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I. SUPPLEMENTARY METHODS

A. Confinement of achiral polar active ellipsoids within paper rings

In our initial experiments, we confined prolate active ellipsoids with a long axis measuring α = 6 mm and shorter
axes measuring β = 2.4 mm and δ = 2.1 mm Supplementary Fig. 4A. During vertical vibration, the achiral polar
active ellipsoids within the paper rings often aggregated at diametrically opposed ends due to the interplay between
membrane curvature and particle orientation, with their polarity prominently oriented outward. This aggregation not
only limited cell motility but also led to non-uniform cell stiffness Supplementary Fig. S4B and C.

B. Details of cell-mimic composition for the various activities

To tune the motility of the cell-mimics, we changed the handedness of a few ellipsoids inside the membrane from
(−) to (+). The experimental procedure involved placing ellipsoids of the same handedness initially, followed by
individually flipping a few ellipsoids within the paper rings to achieve the desired chirality within the cell interior,
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χcell. Details about the count of ellipsoids for each handedness can be found in Supplementary Table 1, where N+

and N− represent the number of (+) and (−) ellipsoids, respectively.

χcell N+ N−

1 20 0
0.9 19 1
0.8 18 2
0.6 16 4
0.4 14 6
0.2 12 8
0 10 10

-0.2 8 12
-0.4 4 16
-0.8 2 18
-0.9 1 19
-1 0 20

Supplementary Table. I: Changing the chirality of the cell interior

The dynamics of individual cells were quantified by performing experiments with one or two cells on the plate. This
helps avoid cell-cell interactions. The translational mean-squared displacement,

〈
∆r2

〉
, and speed distribution, P (v),

of the centre-of-mass (COM) of each cell were used to quantify the dynamics. Supplementary Fig. 5A shows the
translational mean-squared displacement (MSD),

〈
∆r2

〉
=

1

N

N∑
i=1

⟨∆ri(t)
2⟩ (1)

at various χcell for isolated cells. Here, ⟨⟩ denotes an average over the number of ellipsoids N , and ∆ri(t), is the
translational displacement of the ith cell. We identified the crossover time from ballistic to diffusive dynamics (shown
by the dashed lines) as the persistence time, τp.
Supplementary Fig. 5B shows the probability distribution of speed P (v) corresponding for a lag time of 1.25 s.

The individual velocities are defined as:

3.2 cm

0.21 cm

Supplementary Fig. 1: Snapshot of a flexible paper rings (3 cm in diameter) of thickness 40 µm.
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Supplementary Fig. 2: (A) Polar active ellipsoids with an asymmetry in friction coefficient µ.(B) Polar active
ellipsoids with an asymmetry in µ and mass m. (C) Polar chiral active ellipsoids with left-right mass asymmetries.

The red dashed lines show the hollowed-out portion of the ellipsoid.

Supplementary Fig. 3: (A) Top view of tray with a batch of 3D printed particles. (B) Side view of tray with a
batch of 3D printed particles.

v⃗i(t) = [r⃗i (t+ τ0)− r⃗i(t)] /τ0 (2)

Notably, the persistence time of particles’ directed motion, τp, and v exhibited a systematic increase with increasing
|χcell| values. As anticipated, tuning χcell even while keeping the total number of particles within the paper rings
constant at N = 20 particles allows tuning the cell activity (Supplementary Fig. 5A and B).
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Supplementary Fig. 4: (A) 3D view of the ellipsoid showing its dimensions.(B) Due to a persistent force, achiral
active particles align perpendicular to the walls. The red arrow indicates the direction of the self-propulsion. (C)
The interplay of membrane curvature and particle orientation results in the accumulation of polar active ellipsoids
at diametrically opposite ends with their polarity pointing outwards. Moreover, this results in low cell motility and

nonuniform cell stiffness.
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Supplementary Fig. 5: (A) Translational mean-squared displacement (MSD)
〈
∆r2

〉
versus lag time t for isolated

cells (ϕ < 1%) for different |χcell| values. (B) Probability distribution of individual membrane velocity v at ϕ = 0.1.
Solid vertical lines represent the mean speed of individual cells.

|χcell| τp v lp = vτp
s mm/s mm

1 12.7 0.60 7.62
0.9 14.2 0.74 10.50
0.8 16.0 0.83 13.28
0.6 17.2 1.01 17.37
0.4 17.8 1.02 18.15
0.2 20.0 1.03 20.6
0 26.7 1.34 35.77

Supplementary Table. II: Details of various active granular cells
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II. SUPPLEMENTARY DISCUSSION

A. Relaxation dynamics of confluent cell monolayers

A B f 

=26.7 s

=12.7 s

Supplementary Fig. 6: (A, B) Self intermediate scattering function Fs(q = 2cm−1, t) for various ϕ’s for two repre-
sentative activities.

The translational dynamics was quantified using the self-intermediate scattering function Fs(q, t) defined as:

Fs(q, t) =
1

N

〈
N∑
j=1

exp (iq · (rj (t+ t0)− rj(t)))

〉
(3)

Here q is the wavevector, N is the total number of particles, and rj(t) is the position of the jth ellipsoid at time t.
The translational relaxation times τTα , were defined as the time at which the corresponding correlation functions decay
to 1/e. The variation of Fs(q, t) as a function of ϕ for for two representative activities is shown in (Supplementary
Fig. 6A and B).

B. Quantifying clustering of active cells through the probability distribution of Voronoi cell areas

As the activity of the deformable synthetic granular membranes was increased at a constant ϕ, we observed a
marked tendency for the particles to cluster together. This observation was quantified by analyzing the probability
distribution of Voronoi cell areas, obtained from the membrane’s centroid (Supplementary Fig. 7A). This enabled
us to measure the local packing fraction. To achieve this, we tessellated the space around the membrane centers into
Voronoi cells and subsequently estimated the probability distribution of Voronoi cell area (Supplementary Fig.
7B).
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f = 0.60

A B

Supplementary Fig. 7: (A) Voronoi tessellation of the membrane centers to obtain local densities. (B) Probability
distributions of Voronoi area exhibited a shoulder as activity increased, indicating a strong tendency for particles to
cluster with increasing activity.

C. Shape and shape variability in confluent cell-mimic monolayers

The aspect ratio AR and the standard deviation of the aspect ratio SD(AR) were used as metrics to quantify
the shape and variability, respectively, of our granular cell assemblies. The relationship between SD(AR) and AR
for granular cells adheres to the same universal scaling observed in living systems [1], following the functional form
(SD(AR) ≃ 0.71AR− 0.75). The solid black line represents this universal scaling relation in (Supplementary Fig.
8)

f = 0.92 f = 0.91 f = 0.90 f = 0.88

f = 0.86 f = 0.85 f = 0.82 f = 0.74

A CB D

E GF H

Supplementary Fig. 8: SD(AR) vs the AR follows a universal relation (SD(AR) ≃ 0.71AR − 0.75), the solid black
line represents this universal scaling relation.

Subsequently, we analyzed the probability density functions (PDFs) of AR, noting that the PDF exhibited a broad
distribution with a significant positive skew for the unjammed (fluid-like) state, which was observed at an intermediate
value of τp = 20 (refer to Supplementary Fig. 9A, Supplementary Fig. 10A, and Supplementary Fig. 11A).
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Conversely, for the more jammed states corresponding to other τp values, the PDFs were narrower and displayed a
smaller skew.

Furthermore, through the process of rescaling AR to x = (AR−1)

(AR−1)
, we observed the collapse of the PDFs at different

τp values onto a single universal distribution. Within the experimental uncertainty, the scaled PDFs for all values of
ϕ near confluence were equally well-fitted by the k−gamma distribution (4), with the parameter k ranging between
2.5 and 2.8 (refer to Supplementary Fig. 9B, Supplementary Fig. 10B, and Supplementary Fig. 11B).

P (x, k) =
[
kk/Γ(k)

]
xk−1 exp[−kx] (4)

f = 0.88

A B

Supplementary Fig. 9: (A) Probability density functions (PDFs) of AR for different τp values for ϕ = 0.88. (B)
When scaled by (AR− 1)/(AR− 1), the PDF at different τp values collapse. The black line represents a k−Gamma
distribution (k = 2.8).

f = 0.90

A B

Supplementary Fig. 10: (A) Probability density functions (PDFs) of AR for different τp values for ϕ = 0.90. (B)
When scaled by (AR− 1)/(AR− 1), the PDF at different τp values collapse. The black line represents a k−Gamma
distribution (k = 2.6).
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f = 0.91

A B

Supplementary Fig. 11: (A) Probability density functions (PDFs) of AR for different τp values for ϕ = 0.91. (B)
When scaled by (AR− 1)/(AR− 1), the PDF at different τp values collapse. The black line represents a k−Gamma
distribution (k = 2.4).

D. Boundary effects

At high densities, we took specific measures to eliminate any potential effects of confinement-induced shape changes
in our analysis. We excluded all granular cells in the layer making contact with the confining wall. This step was
essential to ensure that the shape distribution statistics we obtained were not influenced by the confinement of
cells near the boundary. To determine if the confining boundary introduces spatial gradients in cell shape changes
within the imaging area, we divided the field of view into two regions: an inner radius (r1) and an annulus (r2-r1)
Supplementary Fig. 12A. These regions were chosen so that they contain approximately the same number of
granular cells (38 cells) to ensure a balanced comparison. Supplementary Fig. 12B-E shows the probability
density functions (PDFs) of the aspect ratio (AR) for packing fractions ϕ ≈ 0.92 (top panels) and ϕ ≈ 0.92 (bottom
panels) and for different τp values. For both these values of ϕ and the intervening values, we observed a re-entrant
in the dynamics (Fig. 2 b-e of the main manuscript). For the image shown in Fig. 1g of the main manuscript, the
corresponding PDFs are shown in Supplementary Fig. 12B top panel. The statistics for calculating the PDFs are
now reduced due to the fewer cells being considered in the analysis, but nonetheless, we see that the PDFs of the cells
in the inner and outer rings almost overlap for all but one value of ϕ = 0.92 and τp = 20 s (Supplementary Fig.
12C, top panel). This suggests that the confining boundary does not significantly influence the dynamics.

E. Brief description of the mean-field theory of cell shape variability and the link between structure and
dynamics

A recent theoretical study, Ref. [1], obtained an analytical expression for cell shape variability in confluent epithelial
monolayers:

P (AR) =
1

N

(
AR+

1

AR

)3/2 (
1− 1

AR2

)
e−α(AR+ 1

AR ), (5)

where AR gives the cellular aspect ratio, N is the normalization constant

N = Γ(5/2)/α5/2 −W (5/2)1F1(5/2, 7/2,−2α), (6)

with W (x) = 2x/x, Γ(x) is the Gamma function, and 1F1(a, b, c) is the Kummer’s confluent Hypergeometric function.
α ∝ λP (1−Kp0)/T contains all the system-specific parameters with K being a constant.
Equation (5) shows that a single parameter, α, describes the cell-shape variability in diverse epithelial systems. This
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Supplementary Fig. 12: (A) Snapshot of a confluent assembly (ϕ ≈ 0.92). We have an equal number of cell centers
within the inner circle (shown by the orange circle) and in the annular region formed by the red and orange circles.
(B-E) Probability density functions (PDFs) of AR for cells in the inner and outer rings for different τp values for

ϕ = 0.92 and ϕ = 0.88, respectively.

f = 0.88

Supplementary Fig. 13: Probability density functions (PDFs) of AR for different τp values for ϕ = 0.88. The solid
lines are a fit to equation 5

result has two primary consequences: (1) the distribution of the rescaled variable x = (AR− 1)/(AR− 1), where AR
is the average AR, becomes nearly universal, and (2) the behavior of standard deviation, SD, vs AR becomes universal.

We have tested the first result in Fig. 3b and 3c of Main Manuscript. The source of the universal relation between
SD and AR, the second result above, is as follows. We can use P (AR) to analytically calculate both SD and AR.
Since P (AR) depends on only one parameter α, both SD and AR must be functions of α alone. Therefore, we can
use these two functions and eliminate α, writing a parametric equation for SD vs AR. Since this equation does not
depend on α, it must be universal, i.e., the relation cannot depend on the details of the system. We have shown the
comparison of this prediction with the experimental results in Fig. 3a of Main Manuscript.

According to [1], α in Eq. 5 is a system-specific parameter predicted to correlate with dynamics. We determined
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f = 0.85

Supplementary Fig. 14: ln(τTα ) versus α for ϕ = 0.85

α values by fitting the PDF of AR to Eq. 5. The solid lines in Supplementary Fig. 13 are fits to Eq. 5.
To check whether α is correlated with the dynamics, we plotted ln(τTα ) versus α for a representative ϕ = 0.85.

Strikingly, as was seen in [1], ln(τTα ) grows linearly with α (Supplementary Fig. 14).

F. Quantifying dynamical heterogeneity

The translational non-Gaussian parameter, αT
2 , was used to characterize the heterogeneous dynamics. αT

2 quantifies
the deviations from Gaussian dynamics and is defined as:

αT
2 =

⟨∆r4(t)⟩
2⟨∆r2(t)⟩2

− 1 (7)

Here ∆r is the particle displacement over time t. The time corresponding to the maximum in αT
2 is the charac-

teristic time, namely cage breaking t∗, where the dynamics is maximally heterogeneous. We identified the top 10%
translationally most-mobile particles and most-immobile particles over ∆t = t∗. Supplementary Fig. 15 shows
αT
2 (t) for different activities for ϕ = 0.90.

G. Numerical Methods

In the last few decades, many numerical models on confluent epithelial cell monolayer have been proposed. For
example, discrete Cellular potts model (CPM) [2], continuum Vertex [3–5] and Voronoi model [6–8], Phase field models
[9, 10] etc. All these models use an effective energy function given by,

H =

N∑
i=1

λP (Pi − P0)
2 + λA(Ai −A0)

2 (8)

where, N is the total number of cells, Pi and Ai are the instantaneous area and perimeter of the ith cell. The first
term in Eq. (8) is a combination of the contractility of the actomyosin cortex (quadratic in Pi) and cell-cell adhesion
along with cortical tension (both linear in Pi) with a strength, λP . The target perimeter, P0, increases as cortical
tension decreases and decreases as cell-cell adhesion increases. Tissue incompressibility in three dimensions allows
us to make a 2d description via an area constraint i.e. second term of the energy function. Cells try to achieve a
target area A0 by adjusting their height. It is a result of the monolayer’s resistance to height fluctuations or cell bulk
elasticity, where λA is a height elasticity and Ai is the cross-sectional area (apical) of cell i and A0 is the preferred
area for the cell. For the scope of this work, we have used CPM and Vertex models described below;
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f = 0.90

Supplementary Fig. 15: The translational non-Gaussian parameter αT
2 (t) for various |χcell| values for ϕ = 0.92. The

time corresponding to the peak value of αT
2 (T ) is t

⋆.

1. Cellular potts model

Within the Cellular Potts model, the cell monolayer is represented as a L×L lattice. On each pixel of the lattice a
Potts variable, σ ∈ [1, N ], is assigned, where N is the total number of cells. Unless specified, we have simulated 360
cells. A cell is represented as the collection of lattice pixels with the same Potts variable. Due to the discrete nature of
the lattice structure, CPM allows for irregular cell boundaries. Unlike the Vertex model, neighbor exchange processes
like topological T1 transitions are naturally included within the model. For the distribution of the aspect ratio of
cells, simulation parameters are as follows: λA = 1.0, λP = 0.25, A0 = 40, and P0 = 26. Before collecting the data,
we have equilibrated the system for 106 time steps. For the simulation of the “mimicking dynamical heterogeneities”,
we have used the software CompuCell3D [11]. The parameters used in CompuCell3D are : λA = 1.0, λP = 0.25,
A0 = 100, T = 25 and P0 = 38 with total number of cell, N = 100. Before collecting the data, we have equilibrated
the system for 5× 105 time-steps.

2. Vertex Model

In the Vertex model (VM), cells are represented as polygons. The degrees of freedom in VM are the vertices. The
vertices of the cells move stochastically by a certain distance, δr using Eq. (8) via Monte Carlo algorithm [12]. We
have discretized the continuum configuration in VM into a 500 × 500 grid to calculate the aspect ratio of the cells
accurately. Unless specified, we have simulated a binary mixture (A0α = 1.2 and A0β = 0.8 such that the average area
remains 1) of total N = 400 cells with p0 = 3.75. Other parameters are as follows: T = 0.009, λP = 0.02, λA = 0.5.

Both the cellular Potts model (CPM) and the Vertex model (VM) use the same energy function, Eq. (8). We can
always divide the energy function, H, by a constant as it does not affect the behavior of the system. Thus, the value
of λA only sets the energy scale. We have set λA = 1.0 for the CPM and λA = 0.5 for the VM following conventions
from previously published works.



12

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Supplementary Fig. 16: PDF of AR for all cells (hollow squares), 10 % fast (red circles) and 10 % slow cells (solid
squares) from CPM simulation at T = 25.

The value of
√
A0 sets the length scale. Existing works on the VM show a rigidity transition with P0. The values

of A0 sets the scale for P0. We have used P0 such that the system is in the glassy regime as our system shows glassy
dynamics. λP sets the scale of fluctuation. For a given value of λP , we can choose T for specific behavior. We showed
in Ref. [13] that the qualitative behavior does not depend on the value of λP . Finally, we chose the values of T in
the two models such that the dimensionless relaxation times in simulations are similar to that in the experiments, of
the order of 500s. However, we have also simulated the systems at other values of T and found that the qualitative
results remain similar.

H. Fast cells violate mean-field predictions

In Fig. 4C of the Main Manuscript we noted that for the slow cells, the growth of SD(AR) with AR follows the
universal scaling; however, for the fast cells, surprisingly, it lies below the predicted line, implying that these cells
show reduced shape variability.

To assess the extent to which fast and slow cells agree with the predicted scaling SD(AR) = 0.71AR − 0.75, we
performed a linear regression analysis. First, we fitted straight lines to SD(AR) versus AR for the fast (F) and
slow (S) cells from experiments and simulations separately and then calculated the sum of squared errors (SSEF,S)

between the best-fit lines and the predicted scaling. Here, SSEF,S =
∑N

i=1(SD(AR)F,SFit − SD(AR)Th)
2, and N is

the total number of data points in each of the experimental/simulation data sets. The results of this analysis for the
experiments and simulations are now summarized in Supplementary Fig. 18. We observed that in all sets of data,
SSEF > SSES, and in some instances, by almost an order of magnitude. This analysis unambiguously reveals that
fast cells veer off mean-field theoretical predictions and strengthen our observations.
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Supplementary Fig. 17: SD(AR) versus AR for all cells, fast and slow cells obtained from CPM simulations.

Supplementary Fig. 18: The sum of squared errors for fast and slow cells for experimental data sets at ϕ = 0.92 and
ϕ = 0.90, as well as for the Vertex Model and the Cellular Potts Model data sets.
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