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Abstract

In this paper, we are concerned about the lattice Boltzmann methods (LBMs) based on vector-kinetic
models for hyperbolic partial differential equations. In addition to usual lattice Boltzmann equation (LBE)
derived by explicit discretisation of vector-kinetic equation (VKE), we also consider LBE derived by semi-
implicit discretisation of VKE and compare the relaxation factors of both. We study the properties such
as H-inequality, total variation boundedness and positivity of both the LBEs, and infer that the LBE
due to semi-implicit discretisation naturally satisfies all the properties while the LBE due to explicit
discretisation requires more restrictive condition on relaxation factor compared to the usual condition
obtained from Chapman-Enskog expansion. We also derive the macroscopic finite difference form of
the LBEs, and utilise it to establish the consistency of LBEs with the hyperbolic system. Further, we
extend this LBM framework to hyperbolic conservation laws with source terms, such that there is no
spurious numerical convection due to imbalance between convection and source terms. We also present
a D2Q9 model that allows upwinding even along diagonal directions in addition to the usual upwinding
along coordinate directions. The different aspects of the results are validated numerically on standard
benchmark problems.

Keywords: Vector-kinetic model, lattice Boltzmann method (LBM), H-inequality, total variation
boundedness, positivity, consistency, source term, spurious numerical convection

1 Introduction

Lattice Boltzmann methods (LBMs) have emerged as a powerful and versatile class of computational tech-
niques for simulating fluid flow and related phenomena. Over the years, they have gained significant popular-
ity due to their ability to handle a wide range of fluid flow scenarios, from incompressible flows ([65, 49, 31])
to complex multiphase ([23, 50, 9, 19, 40]) and multiscale ([63]) systems. LBMs have been employed for mod-
elling and simulating problems in magnetohydrodynamics ([42, 47, 55, 28]), porous media ([8, 25, 26, 18]),
heat transfer ([44, 46, 62]) and turbulence ([37, 27]). The reader is referred to the books [45, 60, 24] for
extensive study of LBMs, [12] for review of LBMs for fluid flows, [3] for review of LBMs for heat transfer,
and [30] for review of entropic LBMs.
The Lattice Boltzmann equation (LBE) has been shown to approximate the Euler and the Navier-Stokes
equations through different approaches such as Chapman-Enskog expansion ([38, 21, 67]), asymptotic expan-
sion ([32, 35, 36]), Maxwellian iteration ([4, 7, 66]), equivalent equation ([16]), and recursive representation
([29]). Various attempts have been made in which the LBE is shown to be equivalent to mutistep finite
difference equation ([61, 14, 17, 20, 6]), and the consistency with macroscopic equations has been shown in
[5]. Further, the linkage between LBM and relaxation systems of [33] was explored in [52, 22, 57].
While the discussions above correspond to the LBE derived from discretisation of the Boltzmann equation
(essentially scalar-kinetic equation) with discrete velocities, we consider the class of LBEs derived from dis-
cretisation of vector-kinetic equations introduced in [10, 11, 2]. The vector-kinetic models have been utilised
to develop various numerical schemes in the areas of porous media [34], entropy stable methods for hyperbolic
systems [1], implicit kinetic relaxation schemes [13], and lattice Boltzmann relaxation schemes [51, 15, 54].
In particular, [13] and [51] present the lattice Boltzmann methods with different equilibrium functions and
their resulting Chapman-Enskog expansions. In this paper, we present some important properties (such as
macroscopic multi-step finite difference form and consistency) of the LBE derived from vector-kinetic equa-
tions. We also present a novel way to handle well-balancing of convection and source terms in this framework.
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Further, we also present an LBM model that allows upwinding along diagonal directions in addition to the
usual upwinding along coordinate directions (presented first in the proceedings of a conference [43]).
The paper is organised as follows: Section 2 presents the mathematical model of hyperbolic conservation law
and its vector-kinetic equation. Section 3 presents two different ways of deriving LBE from vector-kinetic
equation, their Chapman-Enskog expansion and different equilibrium functions. Different properties such
as H-inequality, macroscopic multi-step finite difference form, consistency, total variation boundedness and
positivity are discussed in section 4. The well-balancing technique for hyperbolic partial differential equations
with source terms is explained in section 5. The D2Q9 model of LBM that allows upwinding along diagonal
directions is explained in section 6. The numerical validation of the methods is presented in section 7. Section
8 concludes the paper.

2 Mathematical model

In this section, we describe the hyperbolic conservation law and the vector-kinetic equation that approximates
it.

2.1 Hyperbolic conservation law

Consider the hyperbolic conservation law

∂tU + ∂xd
Gd(U) = 0, (1)

where U(x1, x2, . . . , xD, t) : Ω × [0, T ] → Rp is the conserved variable and Gd(U) : Rp → Rp is the flux in
direction d, for d ∈ {1, 2, . . . , D}. Here Ω ⊂ RD, D and p indicate the number of dimensions and number of
equations in the system respectively. η(U) is the convex entropy function for (1).

2.2 Vector-kinetic equation

The hyperbolic conservation law in (1) can be approximated by the vector-kinetic equation (VKE),

∂tfq + ∂xd

(
vdqfq

)
= −1

ϵ

(
fq − feq

q (U)
)
. (2)

Here fq : Ω× [0, T ] → Rp, feq
q : Rp → Rp and q ∈ {1, 2, . . . , Q} with Q being the number of discrete velocities.

ϵ is a positive small parameter. vdq is the dth component of the qth discrete velocity. Summing (2) over all q,
we get

∂t

Q∑
q=1

fq + ∂xd

Q∑
q=1

(
vdqfq

)
= −1

ϵ

Q∑
q=1

(
fq − feq

q (U)
)
. (3)

If
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U , then

∂tU + ∂xd

Q∑
q=1

(
vdqfq

)
= 0. (4)

In the limit ϵ → 0, we infer from (2) that fq → feq
q (U). Thus, we can write fq as perturbation (in ϵ) of feq

q :

fq = feq
q + ϵfneq

q , (5)

where fneq
q consists of the non-equilibrium perturbations.

If
∑Q

q=1 v
d
qf

eq
q = Gd(U), then (4) becomes the hyperbolic conservation law (1) in the limit ϵ → 0.

3 Lattice Boltzmann equation

In this section, we present explicit and semi-implicit lattice Boltzmann discretisations of the VKE (2), their
comparison, and their Chapman-Enskog expansions.
Let us use the vector notations: x =

[
x1, x2, . . . , xD

]
and vq =

[
v1q , v2q , . . . , vDq

]
. An explicit Euler

discretisation of the VKE (2) along dxd

dt = vdq (the characteristic equation) gives

fq (x, t+∆t) = fq (x− vq∆t, t)− ∆t

ϵ

(
fq (x− vq∆t, t)− feq

q (U (x− vq∆t, t))
)
. (6)
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Using ω = ∆t
ϵ and rewriting the above equation, we obtain the lattice Boltzmann equation (LBE)

fq (x, t+∆t) = (1− ω)fq (x− vq∆t, t) + ωfeq
q (U (x− vq∆t, t)) . (7)

On the other hand, a semi-implicit discretisation of the VKE (2) with implicit treatment of fq in the collision
term gives

fq (x, t+∆t) = fq (x− vq∆t, t)− ∆t

ϵ

(
fq (x, t+∆t)− feq

q (U (x− vq∆t, t))
)
. (8)

Rewriting the above equation as

fq (x, t+∆t) =

(
1

1 + ω

)
fq (x− vq∆t, t) +

(
ω

1 + ω

)
feq
q (U (x− vq∆t, t)) , (9)

or fq (x, t+∆t) = (1− ω̃) fq (x− vq∆t, t) + ω̃feq
q (U (x− vq∆t, t)) , (10)

an LBE with ω̃ = ω
1+ω is obtained.

If the grid is uniform with spacing ∆xd along direction d and if the velocities are chosen such that vdq = m∆xd

∆t
with m ∈ Z, ∀d, q, then the collision-streaming algorithm

Collision: f∗
q (x− vq∆t, t) = (1− ω̂)fq (x− vq∆t, t) + ω̂feq

q (U (x− vq∆t, t)) (11)

Streaming: fq (x, t+∆t) = f∗
q (x− vq∆t, t) (12)

can be used to numerically implement the LBEs in (7) (with ω̂ = ω) and (10) (with ω̂ = ω̃). It is
to be noted that the streaming in (12) is exact. After evaluating fq (x, t+∆t), we find U by using

U (x, t+∆t) =
∑Q

q=1 fq (x, t+∆t). Then, we evaluate feq
q (U (x, t+∆t)) and then proceed with the next

time step. Hereafter, we use ω̂ in the presentation of our theory to commonly represent ω in (7) and ω̃ in
(10).

3.1 Chapman-Enskog expansion

Taylor expanding the LBEs in (7) (with ω̂ = ω) and (10) (with ω̂ = ω̃) and simplifying, we get

(∂t + vq · ∇) fq = − ω̂

∆t

(
fq − feq

q

)
+

ω̂

2
(∂t + vq · ∇)

(
fq − feq

q

)
+O(∆t2). (13)

Consider the perturbation expansion of fq:

fq = feq
q + ϵf (1)

q + ϵ2f (2)
q + . . . (14)

Using the above expression, since
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U , we infer that the moment of non-equilibrium

distribution function leads to
∑Q

q=1

(
ϵf

(1)
q + ϵ2f

(2)
q + . . .

)
= 0. Each term corresponding to different order

of ϵ in this moment expression must individually be zero. Hence
∑Q

q=1 f
(i)
q = 0,∀i ∈ N. Multiple scale

expansion of derivatives of fq gives ∂tfq =
(
ϵ∂

(1)
t + ϵ2∂

(2)
t + ...

)
fq and vq · ∇fq = ϵvq · ∇(1)fq.

Using perturbation expansion of fq and multiple scale expansion of derivatives of fq in (13) and separating
out O(ϵ) and O(ϵ2) terms,

O(ϵ) :
(
∂
(1)
t + vq · ∇(1)

)
feq
q = − ω̂

∆tf
(1)
q (15)

O(ϵ2) : ∂
(2)
t feq

q +
(
1− ω̂

2

) (
∂
(1)
t + vq · ∇(1)

)
f
(1)
q = − ω̂

∆tf
(2)
q (16)

Zeroth moment
(∑Q

q=1

)
of O(ϵ) terms in (15) and O(ϵ2) terms in (16) respectively give

∂
(1)
t U + ∂(1)

xd
Gd(U) = 0, (17)

∂
(2)
t U +

(
1− ω̂

2

)
∂(1)
xd

(
Q∑

q=1

v(d)q f (1)
q

)
= 0. (18)

From the first moment
(∑Q

q=1 v
d
q

)
of O(ϵ) terms in (15), we get

Q∑
q=1

vdqf
(1)
q = −∆t

ω̂

(
∂UG

d
(
−∂UG

i∂(1)
xi

U
)
+ ∂(1)

xi

(
Q∑

q=1

vdqv
i
qf

eq
q

))
(19)
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Recombining the zeroth moment equations of O(ϵ) in (17) and O(ϵ2) in (18) and reversing the multiple scale
expansions, we get

∂tU + ∂xd
Gd(U) = ∆t

(
1

ω̂
− 1

2

)
∂xd

(
∂xi

(
Q∑

q=1

vdqv
i
qf

eq
q

)
− ∂UG

d∂UG
i∂xi

U

)
(20)

upto O
(
∆t2

)
.

3.2 Equilibrium function

In the previous sections, we imposed the following conditions on feq
q :

Q∑
q=1

feq
q = U,

Q∑
q=1

vdqf
eq
q = Gd(U). (21)

In this section, we present some feq
q that satisfy the above requirements.

3.2.1 Classical D1Q2

Consider one dimension (D=1) and 2 discrete velocities (Q = 2) such that v11 = λ and v12 = −λ, and λ = ∆x1

∆t .
Then,

feq
q =

1

2
U − (−1)q

1

2λ
G1(U) for q ∈ {1, 2} (22)

satisfies (21). The Chapman-Enskog expansion (20) in this case becomes,

∂tU + ∂x1
G1(U) = ∆t

(
1

ω̂
− 1

2

)
∂x1

((
λ2I − |∂UG1|2

)
∂x1

U
)
. (23)

It is to be noted that the O(∆t) term on the right hand side of the above equation represents numerical
diffusion. For stability, we require the numerical diffusion coefficient to be positive. Therefore, we require
λ2I > |∂UG1|2 and 0 < ω̂ < 2.

3.2.2 D1Q3

Consider one dimension (D=1) and 3 discrete velocities (Q = 3) such that v11 = λ, v12 = 0 and v13 = −λ, and
λ = ∆x1

∆t . Then,

feq
q =

1

3
U + (δq1 − δq3)

1

2λ
G1(U) for q ∈ {1, 2, 3} (24)

where δ is the Kronecker delta function, satisfies (21). The Chapman-Enskog expansion (20) in this case
becomes,

∂tU + ∂x1G
1(U) = ∆t

(
1

ω̂
− 1

2

)
∂x1

((
2

3
λ2I − |∂UG1|2

)
∂x1U

)
. (25)

Enforcement of the positivity of numerical diffusion coefficient yields λ2I > 3
2 |∂UG

1|2 and 0 < ω̂ < 2.

3.2.3 Upwind DdQ(2d+ 1)

Consider D = d and Q = 2d+ 1 with λd = ∆xd

∆t and

vdq = λdδqd − λdδq(d+(d+1)). (26)

Define

feq
q =


Gq+

λq
, for q ∈ {1, 2, . . . , d}

U −
∑d

d=1

(
Gd++Gd−

λd

)
, for q = d+ 1

G(q−(d+1))−

λq−(d+1)
, for q ∈ {d+ 2, d+ 3, . . . , 2d+ 1}

(27)

with Gd = Gd+ − Gd−. This satisfies (21) and leads to the Flux Decomposition technique of [2]. Using an
additional choice, Gd+ and Gd− for a hyperbolic system can be evaluated by a suitable flux splitting method
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Figure 1: Plot of ω̃ vs. ω

available in literature. For instance, one can use Gd+ and Gd− from commonly known flux vector splitting
methods such as kinetic flux vector splitting [41], Steger-Warming flux vector splitting [59] and van Leer’s
flux vector splitting [64]. One can also evaluate Gd+ and Gd− from some flux difference splitting methods
such as Roe’s approximate Riemann solver [53] and kinetic flux difference splitting [56]. If we consider scalar
conservation laws (i.e., p = 1), then we can simply use the sign of wave speed ∂UG

d to determine the split
fluxes as:

∂UG
d+ =

{
∂UG

d if ∂UG
d > 0

0 if ∂UG
d ≤ 0

, ∂UG
d− =

{
0 if ∂UG

d > 0
−∂UG

d if ∂UG
d ≤ 0

, (28)

Gd± =

∫ U

0

∂UG
d±dU if Gd(U = 0) = 0. (29)

The Chapman-Enskog expansion (20) for the case of upwind DdQ(2d+ 1) becomes,

∂tU + ∂xd
Gd(U) = ∆t

(
1

ω̂
− 1

2

)
∂xd

(
δdiλd∂U

(
Gd+ +Gd−)− ∂UG

d∂UG
i
)
∂xi

U. (30)

For positivity of numerical diffusion coefficient, we require

λd∂U
(
Gd+ +Gd−)− ∂UG

d∂UG
i > 0 (31)

along with 0 < ω̂ < 2.
For all the models of equilibrium function described above, a condition relating λd and ∂UG

d is obtained while
ensuring positivity of numerical diffusion coefficient. Such relations are known as sub-characteristic conditions
as they relate the characteristic speeds of vector-kinetic equation to those of the hyperbolic conservation law.

Remark 1. In all the models of equilibrium function described above, 0 < ω̂ < 2 is required for enforcing
the positivity of numerical diffusion coefficient. We know that ω̂ = ω and ω̂ = ω̃ for LBEs in (7) and (10)
respectively. Thus, the stability requirement is,

For LBE in (7) : 0 < ω̂ = ω = ∆t
ϵ < 2 =⇒ 0 < ∆t < 2ϵ, (32)

For LBE in (10) : 0 < ω̂ = ω̃ = ω
1+ω = ∆t

ϵ+∆t < 2 =⇒ ∆t > 0. (33)

It is to be noted that the requirement of 0 < ω̃ < 2 does not impose any upper-bound on ∆t for the LBE in
(10).

Remark 2. For the LBE in (10), the positivity of numerical diffusion coefficient enforces 0 < ω̃ < 2.
However, since ω̃ = ω

1+ω and ω = ∆t
ϵ > 0, ω̃ is restricted to the interval (0, 1). Figure 1 shows the plot of ω̃

vs. ω, and it can be seen that 0 < ω̃ < 1 for ω > 0.
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4 Properties of the lattice Boltzmann equation

In this section, we discuss the properties of LBEs in (7) (with ω̂ = ω) and (10) (with ω̂ = ω̃). The properties
considered are: H-inequality, macroscopic finite difference form, consistency, total variation boundedness and
positivity.

4.1 H-inequality

We prove that an H-inequality is associated with the LBE obtained from semi-implicit discretisation of the
VKE (i.e., (10)). We also show that a constraint on ω is required to associate an H-inequality with the LBE
obtained from explicit discretisation of the VKE (i.e., (7)). For convenience, we consider scalar conservation
laws (i.e., p = 1) in the presentation of H-inequality.

Definition 1. Define a function Hq(fq) such that:

• Hq(fq) is convex with respect to fq (i.e.,
∂Hq

∂fq
is monotonically increasing and

∂2Hq

∂f2
q

is positive-definite),

•
∑Q

q=1 Hq(f
eq
q ) = η(U),

•
∑Q

q=1 Hq(f
eq
q ) ≤

∑Q
q=1 Hq(fq).

We consider the semi-implicit discretisation (8) of VKE with the notation fn+1
qxi

:= fq (x, t+∆t), fn
qyi

:=

fq (x− vq∆t, t) and feqn

qyi
:= feq

q (x− vq∆t, t):

fn+1
qxi

= fn
qyi

− ω
(
fn+1
qxi

− feqn

qyi

)
. (34)

Theorem 1. There exists an inequality

Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
≤ −ω

(
Hq

(
fn+1
qxi

)
−Hq

(
feqn

qyi

))
(35)

corresponding to the semi-implicit discretisation (34) of VKE with ω = ∆t
ϵ > 0. Here, Hq(fq) follows the

definition 1.

Proof. Left multiplying
∂Hq

∂fq

∣∣∣
fn+1
qxi

to (34), we get

∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− fn
qyi

)
= −ω

∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− feqn

qyi

)
. (36)

We consider the left and right hand sides of the above equation separately.
By mean value theorem, we have

∂Hq

∂fq

∣∣∣∣
fa

(
fn+1
qxi

− fn
qyi

)
= Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
(37)

for some fa lying on the line segment connecting fn+1
qxi

and fn
qyi

. Further, we have the following due to the

monotonicity of
∂Hq

∂fq
:

fn+1
qxi

≥ fa ≥ fn
qyi

=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≥ ∂Hq

∂fq

∣∣∣∣
fa

≥ ∂Hq

∂fq

∣∣∣∣
fn
qyi

, (38)

fn+1
qxi

≤ fa ≤ fn
qyi

=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≤ ∂Hq

∂fq

∣∣∣∣
fa

≤ ∂Hq

∂fq

∣∣∣∣
fn
qyi

. (39)

Thus, we obtain the following inequality involving the term on the left hand side of (36):

Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
=

∂Hq

∂fq

∣∣∣∣
fa

(
fn+1
qxi

− fn
qyi

)
≤ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− fn
qyi

)
. (40)
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On the other hand, we also have the following by mean value theorem:

∂Hq

∂fq

∣∣∣∣
fb

(
fn+1
qxi

− feqn

qyi

)
= Hq

(
fn+1
qxi

)
−Hq

(
feqn

qyi

)
(41)

for some fb lying on the line segment connecting fn+1
qxi

and feqn

qyi
. Further, due to the monotonicity of

∂Hq

∂fq
,

we have

fn+1
qxi

≥ fb ≥ feqn

qyi
=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≥ ∂Hq

∂fq

∣∣∣∣
fb

≥ ∂Hq

∂fq

∣∣∣∣
feqn
qyi

, (42)

fn+1
qxi

≤ fb ≤ feqn

qyi
=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≤ ∂Hq

∂fq

∣∣∣∣
fb

≤ ∂Hq

∂fq

∣∣∣∣
feqn
qyi

. (43)

Thus, we obtain the following inequality involving the term on the right hand side of (36):

Hq

(
fn+1
qxi

)
−Hq

(
feqn

qyi

)
=

∂Hq

∂fq

∣∣∣∣
fb

(
fn+1
qxi

− feqn

qyi

)
≤ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− feqn

qyi

)
. (44)

Therefore, from (40) and (44), we obtain

Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
≤ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− fn
qyi

)
(45)

= −ω
∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− feqn

qyi

)
(46)

≤ −ω
(
Hq

(
fn+1
qxi

)
−Hq

(
feqn

qyi

))
, since ω =

∆t

ϵ
> 0. (47)

Remark 3. The following can be inferred from the above theorem:

Hq

(
fn+1
qxi

)
≤ 1

1 + ω
Hq

(
fn
qyi

)
+

ω

1 + ω
Hq

(
feqn

qyi

)
, (48)

Hq

(
fn+1
qxi

)
≤ (1− ω̃)Hq

(
fn
qyi

)
+ ω̃Hq

(
feqn

qyi

)
. (49)

Since
∑Q

q=1 Hq

(
feqn

qyi

)
≤
∑Q

q=1 Hq

(
fn
qyi

)
according to the definition of Hq, we obtain

Q∑
q=1

Hq

(
fn+1
qxi

)
≤

Q∑
q=1

Hq

(
fn
qyi

)
. (50)

Thus, for the LBE obtained from semi-implicit discretisation of the VKE, the H-inequality holds without
enforcing any constraint on ω = ∆t

ϵ .
The following remark 4 presents H-inequality for general LBE, and the associated conditions. This has been
presented particularly for explicit case in [13].

Remark 4. Consider the general LBE,

fn+1
qxi

= (1− ω̂) fn
qyi

+ ω̂feqn

qyi
(51)

with ω̂ = ω (for explicit discretisation of VKE) and ω̂ = ω̃ (for semi-implicit discretisation of VKE). Applying
Hq on this LBE, we obtain

Hq

(
fn+1
qxi

)
= Hq

(
(1− ω̂) fn

qyi
+ ω̂feqn

qyi

)
(52)

≤ (1− ω̂)Hq

(
fn
qyi

)
+ ω̂Hq

(
feqn

qyi

)
, for 0 < ω̂ ≤ 1 (53)

Since
∑Q

q=1 Hq

(
feqn

qyi

)
≤
∑Q

q=1 Hq

(
fn
qyi

)
, we obtain

Q∑
q=1

Hq

(
fn+1
qxi

)
≤

Q∑
q=1

Hq

(
fn
qyi

)
. (54)
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Thus, the H-inequality holds for the general LBE if the constraint 0 < ω̂ ≤ 1 is satisfied. It is to be noted
that the H-inequality yields a stronger constraint on ω̂ than the positivity of numerical diffusion coefficient.
From the above remarks, the following can be inferred:

• For LBE obtained by explicit discretisation of VKE, ω̂ = ω. Hence, H-inequality holds corresponding
to this LBE if 0 < ω = ∆t

ϵ ≤ 1. It is to be noted that this constraint on ω is more restrictive than the
constraint 0 < ω < 2 that enforces positivity of numerical diffusion coefficient.

• For LBE obtained by semi-implicit discretisation of VKE, ω̂ = ω̃ = ω
1+ω . According to remark 4, H-

inequality holds corresponding to this LBE if 0 < ω̃ = ω
1+ω ≤ 1, and this is satisfied for all ω = ∆t

ϵ > 0.
This also agrees with remark 3 which states that H-inequality holds corresponding to this LBE for all
ω = ∆t

ϵ > 0. Thus, the semi-implicit case of LBE is entropy-satisfying by construction.

4.2 Macroscopic finite difference form

In this section, we show the macroscopic finite difference form of LBEs in (7) (with ω̂ = ω) and (10) (with
ω̂ = ω̃).
We briefly provide some technicalities for clarity. LBE is evolved on a fixed uniform grid with spacing ∆xd

along direction d. At every time step, λd,n is evaluated such that the sub-characteristic condition obtained by
enforcing the positivity of numerical diffusion coefficient is satisfied. Thus, the discrete velocities can change
with time step, and they are given by: vdq,n = mq|d λd,n, where mq|d ∈ Z is constant for direction d and qth

discrete velocity. The current time step is found by using tn+1 − tn := ∆tn = ∆xd

λd,n
. Note that in addition

to satisfying the sub-characteristic condition, λd,n > ∆xd is essential for upper-bounding ∆tn as ∆tn < 1.
Further, ω is kept constant for all time steps, and hence ϵ is allowed to depend on n as ∆tn depends on n.
For convenience, we consider one dimension (D = 1) in the presentation of macroscopic finite difference form.
Hence, the subscript and superscript d indicating dth dimension can be ignored in all the variables. We
consider the general LBE,

fq (xi, tn +∆tn) = (1− ω̂)fq (xi − vq,n∆tn, tn) + ω̂feq
q (U (xi − vq,n∆tn, tn)) (55)

with ω̂ = ω and ω̂ = ω̃ respectively for explicit and semi-implicit cases. For brevity, we introduce the following
notations:
fn+1
qi := fq (xi, tn +∆tn), f

n
qi−mq

:= fq (xi − vq,n∆tn, tn) and feqn

qi−mq
:= feq

q (U (xi − vq,n∆tn, tn)).

We also utilise the splitting of fn
qi as equilibrium and non-equilibrium parts: fn

qi = feqn

qi + fneqn

qi ,∀i, n.
Note here that we have absorbed ϵ of ϵfneqn

qi (refer (5)) into fneqn

qi (i.e., fneqn

qi = O(ϵ)) for convenience in

presentation. Further, we also assume that f0
qi = feq0

qi at the initial time. Thus, fneq0

qi = 0.

Theorem 2. The general LBE
fn+1
qi = (1− ω̂)fn

qi−mq
+ ω̂feqn

qi−mq
(56)

is equivalent to

fn+1
qi = ω̂

(
N−1∑
k=0

(1− ω̂)kfeqn−k

qi−(k+1)mq

)
+ (1− ω̂)Nfeqn−N

qi−(N+1)mq
(57)

if fneqn−N

qi−(N+1)mq
= 0. Here N ∈ N.

Proof. Using fn
qi−mq

= feqn

qi−mq
+ fneqn

qi−mq
in the general LBE (56), we obtain

fn+1
qi = feqn

qi−mq
+ (1− ω̂)fneqn

qi−mq
. (58)

Using fn+1
qi = feqn+1

qi + fneqn+1

qi in the above equation yields

fneqn+1

qi = −feqn+1

qi + feqn

qi−mq
+ (1− ω̂)fneqn

qi−mq
. (59)

Inserting fneqn+1

qi from the above equation into fneqn

qi−mq
in (58) by employing the transformation n := n′ + 1,

i−mq := i′, we get

fn+1
qi = feqn

qi−mq
+ (1− ω̂)

(
−feqn

qi−mq
+ feqn−1

qi−2mq
+ (1− ω̂)fneqn−1

qi−2mq

)
, (60)

= ω̂feqn

qi−mq
+ (1− ω̂)

(
feqn−1

qi−2mq
+ (1− ω̂)fneqn−1

qi−2mq

)
. (61)
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Recursively inserting fneqn+1

qi from (59) into the non-equilibrium term of above equation with the transfor-
mation n− j := n′ + 1 and i− (j + 1)mq := i′ where j ∈ {1, 2, . . . , N − 1}, we get

fn+1
qi = ω̂

(
(1− ω̂)0feqn

qi−mq
+ (1− ω̂)1feqn−1

qi−2mq
+ · · ·+ (1− ω̂)N−1feqn−(N−1)

qi−Nmq

)
+ (1− ω̂)N

(
feqn−N

qi−(N+1)mq
+ (1− ω̂)fneqn−N

qi−(N+1)mq

)
. (62)

If fneqn−N

qi−(N+1)mq
= 0, then we obtain (57).

The above theorem depicts the multi-step nature of LBE by considering tn−N as the initial time. That is,
fn+1
qi depends on the values of the equilibrium function in neighboring grid points at all previous time steps

starting from the initial time tn−N . Note that fneqn−N

qi−(N+1)mq
= 0 as fn−N

qi−(N+1)mq
= feqn−N

qi−(N+1)mq
is considered at

the initial time.
Summing (57) over q with some form of equilibrium function discussed in section 3.2, we obtain the macro-
scopic finite difference form. In this work, we consider the upwind DdQ(2d + 1) model (i.e., D1Q3 for one
dimension). The equilibrium function for upwind D1Q3 model is,

feqn

1i
=

G+n

i

λn
(63)

feqn

2i
= Un

i − G+n

i +G−n

i

λn
(64)

feqn

3i
=

G−n

i

λn
(65)

and the corresponding velocities are v1,n = λn, v2,n = 0 and v3,n = −λn. Thus, m1 = 1, m2 = 0 and
m3 = −1.

Remark 5. For k ∈ {0, 1, . . . , N}, we have

3∑
q=1

feqn−k

qi−(k+1)mq
= feqn−k

1i−(k+1)
+ feqn−k

2i
+ feqn−k

3i+(k+1)
(66)

=
G+n−k

i−(k+1)

λn−k
+ Un−k

i − G+n−k

i +G−n−k

i

λn−k
+

G−n−k

i+(k+1)

λn−k
(67)

= Un−k
i − 1

λn−k

((
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

))
(68)

= Un−k
i − ∆tn−k

∆x

((
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

))
. (69)

Defining the notation

Un−k+1
i,(k+1) := Un−k

i − ∆tn−k

∆x

((
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

))
, (70)∑3

q=1 (57) becomes

Un+1
i = ω̂

(
N−1∑
k=0

(1− ω̂)kUn−k+1
i,(k+1)

)
+ (1− ω̂)NUn−N+1

i,(N+1) . (71)

(71) is the macroscopic finite difference form of the LBEs in (7) (with ω̂ = ω) and (10) (with ω̂ = ω̃).

Remark 6. If ω̂ = 1, then (1− ω̂)0 = 1 and (1− ω̂)k = 0 for k ∈ {1, 2, . . . , N}. In this case, the macroscopic
finite difference form (71) becomes,

Un+1
i = Un+1

i,1 = Un
i − ∆tn

∆x

((
G+n

i −G+n

i−1

)
−
(
G−n

i+1 −G−n

i

))
(72)

which is an explicit (or forward) Euler upwind scheme for the hyperbolic system ∂tU + ∂xG(U) = 0.

Note: For k ∈ {0, 1, . . . , N}, Un−k+1
i,(k+1) in (70) is an explicit (or forward) Euler upwind discretisation of

the hyperbolic system ∂tU + ∂xG(U) = 0, at time tn−k+1 with grid spacing (k + 1)∆x. Thus, (71) which
is the macroscopic finite difference form of LBE is simply a linear combination of upwind discretisations at
varied time levels and grid spacings.
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Remark 7. For 0 < ω̂ < 1, (1− ω̂)k > 0 holds true for k ∈ {0, 1, . . . , N}. Hence, in this case, numerical dif-
fusion of the macroscopic finite difference form (71) has positively weighted contributions from each Un−k+1

i,(k+1) .

Thus, when 0 < ω̂ < 1, it is expected that the numerical diffusion increases with decrease in ω̂ while all the
parameters remain frozen.
On the other hand, when 1 < ω̂ < 2, the sign of (1 − ω̂)k alternates with k. Therefore, numerical diffu-
sion of the macroscopic finite difference form (71) experiences alternately signed (with respect to k) weighted
contributions from Un−k+1

i,(k+1) .

As a consequence, the minimum (over ω̂) numerical diffusion in LBE obtained by semi-implicit discreti-
sation of VKE is larger than that in the explicit case.

4.3 Consistency

In this section, we discuss the consistency of the macroscopic finite difference form (71) with the hyperbolic
system ∂tU + ∂xG(U) = 0.

Theorem 3. Under suitable smoothness assumptions on all involved variables, the expression (70) becomes

Un−k+1
i,(k+1) =

{
Un
i −

∑k
j=1 ∆tn−j ∂tU |ni − (k + 1)∆tn−k∂x G|ni for k ∈ {1, 2, . . . , N}

Un
i − (k + 1)∆tn−k∂x G|ni for k = 0

(73)

upto O
(
k(k + 1)∆x2

)
, if ∆tm = O(∆x) ∀m.

Proof. Taylor expanding each term in Un−k+1
i,(k+1) :

Un−k
i =

{
Un
i −

∑k
j=1 ∆tn−j ∂tU |ni +O

(
(k∆x)

2
)

for k ∈ {1, 2, . . . , N}
Un
i for k = 0

(74)

since

k∑
j=1

∆tn−j = O(k∆x) ( as ∆tm = O(∆x),∀m)

(
G+n−k

i −G+n−k

i−(k+1)

)
= (k + 1)∆x∂x G+

∣∣n−k

i
+O

(
((k + 1)∆x)

2
)

(
G−n−k

i+(k+1) −G−n−k

i

)
= (k + 1)∆x∂x G−∣∣n−k

i
+O

(
((k + 1)∆x)

2
)

(
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

)
= (k + 1)∆x∂x

(
G+ −G−)∣∣n−k

i

= (k + 1)∆x∂x G|n−k
i (75)

upto O
(
((k + 1)∆x)

2
)

∂x G|n−k
i =

{
∂x G|ni −

∑k
j=1 ∆tn−j∂tx G|ni +O

(
(k∆x)

2
)

for k ∈ {1, 2, . . . , N}
∂x G|ni for k = 0

(76)

For k ∈ {1, 2, . . . , N},

(k + 1)∆x∂x G|n−k
i ≃ (k + 1)∆x∂x G|ni −

k∑
j=1

∆tn−j(k + 1)∆x∂tx G|ni

= (k + 1)∆x∂x G|ni +O
(
k(k + 1)∆x2

)
, (77)

since ∆tm = O(∆x),∀m.
Thus, inserting the above expressions into (70), we get (73).

Remark 8. Taylor expanding Un+1
i about Un

i , we get

Un+1
i = Un

i +∆tn ∂tU |ni +O
(
∆t2n

)
. (78)
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Inserting (73) and the above expression into (71), we obtain

Un
i +∆tn ∂tU |ni = ω̂

(
(1− ω̂)0 (Un

i −∆tn∂x G|ni )

+

N−1∑
k=1

(1− ω̂)k

Un
i −

k∑
j=1

∆tn−j ∂tU |ni − (k + 1)∆tn−k∂x G|ni


+ (1− ω̂)N

Un
i −

N∑
j=1

∆tn−j ∂tU |ni − (N + 1)∆tn−N∂x G|ni

 (79)

upto O
(
N(N + 1)∆x2

)
. Upon simplifying the above expression, we obtain the following upto O

(
N(N + 1)∆x2

)
:(

1− ω̂

N−1∑
k=0

(1− ω̂)k − (1− ω̂)N

)
Un
i

+

∆tn + ω̂

N−1∑
k=1

(1− ω̂)k
k∑

j=1

∆tn−j + (1− ω̂)N
N∑
j=1

∆tn−j

 ∂tU |ni

+

(
ω̂

N−1∑
k=0

(1− ω̂)k(k + 1)∆tn−k + (1− ω̂)N (N + 1)∆tn−N

)
∂x G|ni = 0. (80)

Remark 9. The coefficients of Un
i and ∂tU |ni in (80) can be simplified as shown below:

1− ω̂

N−1∑
k=0

(1− ω̂)k − (1− ω̂)N = 1− ω̂

(
1− (1− ω̂)

N

1− (1− ω̂)

)
− (1− ω̂)N , for ω̂ ̸= 0

= 0 (81)

Since 1 = ω̂
∑N−1

k=0 (1− ω̂)k + (1− ω̂)N , we have ∆tn =
(
ω̂
∑N−1

k=0 (1− ω̂)k + (1− ω̂)N
)
∆tn. Therefore,

∆tn+ ω̂

N−1∑
k=1

(1− ω̂)k
k∑

j=1

∆tn−j +(1− ω̂)N
N∑
j=1

∆tn−j = ω̂

N−1∑
k=0

(1− ω̂)k
k∑

j=0

∆tn−j +(1− ω̂)N
N∑
j=0

∆tn−j . (82)

Inserting (81) and (82) into (80), we obtainω̂

N−1∑
k=0

(1− ω̂)k
k∑

j=0

∆tn−j + (1− ω̂)N
N∑
j=0

∆tn−j

 ∂tU |ni

+

(
ω̂

N−1∑
k=0

(1− ω̂)k(k + 1)∆tn−k + (1− ω̂)N (N + 1)∆tn−N

)
∂x G|ni = 0. (83)

upto O
(
N(N + 1)∆x2

)
.

Remark 10. If ∆tm = ∆t,∀m, then (83) becomes(
ω̂

N−1∑
k=0

(1− ω̂)k(k + 1)∆t+ (1− ω̂)N (N + 1)∆t

)
(∂tU |ni + ∂x G|ni ) = O

(
N(N + 1)∆x2

)
,

=⇒ ∂tU |ni + ∂x G|ni = O (N∆x) . (84)

Thus, in this case, the macroscopic finite difference form of LBE is consistent with the hyperbolic system.

Remark 11. If ω̂ = 1, then (1− ω̂)0 = 1 and (1− ω̂)k = 0 for k ∈ {1, 2, . . . , N}. Thus (83) becomes

∆tn (∂tU |ni + ∂x G|ni ) = O
(
N(N + 1)∆x2

)
,

=⇒ ∂tU |ni + ∂x G|ni = O (N(N + 1)∆x) . (85)

Therefore, the macroscopic finite difference form of LBE is consistent with the hyperbolic system for this case
too.
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Although the lattice Boltzmann algorithm is consistent for the two special cases: (i) constant time step
size and (ii) ω̂ = 1, it can be seen from (83) that consistency cannot be attained in the general case as∑k

j=0 ∆tn−j ̸= (k + 1)∆tn−k for k ∈ {1, 2, . . . , N}. However, one can choose constant ∆t such that the
sub-characteristic condition holds for all time steps. In this way, the algorithm will be consistent with the
hyperbolic system for the choice of the time-step satisfying the sub-characteristic condition.

4.4 Total Variation Boundedness

The total variation boundedness (TVB) property of a numerical method for hyperbolic system ensures that
the spatial variation remains bounded for all time steps. In this section, we discuss the TVB property of
our lattice Boltzmann method by using its macroscopic finite difference form (71). This expression contains
Un−k+1
i,(k+1) for k ∈ {0, 1, . . . , N}. For discussion of TVB property, we consider Un−k+1

i,(k+1) derived by utilising

upwind D1Q3 equilibrium function as in section 4.2.

Definition 2. The total variation of any variable θ defined on a lattice structure indexed by i is given by,

TV(θ) =
∑
i

|θi+1 − θi|

Theorem 4. Let Un+1
i given by (71) be the macroscopic finite difference form. Then, its total variation

satisfies

TV
(
Un+1

)
≤

(
|ω̂|

N−1∑
k=0

|1− ω̂|k + |1− ω̂|N
)
C (86)

if TV
(
Un−k+1
(k+1)

)
≤ C, for k ∈ {0, 1, . . . , N}.

Proof. Consider Un+1
i given by (71). Then, Un+1

i+1 − Un+1
i becomes

Un+1
i+1 − Un+1

i = ω̂

(
N−1∑
k=0

(1− ω̂)k
(
Un−k+1
i+1,(k+1) − Un−k+1

i,(k+1)

))
+ (1− ω̂)N

(
Un−N+1
i+1,(N+1) − Un−N+1

i,(N+1)

)
.

Then,

∣∣Un+1
i+1 − Un+1

i

∣∣ ≤ |ω̂|
N−1∑
k=0

|1− ω̂|k
∣∣∣Un−k+1

i+1,(k+1) − Un−k+1
i,(k+1)

∣∣∣+ |1− ω̂|N
∣∣∣Un−N+1

i+1,(N+1) − Un−N+1
i,(N+1)

∣∣∣ ,
=⇒ TV

(
Un+1

)
≤ |ω̂|

N−1∑
k=0

|1− ω̂|k TV
(
Un−k+1
(k+1)

)
+ |1− ω̂|N TV

(
Un−N+1
(N+1)

)
.

Using TV
(
Un−k+1
(k+1)

)
≤ C for k ∈ {0, 1, . . . , N} in the above expression, we get (86).

Remark 12. If 0 < ω̂ ≤ 1, then (86) becomes

TV
(
Un+1

)
≤

(
ω̂

N−1∑
k=0

(1− ω̂)
k
+ (1− ω̂)

N

)
C (87)

= C, since ω̂

N−1∑
k=0

(1− ω̂)
k
+ (1− ω̂)

N
= 1. (88)

Therefore, if the underlying difference scheme
(
Un−k+1
i,(k+1)

)
due to the choice of equilibrium function is TVB,

then the lattice Boltzmann method induced by it is also TVB (i.e., TV
(
Un+1

)
≤ C) if 0 < ω̂ ≤ 1.

Since upwind methods are TVB, TV
(
Un−k+1
(k+1)

)
≤ C is true for the choice of upwind equilibrium function.

Hence, the corresponding lattice Boltzmann method is also TVB if 0 < ω̂ ≤ 1.
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4.5 Positivity

Some of the variables of hyperbolic systems are positive for all time (e.g., density and internal energy in Euler’s
system of gas dynamics, water height in shallow water system). Numerical schemes for such hyperbolic
systems are expected to ensure the positivity of these variables. In this section, we show the positivity
property of our lattice Boltzmann method by using its macroscopic finite difference form (71). Un−k+1

i,(k+1) in

this expression is derived by utilising upwind D1Q3 equilibrium function as in section 4.2.

Theorem 5. Let Un+1
i given by (71) be the macroscopic finite difference form. If Un−k+1

i,(k+1) is positive for

k ∈ {0, 1, . . . , N} and 0 < ω̂ ≤ 1, then Un+1
i is positive.

Proof. This is trivially seen from (71).

Therefore, if the underlying difference scheme
(
Un−k+1
i,(k+1)

)
due to the choice of equilibrium function is

positive, then the lattice Boltzmann method induced by it is also positive if 0 < ω̂ ≤ 1.

Thus, we discussed some properties of our LBEs. To conclude, the stability-related properties like H-
inequality, total variation boundedness, and positivity are realisable if the stronger condition 0 < ω̂ ≤ 1
is satisfied (naturally satisfied in the semi-implicit case) while small numerical diffusion is realisable for ω̂ > 1
(explicit case can be used in the interval 1 < ω̂ < 2 while ensuring positivity of numerical diffusion coefficient),
depicting the trade-off between stability and accuracy.

Remark 13. It is expected that the properties of LBM can be understood from its macroscopic finite difference
form in (71) by utilising the properties of corresponding underlying difference scheme Un−k+1

i,(k+1) that occurs due

to the choice of equilibrium functions. For instance, discrete conservation (with periodic boundary conditions)
of LBM is evident if Un−k+1

i,(k+1) satisfies discrete conservation with periodic boundary conditions.

Thus, in this section, novel discussions concerning LBEs derived by semi-implicit and explicit discreti-
sations of VKE, on properties such as H-inequality, macroscopic finite difference form, consistency, total
variation boundedness and positivity have been presented.

5 Hyperbolic conservation laws with source terms

In this section, we extend our lattice Boltzmann method to hyperbolic conservation laws with source terms.
Consider

∂tU + ∂xd
Gd(U) = S(U), (89)

where S(U) is the source term.

5.1 Vector-kinetic equation

To approximate (89), consider the vector-kinetic equation

∂tfq + ∂xd

(
vdqfq

)
= −1

ϵ

(
fq − feq

q (U)
)
+ r(fq). (90)

Summing (90) over all q, we get

∂t

Q∑
q=1

fq + ∂xd

Q∑
q=1

(
vdqfq

)
= −1

ϵ

Q∑
q=1

(
fq − feq

q (U)
)
+

Q∑
q=1

r(fq). (91)

If
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U and

∑Q
q=1 r(fq) = S(U), the above equation becomes

∂tU + ∂xd

Q∑
q=1

(
vdqfq

)
= S(U). (92)

In the limit ϵ → 0, we infer from (90) that fq → feq
q (U). If

∑Q
q=1 v

d
qf

eq
q = Gd(U), then (92) becomes (89) in

the limit ϵ → 0.
Hereafter, we denote rq := r(fq) for convenience.
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5.2 Lattice Boltzmann equation

As in section 3, fq in the collision term can be treated both explicitly and implicitly leading to LBEs with
ω̂ = ω and ω̂ = ω̃ = ω

1+ω respectively. The source term rq is discretised in Crank-Nicolson fashion. Thus,
the LBE becomes

fq (x, t+∆t) = (1− ω̂)fq (x− vq∆t, t) + ω̂feq
q (U (x− vq∆t, t))

+
∆t

2
(rq (x, t+∆t) + rq (x− vq∆t, t)) . (93)

The collision-streaming algorithm

Collision: F ∗
q = (1− ω̂)fq (x− vq∆t, t) + ω̂feq

q (U (x− vq∆t, t)) + ∆t
2 rq (x− vq∆t, t)

Streaming: Fq (x, t+∆t) = F ∗
q (x− vq∆t, t)

can be used to numerically implement the LBEs. After finding Fq (x, t+∆t) = fq (x, t+∆t)−∆t
2 rq (x, t+∆t),

we find U (x, t+∆t) by solving∑
q

Fq (x, t+∆t) = U (x, t+∆t)− ∆t

2
S(U (x, t+∆t)) (94)

using a non-linear iterative solver (e.g., Newton’s root finding method).

5.3 Chapman-Enskog expansion

The Chapman-Enskog expansion can be obtained by first Taylor expanding the LBE (93) as,

(∂t + vq · ∇) fq = − ω̂

∆t

(
fq − feq

q

)
+

ω̂

2
(∂t + vq · ∇)

(
fq − feq

q

)
+ rq +O(∆t2). (95)

Consider the perturbation expansions:

fq = feq
q + ϵf (1)

q + ϵ2f (2)
q + . . . ; rq = ϵr(1)q + ϵ2r(2)q + . . . (96)

Since
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U , we have

∑Q
q=1 f

(i)
q = 0,∀i ∈ N. Multiple scale expansion of derivatives of

fq gives ∂tfq =
(
ϵ∂

(1)
t + ϵ2∂

(2)
t + ...

)
fq and vq · ∇fq = ϵvq · ∇(1)fq.

Using perturbation expansion of fq, rq and multiple scale expansion of derivatives of fq in (95) and separating
out O(ϵ) and O(ϵ2) terms,

O(ϵ) :
(
∂
(1)
t + vq · ∇(1)

)
feq
q = − ω̂

∆tf
(1)
q + r

(1)
q (97)

O(ϵ2) : ∂
(2)
t feq

q +
(
1− ω̂

2

) (
∂
(1)
t + vq · ∇(1)

)
f
(1)
q = − ω̂

∆tf
(2)
q + r

(2)
q (98)

Zeroth moment
(∑Q

q=1

)
of O(ϵ) terms in (97) and O(ϵ2) terms in (98) respectively give

∂
(1)
t U + ∂(1)

xd
Gd(U) =

Q∑
q=1

r(1)q , (99)

∂
(2)
t U +

(
1− ω̂

2

)
∂(1)
xd

(
Q∑

q=1

v(d)q f (1)
q

)
=

Q∑
q=1

r(2)q . (100)

From the first moment
(∑Q

q=1 v
d
q

)
of O(ϵ) terms in (97), we get

Q∑
q=1

vdqf
(1)
q = −∆t

ω̂

(
∂UG

d

(
−∂UG

i∂(1)
xi

U +

Q∑
q=1

r(1)q

)
−

Q∑
q=1

vdq r
(1)
q + ∂(1)

xi

(
Q∑

q=1

vdqv
i
qf

eq
q

))
(101)
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Recombining the zeroth moment equations of O(ϵ) in (99) and O(ϵ2) in (100) and reversing the multiple scale
expansions, we get

∂tU + ∂xd
Gd(U) = S(U) + ∆t

(
1

ω̂
− 1

2

)∂xd

(
∂xi

(
Q∑

q=1

vdqv
i
qf

eq
q

)
− ∂UG

d∂UG
i∂xi

U

)
︸ ︷︷ ︸

Numerical Diffusion

+ ∂xd

(
∂UG

d

Q∑
q=1

rq −
Q∑

q=1

vdq rq

)
︸ ︷︷ ︸

Spurious Numerical Convection

 . (102)

5.4 Spurious Numerical Convection and modelling rq

The spurious numerical convection in (102) due to the discretisation of source term must by avoided in order
to have a reliable numerical method. Therefore, we require rq to satisfy

Q∑
q=1

vdq rq = ∂UG
d

Q∑
q=1

rq = ∂UG
dS(U). (103)

Thus, an rq that satisfies (103) along with
∑Q

q=1 rq = S(U) is required. Note that these requirements are
similar to those imposed on feq

q , and hence expressions similar to those in section 3.2 could be obtained for
different models:

Classical D1Q2 : rq = 1
2S(U)− (−1)q 1

2λ∂UG
1S(U), for q ∈ {1, 2}

D1Q3 : rq = 1
3S(U) + (δq1 − δq3)

1
2λ∂UG

1S(U), for q ∈ {1, 2, 3}

Upwind DdQ(2d+ 1) : rq =


∂UGq+S(U)

λq
, for q ∈ {1, 2, . . . , d}

S(U)−
∑d

d=1

(
(∂UGd++∂UGd−)S(U)

λd

)
, for q = d+ 1

∂UG(q−(d+1))−S(U)
λq−(d+1)

, for q ∈ {d+ 2, . . . , 2d+ 1}

Thus, after finding U (x, t+∆t) by solving (94), we can find feq
q (U (x, t+∆t)) (as discussed in section 3.2)

and rq (U (x, t+∆t)) (as discussed above), before proceeding with the next time step.

Remark 14. We modelled rq such that the spurious numerical convection due to discretisation of source term
is nullified. This prevents the occurrence of spurious wave speeds and incorrect locations of discontinuities,
commonly encountered in literature. Thus, balancing of convection and source terms which is a crucial
problem in the finite volume framework, can be easily handled in the lattice Boltzmann framework. Our
strategy thus enforces the desired property of well-balancing and, at the same time, takes care of stiffness
of the source terms to a significant extent.
Note that rq is of O(ϵ) in (96). Hence, our method and underlying removal of numerical convection works

well for S(U) =
∑Q

q=1 rq = O(ϵ).

6 D2Q9 model of lattice Boltzmann method

The equilibrium function in (27) causes the underlying difference scheme
(
Un−k+1
i,(k+1)

)
to result in pure upwind-

ing along the coordinate directions. In this section, in addition to discrete velocities moving along coordinate
directions, we also introduce discrete velocities moving along diagonal-to-coordinate directions. This enables
the splitting of positive and negative fluxes even along diagonal-to-coordinate directions, thereby resulting
in better multi-dimensional behavior. We consider two dimensions and a uniform lattice with equal grid
spacing, with ∆x1 = ∆x2 := ∆x, in our presentation.
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6.1 Equilibrium function

We consider 9 discrete velocities: v1 = [λ, 0], v2 = [0, λ], v3 = [λ, λ], v4 = [−λ, λ], v5 = [0, 0], v6 = [−λ, 0],
v7 = [0,−λ], v8 = [−λ,−λ], v9 = [λ,−λ], and the corresponding equilibrium functions:

feq
1 =

Gα+

λ
, feq

2 =
Gβ+

λ
, feq

3 =
Gγ+

λ
, feq

4 =
Gζ+

λ
,

feq
5 = U − 1

λ

((
Gα+ +Gβ+ +Gγ+ +Gζ+

)
+
(
Gα− +Gβ− +Gγ− +Gζ−)) , (104)

feq
6 =

Gα−

λ
, feq

7 =
Gβ−

λ
, feq

8 =
Gγ−

λ
, feq

9 =
Gζ−

λ
.

Here Gl+ −Gl− = Gl for l ∈ Z = {α, β, γ, ζ}. These equilibrium functions satisfy
∑Q=9

q=1 feq
q = U . In order

to ensure
∑Q=9

q=1 vdqf
eq
q = Gd(U), we need to satisfy the following requirements:

Q=9∑
q=1

v1qf
eq
q = Gα +Gγ −Gζ = G1(U), (105)

Q=9∑
q=1

v2qf
eq
q = Gβ +Gγ +Gζ = G2(U). (106)

Thus, we have

Gγ =
G2 +G1

2
− Gβ +Gα

2
and Gζ =

G2 −G1

2
− Gβ −Gα

2
, ∀Gα, Gβ . (107)

In this setting, the underlying difference scheme corresponding to the equilibrium function (104) is:

Un−k+1
i,j,(k+1) := Un−k

i,j − ∆tn−k

∆x

((
Gα+n−k

i,j −Gα+n−k

i−(k+1),j

)
−
(
Gα−n−k

i+(k+1),j −Gα−n−k

i,j

))
− ∆tn−k

∆x

((
Gβ+n−k

i,j −Gβ+n−k

i,j−(k+1)

)
−
(
Gβ−n−k

i,j+(k+1) −Gβ−n−k

i,j

))
− ∆tn−k

∆x

((
Gγ+n−k

i,j −Gγ+n−k

i−(k+1),j−(k+1)

)
−
(
Gγ−n−k

i+(k+1),j+(k+1) −Gγ−n−k

i,j

))
− ∆tn−k

∆x

((
Gζ+n−k

i,j −Gζ+n−k

i+(k+1),j−(k+1)

)
−
(
Gζ−n−k

i−(k+1),j+(k+1) −Gζ−n−k

i,j

))
. (108)

Further, the Chapman-Enskog expansion (20) corresponding to the equilibrium function (104) becomes,

∂tU + ∂xd
Gd(U) = ∆t

(
1

ω̂
− 1

2

)
(
∂x1

(
λ∂U

(
Gα+ +Gα− +Gγ+ +Gγ− +Gζ+ +Gζ−)− (∂UG1

)2)
∂x1U

+∂x1

(
λ∂U

(
Gγ+ +Gγ− −Gζ+ −Gζ−)− ∂UG

1∂UG
2
)
∂x2

U

+∂x2

(
λ∂U

(
Gγ+ +Gγ− −Gζ+ −Gζ−)− ∂UG

2∂UG
1
)
∂x1U

+ ∂x2

(
λ∂U

(
Gβ+ +Gβ− +Gγ+ +Gγ− +Gζ+ +Gζ−)− (∂UG2

)2)
∂x2

U

)
. (109)

Thus, in addition to upwinding along coordinate directions, this model allows upwinding even along diagonal-
to-coordinate directions.

6.2 Boundary conditions

In this sub-section, we present the expressions for fq corresponding to those specific q that are unknown at
the boundaries. At boundary, the macroscopic variables U,Gα, Gβ , Gγ and Gζ are known. From these, the
split fluxes Gα±

, Gβ±
, Gγ±

and Gζ±
can be found. Using these split fluxes, equilibrium functions can be

evaluated at the boundary. Thus, by taking fneq
q = fq − feq

q ∀q ∈ {1, 2, .., 9}, it can be inferred from the

definition of conserved moment
∑9

n=1 fq =
∑9

q=1 f
eq
q = U that,

∑9
q=1 f

neq
q = 0.
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(a) Left (b) Right (c) Bottom (d) Top

Figure 2: Boundary conditions (Black lines indicate boundaries; red arrows indicate unknown functions at
each boundary)

6.2.1 Left boundary

At any point on left boundary, f2, f4, f5, f6, f7 and f8 are known from the computational domain, as these
functions from neighbouring points (in the computational domain) hop to points on left boundary. Let I
be the set of these known functions. The unknowns at left boundary are f1, f3 and f9 (as shown in figure
2a), as these functions must come from the outside of computational domain to left boundary, and let J be
the set of these unknown functions. Since feq

q can be evaluated ∀q ∈ {1, 2, .., 9} and fq is known ∀q ∈ I,
fneq
q = fq − feq

q can be found ∀q ∈ I (as I ⊂ {1, 2, .., 9}). Then fneq
q ,∀q ∈ J can be written as,

fneq
3 = −fneq

8 − fneq
2 + fneq

5 + fneq
7

3
(110)

fneq
1 = −fneq

6 − fneq
2 + fneq

5 + fneq
7

3
(111)

fneq
9 = −fneq

4 − fneq
2 + fneq

5 + fneq
7

3
(112)

satisfying
∑9

q=1 f
neq
q = 0. Now, fq = feq

q + fneq
q ∀q ∈ J can be found to be,

f3 =
Gγ+ +Gγ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f8 −

f2 + f5 + f7
3

(113)

f1 =
Gα+ +Gα−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f6 −

f2 + f5 + f7
3

(114)

f9 =
Gζ+ +Gζ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f4 −

f2 + f5 + f7
3

(115)

6.2.2 Right boundary

By following the same procedure of obtaining left boundary conditions, the unknown functions at right
boundary (as shown in figure 2b) can be found as,

f4 =
Gζ+ +Gζ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f9 −

f2 + f5 + f7
3

(116)

f6 =
Gα+ +Gα−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f1 −

f2 + f5 + f7
3

(117)

f8 =
Gγ+ +Gγ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f3 −

f2 + f5 + f7
3

(118)
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6.2.3 Bottom boundary

The unknown functions at bottom boundary (as shown in figure 2c) can be found as,

f3 =
Gγ+ +Gγ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f8 −

f1 + f5 + f6
3

(119)

f2 =
Gβ+ +Gβ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f7 −

f1 + f5 + f6
3

(120)

f4 =
Gζ+ +Gζ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f9 −

f1 + f5 + f6
3

(121)

6.2.4 Top boundary

The unknown functions at top boundary (as shown in figure 2d) can be found as,

f9 =
Gζ+ +Gζ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f4 −

f1 + f5 + f6
3

(122)

f7 =
Gβ+ +Gβ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f2 −

f1 + f5 + f6
3

(123)

f8 =
Gγ+ +Gγ−

λ
+

U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f3 −

f1 + f5 + f6
3

(124)

6.2.5 Bottom-left corner

At bottom left corner, the known equilibrium functions are f7, f8, f5 and f6. The unknown equilibrium
functions are f1, f3, f2, f4 and f9. Since f4 and f9 do not enter or leave the computational domain, evaluation
of them is not needed. Hence, it can be assumed that fneq

9 + fneq
4 + fneq

5 = 0. Then fneq
q for other unknown

equilibrium distribution functions can be written as,

fneq
1 = −fneq

6 (125)

fneq
3 = −fneq

8 (126)

fneq
2 = −fneq

7 (127)

satisfying
∑9

q=1 f
neq
q = 0. Now, fq = feq

q + fneq
q can be found to be,

f1 =
Gα+ +Gα−

λ
− f6 (128)

f3 =
Gγ+ +Gγ−

λ
− f8 (129)

f2 =
Gβ+ +Gβ−

λ
− f7 (130)

(a) Bottom-left (b) Bottom-right (c) Top-left (d) Top-right

Figure 3: Corner conditions (Red arrows indicate unknown functions that are evaluated; Blue arrows
indicate unknown functions that are not evaluated)
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6.2.6 Bottom-right corner

By following the same procedure for obtaining bottom-left corner conditions, the bottom-right corner condi-
tions (as shown in figure 3b) are found to be,

f2 =
Gβ+ +Gβ−

λ
− f7 (131)

f4 =
Gζ+ +Gζ−

λ
− f9 (132)

f6 =
Gα+ +Gα−

λ
− f1 (133)

6.2.7 Top-left corner

The top-left corner conditions (as shown in figure 3c) are,

f1 =
Gα+ +Gα−

λ
− f6 (134)

f9 =
Gζ+ +Gζ−

λ
− f4 (135)

f7 =
Gβ+ +Gβ−

λ
− f2 (136)

6.2.8 Top-right corner

The top-right corner conditions (as shown in figure 3d) are,

f6 =
Gα+ +Gα−

λ
− f1 (137)

f7 =
Gβ+ +Gβ−

λ
− f2 (138)

f8 =
Gγ+ +Gγ−

λ
− f3 (139)

7 Numerical results

In this section, we present the numerical validation of our lattice Boltzmann methods (LBM) discussed in the
previous sections. Firstly, we depict the influence of ω on numerical diffusion and order of accuracy. Then,
we numerically validate our LBM for hyperbolic conservation laws with source terms, and D2Q9 model of
LBM. For all the cases, the numerical results are obtained by using LBE derived by explicit discretisation of
VKE. Due to the algorithmic similarity of LBEs derived by explicit and semi-implicit discretisation of VKE,
the numerical results obtained by semi-implicit case for 0 < ω̃ < 1 are same as that obtained by explicit case
for 0 < ω < 1. Hence we only present the numerical validation of explicit case with larger interval 0 < ω < 2.

7.1 Sinusoidal initial condition

The domain of the problem is [0, 1] ⊂ R. We consider inviscid Burgers’ equation with flux function as
G1(U) = 1

2U
2. The initial condition is U(x1, 0) = sin(2πx1). An LBM with upwind D1Q3 equilibrium

functions is utilised to obtain the numerical solution. λ1 = ∆x1

∆t is chosen such that the sub-characteristic
condition in (31) (which simplifies in this case as λ1 ≥ sup

i∈Ωg

|Ui|, where Ωg is the set of grid points) is satisfied.

Since we expect the numerical solution to be bounded between −1 and 1 for all times, we choose λ1 = 1, and
fix ∆t = ∆x1

λ1
for all time steps in order to have a consistent discretisation of the inviscid Burgers’ equation

(as discussed in remark 10). Further, we consider different values for ω = ∆t
ϵ such as, ω = 0.1, 0.6, 1.0, 1.4, 1.9

and compare their numerical diffusion by freezing all the other parameters. We also consider discretisation
of the domain with different number of grid points N such as, N = 41, 81, 161, 321 in order to study the
order of convergence. The reference solution utilised in finding the L2 error norm is obtained by evaluating
the method of characteristics solution with a tolerance of 10−15.
Tables 1 and 2 show the L2 error norms and convergence orders for different values of ω at time T = 0.1

2π
while the solution is still smooth. It is seen from the tables that for each fixed value of N , L2 error norm
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of the numerical solution increases with decrease in ω, validating the remark 7. Further, although only first
order of accuracy is expected according to Chapman-Enskog expansion (30), we observe more than second
order accuracy for large values of ω. This increase in order of accuracy for large values of ω can be attributed
to the smaller numerical diffusion for ω > 1 when compared to ω < 1, as mentioned in remark 7. We also
observe that O(L2) corresponding to a fixed N increases with increase in ω.

N ∆x1
L2, ω =

1.9
O(L2), ω =
1.9

L2, ω =
1.4

O(L2), ω =
1.4

L2, ω =
1.0

O(L2), ω =
1.0

41 0.025 0.000597 - 0.000597 - 0.000597 -

81 0.0125
9.68

×10−5 2.626 0.000158 1.915 0.000230 1.380

161 0.00625
2.14

×10−5 2.175 3.88×10−5 2.032
6.41

×10−5 1.841

321 0.003125
3.20

×10−6 2.744
1.20

×10−5 1.690
2.33

×10−5 1.460

Table 1: Sinusoidal initial condition at T = 0.1
2π for ω = 1.9, 1.4, 1.0

N ∆x1
L2, ω =

0.6
O(L2), ω =
0.6

L2, ω =
0.1

O(L2), ω =
0.1

41 0.025 0.000597 - 0.000597 -
81 0.0125 0.000306 0.965 0.000405 0.562
161 0.00625 0.000100 1.611 0.000161 1.325

321 0.003125
4.38

×10−5 1.194 0.000103 0.644

Table 2: Sinusoidal initial condition at T = 0.1
2π for ω = 0.6, 0.1

7.2 LBM for hyperbolic conservation laws with source terms

The governing equation is of the form (89) with p=1 (scalar conservation law). We show that our scheme
captures the discontinuities at correct locations due to the nullification of spurious numerical convection by
our choice of rq. Further, since rq = O(ϵ) is essential for such a possibility of nullification as mentioned in
remark 14, the numerical results with correct locations of discontinuities are presented whenever S(U) = O(ϵ).

7.2.1 One dimensional discontinuity

This is the test problem used by LeVeque and Yee [39] to understand the cause for incorrectness in speeds
of discontinuities for stiff source terms. The domain is [0, 1] ⊂ R, and is split up into 50 evenly spaced grid
points. For this problem, G1(U) = U and S(U) = −µU(U − 1)(U − 1

2 ). Initial conditions are:

U(x1, 0) =

{
1 for x1 ≤ 0.3
0 for x1 > 0.3

.

An LBM with upwind D1Q3 form for feq
q and rq is utilised to obtain the numerical solution. λ1 = ∆x1

∆t is
chosen such that the sub-characteristic condition in (31) (which simplifies in this case as λ1 ≥ 1) is satisfied.
In particular, we use λ1 = 1, and this incidentally results in numerical solution being the same as method of
characteristics solution (even in smooth regions) since the wave-speed in the problem is also 1. Therefore, in
addition to capturing discontinuities at correct locations (due to our choice of rq), the solution is also exact
in smooth regions. Further, the time step is chosen as ∆t = ∆x1

λ1
. We also consider ω = 1 for the simulation

of this problem and this ensures consistency with the governing equation irrespective of the choice of ∆t (as
discussed in remark 11).
A comparison of numerical solutions reproduced from LeVeque and Yee [39] and numerical solutions obtained
from our LB scheme is shown in figure 4 at T = 0.3 for different values of µ. The MacCormack’s method
suffers from spurious numerical convection for µ as small as 100, while our LB scheme is devoid of the effects of
spurious numerical convection until µ = 1000. We observe numerical convection in LB scheme for µ ≥ 10000
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(a) µ = 1 (b) µ = 10 (c) µ = 100 (d) µ = 1000

(e) µ = 1 (f) µ = 10 (g) µ = 100 (h) µ = 1000

Figure 4: Top: Extended MacCormack’s method with limiter based on Un(Reproduced from [39]), Bottom:
Our LB scheme for hyperbolic conservation laws with source terms

(not shown in figure), and this validates the remark 14 that our scheme is suitable when S(U) = O(ϵ).
Hence, for this problem, we can infer that ϵ = O(kµ̃) where µ̃ represents the value of µ upto which the
method of nullification of numerical convection works. Thus, ϵ = O(k103) for some constant k < 10−3.

7.2.2 Two dimensional discontinuity

We introduce a variant of LeVeque and Yee [39]’s problem in two dimensions, to understand the effect of ϵ
on numerical convection. The domain is [−1, 1] × [−1, 1] ⊂ R2, and is split up into 100 × 100 grid points.
Note that ∆x1 = ∆x2 = ∆x is same as the grid spacing used in the previous one dimensional problem. For
this problem, G1(U) = G2(U) = U and S(U) = −µU(U − 1)(U − 1

2 ). Initial conditions are:

U(x1, x2, 0) =

{
1 for x2

1 + x2
2 ≤ 0.3

0 for x2
1 + x2

2 > 0.3
.

An LBM with upwind D2Q5 form for feq
q and rq is utilised to obtain the numerical solution. λ = ∆x

∆t is
chosen such that the sub-characteristic condition in (31) is satisfied. This simplifies in this case as

det

(
λ− 1 −1
−1 λ− 1

)
≥ 0 =⇒ λ ≥ 0 and λ ≥ 2.

Further, the time step is chosen as ∆t = ∆x
λ . We also consider ω = 1 for the simulation of this problem and

this ensures consistency with the governing equation irrespective of the choice of ∆t (as discussed in remark
11). A comparison of numerical solutions obtained from MacCormack’s method and our LB scheme is shown
in figure 5 at T = 0.1 for different values of µ. It can be seen that, for µ = 500, the MacCormack’s method
suffers from spurious numerical convection while our LB scheme does not.
In the following, we make an estimation of µ up to which our method will work according to remark 14.
For this, we use subscripts D = 1 and D = 2 to compare certain variables from sections 7.2.1 and 7.2.2
respectively. Since λD=1 = 1, λD=2 = 2, and ∆x is the same for both one and two dimensional problems,
we have ∆tD=2 = ∆tD=1

2 . Further, since ωD=1 = ∆tD=1

ϵD=1
and ωD=2 = ∆tD=2

ϵD=2
are both equal to 1, we have

ϵD=2 = ϵD=1

2 . Thus, since ϵD=1 in section 7.2.1 is O(k103), ϵD=2 for two dimensional problem is O
(
k 103

2

)
.

Hence, for this problem, our LB scheme is expected to be devoid of spurious numerical convection for µ up
to O(500), and this is validated by the numerical results shown in figure 5.

7.2.3 Three dimensional discontinuity

Here, we introduce a variant of LeVeque and Yee [39]’s problem in three dimensions. The domain is [−1, 1]×
[−1, 1]× [−1, 1] ⊂ R3, and is split up into 100× 100× 100 grid points. Note that ∆x1 = ∆x2 = ∆x3 = ∆x is
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(a) µ = 1 (b) µ = 10 (c) µ = 100 (d) µ = 500

(e) µ = 1 (f) µ = 10 (g) µ = 100 (h) µ = 500

Figure 5: Cross-sectional plot at x2 = 0. Top: Extended MacCormack’s method with limiter based on Un,
Bottom: Formulated LB scheme for hyperbolic conservation laws with source terms

same as the grid spacing used in the one dimensional case. For this problem, G1(U) = G2(U) = G3(U) = U
and S(U) = −µU(U − 1)(U − 1

2 ). Initial conditions are:

U(x1, x2, x3, 0) =

{
1 for x2

1 + x2
2 + x2

3 ≤ 0.3
0 for x2

1 + x2
2 + x2

3 > 0.3
.

An LBM with upwind D3Q7 form for feq
q and rq is utilised to obtain the numerical solution. λ = ∆x

∆t is
chosen such that the sub-characteristic condition in (31) is satisfied. This simplifies in this case as

det

λ− 1 −1 −1
−1 λ− 1 −1
−1 −1 λ− 1

 ≥ 0 =⇒ λ ≥ 0 and λ ≥ 3.

Further, the time step is chosen as ∆t = ∆x
λ . We also consider ω = 1 for the simulation of this problem and

this ensures consistency with the governing equation irrespective of the choice of ∆t (as discussed in remark
11). A comparison of numerical solutions obtained from MacCormack’s method and our LB scheme is shown
in figure 6 at T = 0.1 for different values of µ. It can be seen that, for µ = 500, the MacCormack’s method
suffers from spurious numerical convection while our LB scheme does not.
In the following, we use subscripts D = 1 and D = 3 to compare certain variables from sections 7.2.1 and
7.2.3 respectively. Since λD=1 = 1, λD=3 = 3, and ∆x is the same for both one and three dimensional
problems, we have ∆tD=3 = ∆tD=1

3 . Further, since ωD=1 = ∆tD=1

ϵD=1
and ωD=3 = ∆tD=3

ϵD=3
are both equal to 1,

we have ϵD=3 = ϵD=1

3 . Thus, since ϵD=1 in section 7.2.1 is O(k103), ϵD=3 for three dimensional problem is

O
(
k 103

3

)
. Hence, for this problem, our LB scheme is expected to be devoid of spurious numerical convection

for µ up to O
(

103

3

)
, and we observe nullification of numerical convection for µ up to 500 in figure 6.

7.2.4 Non-linear problem with discontinuity

This is a variant of the problem from Embid, Goodman and Majda [48]. The domain is [0, 1] ⊂ R, and is split
up into 100 evenly spaced grid points. The flux function G1(U) = 1

2U
2 is non-linear and S(U) = µ(6x−3)U .

Boundary conditions are U(x1 = 0, t) = 1 and U(x1 = 1, t) = −0.1, ∀t. For numerical simulation of this
steady problem, 500 iterations are utilised with the initialisation

U(x1, 0) =

{
1 for x1 ≤ 0.1
−1 for x1 > 0.1

.

The numerical solutions obtained using LB scheme plotted against the exact solution, for different values of
µ, are shown in fig. 7. It is seen that the numerical method correctly locates the discontinuities for different
values of µ.
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(a) µ = 1 (b) µ = 10 (c) µ = 100 (d) µ = 500

(e) µ = 1 (f) µ = 10 (g) µ = 100 (h) µ = 500

Figure 6: Cross-sectional plot at x2, x3 = 0. Top: Extended MacCormack’s method with limiter based on
Un, Bottom: Formulated LB scheme for hyperbolic conservation laws with source terms

(a) µ = 1 (b) µ = 2 (c) µ = 3 (d) µ = 4

(e) µ = 5 (f) µ = 6 (g) µ = 7 (h) µ = 8

Figure 7: LB scheme for non-linear problem with different values of µ

7.3 D2Q9 model of LBM

In this section, we show the diagonal upwinding nature of our D2Q9 model of LBM. For this, we consider
a standard two-dimensional linear problem from [58]. The domain is [0, 1]× [0, 1] ⊂ R2, and is split up into
50 × 50 grid points. Here ∆x1 = ∆x2 = ∆x. The flux functions are G1(U) = aU , G2(U) = bU where
a = cos θ, b = sin θ and θ ∈

(
0, π

2

)
. Boundary conditions are:

U(0, x2, t) = 1 for 0 < x2 < 1,
U(x1, 0, t) = 0 for 0 < x1 < 1,

, ∀t.

Exact solution is:
U(x1, x2, t) = 1 for bx1 − ax2 < 0,
U(x1, x2, t) = 0 for bx1 − ax2 > 0,

, ∀t.

It can be noted that the problem is steady. An LBM with D2Q9 equilibrium functions (104) is utilised to
obtain the numerical solution. For this problem, we run 1000 iterations of our LBM before presenting the
steady state solution. λ is chosen such that the sub-characteristic condition obtained by imposing positivity
of numerical diffusion coefficient in (109) is satisfied. Further, we consider ω = 1 for the simulation of this
problem and this ensures consistency with the governing equation (as discussed in remark 11).
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(a) θ = 0 (b) θ = π
2

(c) θ = π
4

Figure 8: Discontinuities along coordinate and diagonal-to-coordinate directions captured exactly due to
upwinding

The numerical solutions for θ = 0 and θ = π
2 obtained by choosing the fluxes Gγ = Gζ = 0 (thereby

replicating a standard D2Q5 upwind model), are shown in figures 8a and 8b respectively. The numerical
solution for θ = π

4 obtained by choosing Gα = Gβ = 0, is shown in figure 8c. It can be seen from these
results that, for a specific partition of total flux between coordinate and diagonal-to-coordinate directions,
the D2Q9 model captures discontinuities aligned with x1, x2 and diagonal directions exactly.

8 Summary and conclusions

The following are the major highlights of the paper.

• An LBE is derived by semi-implicit discretisation of VKE, and its relaxation factor is compared with
that of the usual LBE obtained by explicit discretisation of VKE.

• The usual condition on ω̂ enforced by positivity of numerical diffusion coefficient in Chapman-Enskog
expansion is 0 < ω̂ < 2. On the other hand, the properties such as H-inequality, total variation
boundedness and positivity enforce the stronger constraint 0 < ω̂ ≤ 1. By construction, the LBE that
we derived by semi-implicit discretisation of VKE naturally satisfies this stronger condition.

• Macroscopic finite difference form of the LBEs is derived, and it is utilised in establishing consistency
of LBEs with the hyperbolic system, and in showing the total variation boundedness and the positivity
of LBM.

• Small numerical diffusion and better order of accuracy are realisable for 1 < ω̂ < 2 in the case of LBE
derived by explicit discretisation of VKE.

• The LBM framework is extended to hyperbolic conservation laws with source terms and the spurious
numerical convection due to imbalance between convection and source terms is removed by suitable
modelling of rq. The resulting method not only leads to well-balancing but also is effective for source
terms of significant stiffness.

• A D2Q9 model of our LBM framework allows upwinding along diagonal directions, in addition to the
usual upwinding along co-ordinate directions, resulting in better multidimensional behaviour.
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