tracks are disconnected prior to the postprocessing
step because only birth/death events are detected. We implement
the postprocessing that attempts to record merge/splits using a dis-
tance threshold that is defined as a fraction of the length of the long
diagonal, diag, of the data volume. In Figures 6(c) and 6(d), we
show the results for two distance thresholds, 8% and 15%. We ob-
serve that some of the merge/split events (for example, as shown in
the video in time step 20) are detected only for high values of the
threshold and some breaks (for example, in time steps 3 and 8) con-
tinue to be present even when the threshold is high. This is perhaps
because the critical points move significantly between time steps.
The additional components in TVEG, namely local neighborhood
and function value, likely contribute to additional correspondences.

4.2. Viscous fingers

Viscous fingers refer to a phenomenon that occurs during mixing
of two fluids of different viscosity. We use a particle ensemble
dataset [Scil6] generated using a stochastic simulation of the mix-
ing process of high concentration salt into pure water. During the
mixing process, high concentration finger like regions are formed
within the medium that gradually grow away from the mixing in-
terface and eventually terminate. The salt concentration data used
in the following computational experiments is from the 33" en-
semble run at a smoothing length 20, and resampled from the orig-
inal cylindrical domain onto a 101 x 101 x 101 grid over 120 time
steps [FGT16]. Figure 7 shows the extremum graph computed for
this time-varying salt concentration scalar field at one time step.

Phases of finger evolution. The finger evolution can be cate-
gorized into three phases — LAUNCH, EXPANSION, and TERMI-
NATION [FGT16]. During the LAUNCH phase, the mixing inter-
face remains almost flat and is filled with very small finger like
structures. With gradual increase in the injection force, the mix-
ing interface expands, the fingers grow larger, and the finger tip
moves away from the interface during the subsequent EXPANSION
phase. The mixing is complete in the TERMINATION phase result-
ing in the disappearance of the fingers. Figure 8(b) shows three
time steps, one from each phase, to provide an overview of fin-
ger formation. The fingers are visualized as isosurfaces at isovalue
35 [LWM*17,LGW™19].

We measure the distance of all maxima from the mixing inter-
face, defined as one of the boundary faces lying in the z = 101
plane, and plot the largest distance over time in Figure 8(a). This
plot helps identify the three phases. The initial flat region in the
plot, where the distance is close to zero, is the LAUNCH phase.
The distances increase during the subsequent EXPANSION phase.
The end of this phase is marked by the time step when the dis-
tance reaches the highest possible value, namely when a maximum
reaches the domain boundary face opposite to the mixing interface.
The following time steps belong to the TERMINATION phase. A fin-
ger does not evolve further once it reaches the opposite boundary
face. This situation arises often towards the end of the simulation
and multiple fingers terminate during this phase.

We observe two regions, shaded in Figure 8(a), on the line plot
characterized by a steep decline in distances followed by gradual
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(a) Arcs with Volume data

(b) Viscous Finger with 3D extremum graph
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Figure 7: Visualizing the viscous fingers dataset using the extremum graph. (a) Fingers are visualized as intersection of descending 3-
manifolds of salt concentration maxima and volume enclosed by isosurface at scalar value 35. Integral lines between each max-saddle arc in
the extremum graph represent the skeletal structure of the fingers. (b) All max-saddle arcs in the extremum graph are displayed using straight

edges. (c) The extremum graph with maxima (red) and saddles (green).

rise. These regions correspond to a phase consisting of dynamic
changes in the fingers, where the possibility of observing topolog-
ical changes due to merges and splits between components of fin-
gers is high. Such dynamic changes can be observed both within
the fingers and in the extremum graphs in time intervals [59,64]
and [84,87], see box highlights in Figure 8(b).

Finger dynamics along TVEG tracks. TVEG temporal arcs can
be used to support visual observation of the finger formation dy-
namics. We follow the method described in Section 4.1 to con-
struct temporal arcs and visualize tracks (see Figure 9). The do-
main is scaled along the z-axis. Figure 9(a) shows the domain and
extremum graph for time step 72. The temporal tracks for all max-
ima lying close to the centre of the domain are displayed. Tracks of
maxima near the domain boundary are not shown to reduce clutter.

We focus on a time interval [68,84], highlighted by the green
bounding box, to showcase the utility of the tracks. One track (red)
that appears to have a distinct behavior is selected within this time
interval and studied by visualizing the associated fingers. The fin-
ger region associated with a maximum is computed as the inter-
section of its descending 3-manifold with the volume enclosed by
the isosurface at scalar value 35. We pick three time steps (68, 72,
and 78) within the time interval. Figure 9(b) shows the extremum
graph and finger regions associated with the maxima. The red fin-
ger regions are associated with maxima from the selected track.
We notice a split event resulting in a change in the shape of the red
region. TVEG can thus help in visualizing finger evolution dynam-
ics along a chosen track and help assess the contribution to finger
dynamics from individual maxima in the track.

Next, we focus on a pair of TVEG features, highlighted in block
C of Figure 9(a). The similarity between the pair of red and orange
maxima sets is characterized by a pair of TVEG tracks that alternate
between these two sets in the time interval [34,42]. Furthermore,
the temporal dynamics of this pair of TVEG tracks approximately
mirror each other. Figure 9(c) shows three maxima pairs at time
instances 37, 39, and 41 and their associated finger regions. We ob-

serve that the associated finger regions form a pair of features that
maintain spatial proximity and represent similar dynamic changes
in finger formation along the pair of TVEG tracks.

Relative importance of score components. We present a study to
assess the importance of the individual components of the score that
determines the correspondence, and hence the temporal arcs (Equa-
tion 2). The components are categorized into two groups, global
and local. Persistence is a global topological descriptor determined
by the maxima and hence belongs to the global group. The lo-
cal group consists of three score components that represent local
features: function value, distance between maxima, and the neigh-
borhood similarity between maxima. In this study, we vary the
relative importance of the score components by tuning their cor-
responding weights. We present a qualitative analysis based on
comparison of the TVEG tracks computed for each assignment of
weights. To explain the weight settings, let us adopt the notation
(G,L), G+ L =1, to indicate a weight G assigned to the global
component and L assigned to the local components. The weight
L is uniformly divided amongst all three components of the lo-
cal group. The TVEG tracks are computed for five such weight
settings: (0.25,0.75),(0.5,0.5),(0.75,0.25),(1,0), and (0, 1). Fig-
ure 10 shows the computed tracks for a qualitative analysis.

Figures 10(a), 10(b), and 10(c) represent the TVEG tracks
computed under weight assignment (0.25,0.75),(0.5,0.5) and
(0.75,0.25), respectively. Here, both global and local components
were incorporated by assigning them a non-zero weight. Fig-
ure 10(d) and 10(e) represents settings (1,0) and (0,1), respec-
tively, which exclusively considered either the global or local com-
ponents. Both Figure 10(d) and 10(e) can be characterized as con-
sisting of a significant number of small TVEG tracks with large
gaps between the tracks. On the other hand, TVEG tracks in Fig-
ures 10(a), 10(b), and 10(c) are spatially consistent and relatively
longer, which corresponds to the gradual formation of fingers. Fur-
thermore, Figures 10(b) and 10(c), where the global persistence
component is assigned a relatively higher weight, shows more num-
ber of abrupt jumps in the TVEG tracks in comparison to tracks
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Figure 8: Identifying viscous finger evolution phases. (a) A plot over time of the largest distance of a maximum in the extremum graphs from
the fluid mixing interface. The largest admissible value of the distance is 101, which corresponds to the boundary face opposite to the mixing
interface. The plot is initially flat (LAUNCH), increases towards the largest admissible value (EXPANSION ) and then exhibits alternating steep
decline and rise (TERMINATION). (b) Fingers and embedded extremum graphs at select time steps from the three phases. The box highlight
shows two time steps each from the shaded regions in the TERMINATION phase.

obtained by assigning equal weights to all four components i.e.,
(G,L) =(0.25,0.75) (Figure 10(a)). Results from an additional ex-
perimental study of the effect of weight assignments on the com-
puted arcs is available in the supplementary material. We also per-
formed additional tests at finer resolution, where the (G, L) param-
eters were varied with smaller step sizes, specifically vary G by
€ = £0.01. However, no significant improvement was observed as
compared to a weight assignment of (G,L) = (0.25,0.75) in all
datasets. All experiments relevant to the case studies in Section 4
are performed with a weight assignment (G, L) = (0.25,0.75).

These experiments show that discarding the local score compo-
nents results in irregular short TVEG tracks. Relying only upon lo-
cal components also results in tracks that lack meaningful consis-
tency over time. A combination of local and global components,
preferably weighted uniformly, can lead to more meaningful TVEG
tracks capable of assisting effective data dynamics visualization.

4.3. Vortex street

We demonstrate the utility of TVEG in feature tracking by present-
ing two use cases — computing a summary view by tracking fea-
tures that are automatically computed, and tracking features that
are specified as a spatiotemporal user query. We demonstrate both
use cases on a 3D Bénard-von Kdrmdn vortex street dataset. The
Okubo-Weiss criterion is a scalar field that indicates regions of high
vorticity [SW17]. It is sampled on a 192 x 64 x 48 regular grid over
508 time steps. Previous results [SW17,SN23] identify two classes
of vortices, primary and secondary, and track them across time.

Overview of features. In order to identify and track all topologi-
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cal features that can be captured using an extremum graph, we first
compute the TVEG and consider all temporal arcs. Each maximum
has an associated region, which is spanned by its descending man-
ifold clipped by the isosurface at scalar value 0.1. The threshold
value of 0.1 represents high vorticity regions.

We calculate spatial overlaps between the regions associated
with a maximum in time step ¢ and its two correspondences in
time step ¢ + 1, and pick the temporal arc with the larger overlap.
Arcs where the spatial overlap is small and short tracks (whose
length is less than 10 time steps) are removed. We observe that
each secondary vortex is represented by a single maximum, but a
primary vortex may comprise of regions associated with a collec-
tion of maxima. In the latter case, the multiple maxima spanning a
primary vortex are connected in the extremum graph via saddles.
So, we collate such tracks in a post-processing step. We observe
that the top ~ 20% tracks sorted in decreasing order of track length
consists of many of the primary and secondary vortices, see Fig-
ure 11. The tracks are visualized by displaying the regions associ-
ated with maxima at different time steps. We observe that none of
the temporal arcs connect a primary vortex with a secondary. So,
the TVEG provides a good summary of the two types of vortices.

Query driven feature tracking. User queries consisting of a set
of maxima from primary or secondary vortices or both may be
used to visualize specific tracks. Figure 12 shows one such query.
Again, we observe that the temporal arcs either connect two pri-
mary vortices or two secondary vortices. One challenge that is typ-
ically encountered while analyzing this vortex street data is that,
even though the spatial movement of vortices is along a smooth
curve, the maxima that represents the vortices follow a circuitous
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Figure 9: Temporal tracks from TVEG for visualizing the viscous fingers dataset. (a) The 3D domain is scaled along the z-axis and stacked
to visualize the tracks over time. The tracks indicate typical growing behavior of fingers along the z-axis. One track is selected (red) within
a time interval [68,84] of interest (green bounding box B). A spatial region of interest with pair of highlighted tracks is shown in block C.
(b) Visualizing the dynamics of fingers corresponding to the selected track. The finger in red corresponds to maxima from the selected track.
A split event results in a change in the shape of the red finger. (c) Visualizing a pair of similar features along a pair of tracks highlighted in
red and orange in block C. These pair of features corresponds to the three maxima pairs sampled from the red and orange sets of maxima.
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Figure 10: Studying the effect of score component weights on viscous fingers tracks. Weights of global component persistence and combined
weights of all local components are shown separately. TVEG tracks fail to explain finger formation dynamics when either local (d) or global
component (e) is ignored completely, as suggested by large gaps within the computed tracks. On the other hand, assigning non-zero weights
to both local and global components (a, b, c) helps capture the tracks that are important to explain finger formations.
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Figure 11: Visualizing the top 20% tracks in the 3D von Kdrmdn vortex street data in terms of track length. The tracks are generated from the
TVEG based on spatial overlaps. Regions associated with maxima in the tracks are displayed. The top tracks include the temporal evolution

of primary and secondary vortices.
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Figure 12: Visualizing tracks computed in response to a spatiotemporal query regarding two maxima (left). The spatial location of the
maxima varies substantially even though they represent the same feature over time. (left to right) As the maxima and corresponding features
evolve over time, the opacity of the track is increased and the maxima are also displayed.
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(a) Time step 223

(b) Time step 224

(c) Time step 225

(d) Temporal arcs between 224 (left) and 225
(right)

Figure 13: lllustrating challenges in tracking vortices in the 3D
von Kdrmdn vortex street data. (a)-(c) Vortices in time steps 223-
225. (d) Temporal arc (gray, bold) between time steps 224-225 for a
particular feature and the extremum graph arcs (black). The white
feature in time 224 should have ideally been mapped to the red
feature in time 225. But, no temporal arc is incident on it. The red
features in 224 and 225 are connected by a temporal arc.

path. The temporal arcs in the TVEG play a crucial role in finding
the correspondences between such maxima. It provided a founda-
tion upon which the additional spatial overlap criterion could be

© 2024 The Author(s)
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applied. The videos in the supplementary material accompanying
the paper demonstrate both use cases, namely visualization of top
tracks and tracks specified by user queries.

Discussion. Overall, we find that the TVEG serves as a good under-
lying representation that supports the development of feature track-
ing methods. The four components of the objective function are
sufficient to identify meaningful correspondences in most cases,
but there are exceptions.

The simplification threshold which is uniformly applied across
all time steps affects the extremum graph and therefore the seg-
mentation. While a maximum may continue to represent the same
vortex across different time steps, its spatial location within the vor-
tex may vary substantially as seen in Figure 12. These two factors
may lead to instances where the top two temporal arcs from a maxi-
mum in time 7 to maxima in time ¢ + 1 may not represent the desired
feature correspondences. Further, filtering the correspondences in a
refinement step may result in zero temporal arcs incident on a max-
imum and hence discontinuation of tracks.

We show one such case occurring in time steps 223-225 in Fig-
ure 13. A feature represented by a maximum in 223 splits, resulting
in a primary vortex represented by two maxima. One of those max-
ima, which represents a partial vortex in time 224, contains tem-
poral arcs to features in time 225, but there is no arc for one fea-
ture (see Figure 13(d)). As a consequence, the track containing the
white feature in time 224 terminates in time 225, thereby causing
the anomaly highlighted in Figure 13(b). Such early terminations
lead to smaller length tracks in the 3D vortex street, specifically
for primary vortices. This results in a smaller number of primary
vortices among the top tracks as shown in the supplemental video.

The neighborhood component A of the score helps balance the
effect of the variation in the location of maxima. A time step-
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specific simplification threshold may have resulted in a single max-
imum representing the primary vortex, alleviating this anomaly.

5. Conclusions

We introduced TVEG, a time-varying extremum graph to facilitate
analysis and visualization of time-varying scalar fields. To the best
of our knowledge, TVEG is the first time-varying topological struc-
ture based on extremum graphs. The structure is easy to compute
and interpret. We demonstrate its utility in feature tracking tasks
and for analysis of synthetic and simulated data. The criteria for
computing temporal correspondences may be extended to incorpo-
rate other attributes of critical points and extremum graphs, and to
support multi-way split and merge events. The representation ca-
pabilities and queries supported by TVEG help in the study of local
and global topological events. Extending these capabilities will fa-
cilitate the visual exploration and analysis of complex datasets.
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Supplementary Material for “Time-varying Extremum Graphs”
Abstract

This document presents additional material supporting the paper “Time-varying Extremum Graphs”. It provides pseudo-code for the algo-
rithm and subroutines used for computing the TVEG, and an explanation of the method used to reduce visual clutter in the TVEG tracks
computed for the viscous finger data. Next, it presents an additional comparison of TVEG tracks computed using varying weights assigned
to the correspondence score components. It also presents detailed runtimes for TVEG computation. Finally, the major aspects of the visual
analysis pipeline used in the case studies are explained.

1. Algorithms and psuedocode

We present the pseudocode for all the algorithms related to the computation of TVEG. TEMPORALARCS (Algorithm 2) computes all the
temporal arcs. UPDATEMERGESPLITEDGES (Algorithm 3) updates the set of merge and split event sets after removing the highest score
edge that participates in both a merge and split event. COMPUTESCORES (Algorithm 4) computes and returns the two best correspondences
for each maximum in a time step and the associated scores. FILTERSCORES (Algorithm 5) refines these correspondences based on a threshold
T. DETECTMERGE, DETECTSPLIT, DETECTDEL, DETECTGEN (Algorithms 6,7,8,9) detect topological events merge, split, deletion, and
creation respectively. EXGRAPH3D (Algorithm 10) computes the extremum graph of the time-varying scalar field at a given time step and
simplifies the graph using a threshold 6. For the case studies that involve 3D data, we use EXGRAPH3D to compute extremum graphs, which
in turn calls MS3D [SN12,DFRS14,BGL* 18] to compute the MS complex. The extremum graph could also be directly computed from the
scalar field [CLB11]. Table 3 contains the list of attributes of a critical point in an extremum graph.

2. Selection of TVEG tracks via cropping

LT ."‘\, .
- A
. o
e
(a) All TVEG tracks (b) Selected tracks after cropping

Figure 14: (a) Computation of all TVEG tracks from the viscous finger dataset . Orange tracks are located near the domain boundary.
(b) Cropping selects the red tracks, which represent the viscous finger formation.

TVEG tracks for the viscous fingers dataset includes a clusters of tracks near the domain boundary. These tracks are shorter in length and
clutter the visualization as shown in Figure 14(a). We observed that the major fingers are formed along the central part of the domain and not
near the boundary. The TVEG tracks consisting of temporal arcs that lie near the central part of the domain, shown in red, may be highlighted
by removing the arcs near the boundary. Such a collection of tracks is shown in Figure 14(b). In the paper, we employ cropping to present
the TVEG tracks that play an important role in explaining the data dynamics. Cropping essentially discards temporal arcs whose endpoint
maxima lie within a certain distance threshold from the domain boundary.

3. Qualitative analysis of score components

In this section, we present the results of an additional study that helps understand the contributions of global and local components. This study
supplements the parameter study described in the paper. In Figure 15, the TVEG tracks computed for three different weight assignments to
the score components are presented. The TVEG tracks presented in Figure 15(a) - 15(c) correspond to a gradual increase in weights assigned
to the global component persistence in comparison to the local components. While the gray TVEG tracks are found in common across all
three settings, the exclusive contributions are highlighted in pink, yellow, and green, respectively. We observe that increasing the weight
of the persistence component results in an increase in the number of abrupt jumps within TVEG tracks. Note that the weight assignment
(G,L) = (0.25,0.75) indicates equal assignment of weights to the four score components. This experiment further substantiates our initial
choice of assigning equal weights to all score components for computing TVEG tracks.
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(a)

(b)

()

Figure 15: Comparison of TVEG tracks computed using different weight combinations assigned to the score components. (G,L)=
(a) (0.25,0.75), (b) (0.5,0.5), and (c) (0.75,0.25). The gray arcs are reported for all weight combinations. Additional arcs for a specific
weight combination are highlighted in pink, yellow, and green, respectively.

4. Runtime analysis for TVEG computation

The datasets in the case studies contain different number of critical points, which is an indicator of the complexity of dynamic behavior in
the data. The time for computing the TVEG naturally depends on the number of critical points and the size of the extremum graph. Table 2
summarizes the time taken by TEMPORALARCS for computing the TVEG. It lists the minimum / average / maximum per time step and the
cumulative running time for TVEG computation of the three datasets. The number of nodes in the extremum graph (total number of maxima
and 2-saddles) are also reported.

We observe that the Gauss8 data requires significantly less time since it is a small dataset. While the viscous fingers dataset is smaller than
the vortex street dataset, it represents sufficient complexity in terms of temporal dynamics so that the average running time is comparable.
The temporal dynamics of viscous fingers may be inferred from the significant difference between the minimum and maximum running time
for processing one time step. Finally, the vortex street data is most complex, in terms of temporal dynamics, amongst the three datasets.
The difference between the minimum and maximum running time is most significant for this dataset. Though the average running times are
comparable, the vortex street data is significantly larger in size and contains more complex temporal dynamics. There is a long temporal
phase where the size of the extremum graphs are small, followed by a transition to time steps where the extremum graphs are significantly
large. Hence, the cumulative running times is larger for the vortex street dataset.

5. Visual Analysis Pipeline

We illustrate the basic computational, user interaction, and exploration stages involved in a typical visual analysis workflow using Figure 16.
Given an input time-varying scalar field, TVEG computation begins with computation of the MS complex. The computed MS complexes at
each time step are processed to extract the extremum graph. Blocks B and C in Figure 16 show the extremum graphs. Maxima are shown in
red and 2-saddles green. TVEG tracks are computed as a sequence of temporal arcs, which denote correspondences between maxima from
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Table 2: Runtimes for TVEG computation. The min, max, and average entries correspond to running times for processing individual time
steps. Total refers to running time for processing all time steps.

Dataset # Extremum | Running
graph nodes | time (ms)

Gauss8 | Min 14 0.21

Avg 20 0.92

Max 32 3.31

Total 1010 53.69

Viscous fingers | Min 110 7.06
Avg 123 24.62

Max 133 56.17

Total 14798 2963.96

Vortex street | Min 10 0.30
Avg 82 18.67

Max 294 265.85

Total 41883 9595.16

Viscous Finger |
Formation |

isosurfaces with

lextremum graph from

oo / /]

domain boundary = A ms complex c
—_] -
T - —
IR 1
Py °
\ |
1 |\ — = 1-68
J
|
[N .
\ LN \
T=6! =%
- T=70 - - 4
T=7
£ visualizing extremum graphs in the neighborhood
selection, query and exploration of a few TVEG tracks of the selected TVEG tracks

Figure 16: Workflow of a typical visual analysis task based on the TVEG for the viscous fingers dataset. Individual steps include computation
of the MS complex from the input scalar field (A) and subsequent extraction of extremum graphs (B and C) within each time step. Block
B shows the integral lines representing the skeletal structure of the MS complex. TVEG tracks shown in deep green (D) are computed as a
collection of arcs between a pair of extremum graphs from consecutive time steps. To avoid ambiguity between a spatial and a temporal arc,
the spatial domain is scaled down along the time direction as shown in block D. A typical visualization task involves the selection and display
of a subset of time steps (E) followed by their individual inspection (F). Block E shows time steps that contain TVEG tracks whose constituent
maxima contribute most to the viscous finger formation. The TVEG track of interest and the maxima in the track are highlighted (E). The TVEG
supports visualization of the neighborhood (arcs of extremum graph) of individual nodes of the chosen track. It also supports visualization of
the corresponding dynamic changes (F) in the global data contributed by the maxima. In block F, a maximum and its descending manifold

are highlighted using a common color.

© 2024 The Author(s)

Computer Graphics Forum © 2024 The Eurographics Association and John Wiley & Sons Ltd.



S. Das, R. Sridharamurthy & V. Natarajan / Time-varying Extremum Graphs

Table 3: List of different fields corresponding to the critical points returned from the EXGRAPH3D subroutine (Algorithm 10)

Fields | Description
id | A unique id assigned to the critical point
index | Index
X | 3D coordinates
N | Neighborhood contribution
pers | Topological persistence
ascmfold | Ascending manifold
dscmfold | Descending manifold
geom | Ascending / Descending manifold geometry
t | The time stamp of the scalar field

consecutive time steps. Block D shows portion of TVEG tracks within three consecutive time steps. The time direction is chosen as the spatial
direction of growth of the tracks (z-direction in this dataset). The domain is scaled down along the z-axis to distinguish between spatial arcs
of the extremum graph and temporal arcs in the TVEG.

Figure 16 is also used to demonstrate how TVEG can be applied to support simultaneous visualization of data dynamics at both the
extremum graph and global data level. This is possible due to the rich geometric context, in the form of the extremum graph, that is present
in the TVEG and the tracks within. Once computed, a specific portion of TVEG tracks can be chosen to explore the temporal dynamics within
the data. For instance, in Block E, we select a section of TVEG tracks highlighted in brown, where the maxima contribute significantly to
finger formation dynamics. This selection includes a split followed by a merge within three consecutive time steps. This choice lets us focus
on the three corresponding neighborhoods shown in Block F within the extremum graphs where a maximum (in blue) at time step 68 is split
into two maxima (shown in violet and orange) at time 69. The highlighted maxima at time 69 merge again into a maximum (pink) at time 70.
From the extremum graph, we can extract the descending manifolds corresponding to these maxima participating in these topological events
to visualize the resulting effect on the global data dynamics. In Block F, we have highlighted the descending manifolds with the same color
as the corresponding maximum. Thus a TVEG can support visualization of temporal data dynamics influenced by temporal correspondence
between maxima from a chosen TVEG track.
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Algorithm 2: TEMPORALARCS

Input : A set of extremum graphs [G”,...,G’]
Output: Temporal arc set A™*
Topological event sets £™*, £ £9* and £%*

1 Initialization: A «— @ A" «+ o: M «— o, M! « o

/% Initialize M" as maxima set of G’ x/
2 MY — mP
/* Initialize all topological event sets */
3 {gm*7gs*’€d*7gg*}<;®
4 fori< p+1tordo
/+ Initialize M' as maxima set of G’ */
s | MM
6 | S+« CompuTESCORES(M°,M")
7 S < FILTERSCORES(S)
/* Compute the temporal arc set A’ x/
8 foreach (m°,m' s) € S do
9 ‘ Al — AU (m® m")
10 end
/+ Detect topological events x/
11 E™ + DETECTMERGE(S, i)
12 E® < DETECTSPLIT(S, i)
i | &%« DETECTDEL(S,M", )
14 | &%« DETECTGEN(S,M')i)
/* Remove z-shape configurations. x/
15 W<+ EMNE*
16 repeat
17 w < MAXSCOREEDGE(W)
18 Al A"\ w
19 EM,E* < UPDATEMERGESPLITEDGES (£, %, w)
20 W+ EMNE*
21 until W = ()
/* Populate temporal arc set */
n | A™ AT UA
/+ Update topological event sets x/
23 5171* <_ EITL* Ugm
2 EF e uEs
s | & gtrugd
26 E8* g8 UES
/+ Re-initialize for next iteration x/
7 | Ao, M M
28 end
Algorithm 3: UPDATEMERGESPLITEDGES Update the set of edges participating in merge/split events
Input : Edge sets £", £°, maximum score edge w
Output: Modified Edge sets
/* Remove edge adjacent to w in &% and &™ */

u <— edge that participates in split with w
E « EN\{wu}
U < set of edges that participate in merge with w
if U == {u/} then
| &M EM\u
EM <+ EM\w
return £, £°

N R W N =
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Algorithm 4: COMPUTESCORES Compute all correspondences and scores for a given set of maxima

1

[

Input : Two maxima sets MO,M !

Output: A set of optimal scores S = {(u,v,5)} s.t.(u,v) € M* x M and s € R

Initialization: S + @
foreach m® € M° do

3 Q<+ g
4 foreach m' € M' do
/+ Compute score for (m®m!) given weights G,L;,Ly,Ls */
5 s+ G|m°.pers — m" .pers| + Ly | F(m° %) — F(m' %)| + Ly |m° % — m' [ + Ls|m® m —m' m|
6 0+ QUs
7 end
/* Insert two lowest scores to S x/
8 51 <—min(Q),S<—SU(mO7m1,s1)
9 | 0+ 0\s
10 Szemin(Q),SeSU(mO,ml,sz)
11 end
12 return S
Algorithm 5: FILTERSCORES Filter the input set of scores based on a threshold
Input : A list of scores S from Algorithm 4
Output: A filtered version of S
1 Initialization: ) < &
2 foreach (m°,m' s) € S do
3 ‘ Y+ YUs
4 end
/* Compute the mean and standard deviation of all scores */
5 t < MEAN()), 6 < STD()))
/+* Refine & using the threshold 7 */

e ® 2

10

T« u+o
foreach (mo,m1 ,5) €S do
if s > 1 then
| S« S\ (m" m',s)
end
return S
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Algorithm 6: DETECTMERGE Detect merge events between two consecutive time steps

Input : A list of scores S from Algorithm 4;
Time step ¢
Output: Set of merges £ in S between time ¢ and 7 + 1

1 Initialization: £" < &
2 foreach (mo,m1 ,5) €S do

3 e m'
/* Count correspondences mapped to e x/
4 c+— 0K+ o
5 foreach (m°,m' s) € S do
6 ifm' == ¢ then
7 ‘ K Kum®t);cec+1
8 end
/* Merge detected. Update &™ */
9 if ¢ > 1 then
10 | M EMU(et+1)UK
1 c+— 0 K+ o
12 end
13 return £
Algorithm 7: DETECTSPLIT Detect split events between two consecutive time steps
Input : A list of scores S from Algorithm 4;
Time step ¢
Output: Set of splits £* in S between time  and 7 + 1
1 Initialization: &° + @
2 foreach (m°,m',s) € S do
3 e—m®
/* Count correspondences mapped from e x/
4 c+— 0 K+~
5 foreach (m°,m' s) € S do
6 if m* == ¢ then
7 ‘ K+ KU@m' t+1);cc+1
8 end
/+ Split detected. Update &° */
9 if ¢ > 1 then
10 | &5« & U(e,r)UK
1 c+— 0 K+—o
12 end
13 return &°
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Algorithm 8: DETECTDEL Detect deletion events between two consecutive time steps

Input : A list of scores S from Algorithm 4;
A list of maxima M’ for time step ¢;
Time step ¢
Output: Set &7 with all the deletion events detected from S between time 7 and 7 + 1
Initialization: £ « @; K « M’
/* Record maxima with no edges to r+1
foreach (mo,m1 ,5) €S do
| K« K\m°
end
/+* Add time step information
foreach ¢ € K do
| & &lU(e,)
end

—

B W N

wn

AN

return £¢

®

*/

*/

Algorithm 9: DETECTGEN Detect generation events between two consecutive time steps

Input : A list of scores S from Algorithm 4;
A list of maxima M'*! for time stept+1;
Time step ¢
Output: Set £4 with all the generation events detected from S between time 7 and 7 + 1

—

Initialization: £% « o; K + M'™!
/* Record maxima with no edges from ¢
foreach (m°,m',s) € S do
‘ K« K\ m!
4 end
/* Add time step information
foreach ¢ € IC do
| E8«E8U (et +1)
end
return &%

w N

® 2 o wn

*/

*/

Algorithm 10: EXGRAPH3D Compute extremum graph

Input : A scalar field F(¢) at time step ¢
A persistence threshold 6

Output: Extremum Graph G' = (V' E")
1 Initialization: V! «— o:E' « &
2 Compute MS complex: C <~ MS3D(F(t),0)

/* Store neighborhood maxima and saddles
3 foreach ¢ € C do
4 if c.index == 2 then
5 M < c.ascmfold
6 foreach m € M do
7 m —m, V «Vium'
8 E' + E'"U(c.id,m.id)
9 end
10 e, Vi Viud
11 end
12 V' < set(V?)
13 return G’ = (V' E")

*/
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