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Abstract: Defining finite entanglement entropy for a subregion in quantum field theory
requires the introduction of two logically independent scales: an IR scale that controls the
size of the subregion, and a UV cut-off. In AdS/CFT, the IR scale is the AdS lengthscale, the
UV cut-off is the bulk radial cut-off, and the subregion is specified by dimensionless angles.
This is the data that determines Ryu-Takayanagi surfaces and their areas in AdS/CFT. We
argue that in asymptotically flat space there exists the notion of a “spi-subregion” that one
can associate to spatial infinity (spi). Even though geometrically quite different from an
AdS subregion, this angle data has the crucial feature that it allows an interpretation as a
bi-partitioning of spi. Therefore, the area of the RT surface associated to the spi-subregion
can be interpreted as the entanglement entropy of the reduced density matrix of the bulk
state under this bi-partition, as in AdS/CFT. For symmetric spi-subregions, these RT surfaces
are the waists of Asymptotic Causal Diamonds. In empty flat space they reduce to Rindler
horizons, and are analogues of the AdS-Rindler horizons of Casini, Huerta & Myers. We
connect these results to previous work on minimal surfaces anchored to screens in empty
space, but also generalize the discussion to the case where there are black holes in the bulk.
The phases of black hole RT surfaces as the spi-subregion is varied, naturally connect with
those of black holes (small and large) in AdS. A key observation is that the radial cut-off
is associated to an IR scale in flat space — and in fact there are no UV divergences. We
argue that this is consistent with previous suggestions that in sub-AdS scales the holographic
duality is an IR/IR correspondence and that the degrees of freedom are not those of a local
QFT, but those of long strings. Strings are of course, famously UV finite.
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1 Introduction

A remarkable fact about the AdS/CFT correspondence is that the holographer has a “place to
stand” [1, 2]. The conformal boundary of (Poincare) AdS is Minkowski space, and therefore
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in many ways it is the best setting one could hope for, to place a dual theory: the boundary
almost begs for the theory to be a local quantum field theory. In flat space on the other hand,
even though the conformal boundary is certainly well-defined, it has no causal structure.
Indeed the metric seems to lose two dimensions at the null boundary. Since most theories
we are familiar with are local (and often Lorentzian), coming up with a theory that could
live on the boundary of an asymptotically flat spacetime is a challenge.

Even though understanding dynamics fully is likely to take more ideas, understanding
the entanglement structure of the flat space hologram may be more tractable — it is natural
to suspect that entanglement entropy (EE) has more to do with spatial infinity spi, rather
than null or timelike infinity. Indeed spi is where bulk spatial slices end, and therefore
one expects it to carry a copy of the holographic Hilbert space at each instant of time.1
This ties in with the observation that in flat space general relativity, charges are naturally
defined either directly at spi in the Ashtekar-Hansen gauge [5, 6] or at the past boundary
of future null infinity I +

− (which is adjacent to spi) in the Bondi [7] and Special Double
Null [8–10] gauges. Motivated by these observations, in this paper we will define and explore
a holographic entanglement entropy that is naturally tied to spi, by introducing the notion
of a spi-subregion. We will see that previous work on holographic entanglement entropy in
empty Minkowski space defined on screens [11–13], has a natural understanding in terms
of our construction, via an IR scale. Our slightly more abstract definition will allow us to
generalize these calculations to asymptotically flat spacetimes containing black holes. We
find RT phase transitions in these spacetimes that naturally connect with those of small and
large AdS black holes (see e.g., [14]) as spi-subregion “sizes” are varied.

The biggest difference2 between a spi-subregion and an ordinary subregion is that one
needs to specify a certain asymptotic “approach” angle, θasymp, to define a spi-subregion.3 Spi
is a description of spatial infinity that involves “ultimate” [15] directions and accelerations,
and that explains our choice of neologism. But it should be emphasized that there are a
couple of different descriptions of spatial infinity in the market [5, 6, 16–18], and that the
definition of spi often includes structures to clarify the asymptotic solution of Einstein’s
equations. We will not need these details because our interest is in the kinematical structure
of the conformal boundary on a spatial slice. A similar statement applies in AdS as well —
in order to define an ordinary subregion on the conformal boundary of AdS, we do not need
to specify fall-off conditions4 or solve Einstein’s equations asymptotically. Any reasonable
definition of spatial infinity that incorporates the conformal boundary structure of Minkowski
space will be sufficient for our purposes. So in this paper, we will use the phrase “spi” to
refer to this minimal structure.

1In the bulk of both flat space and AdS, evolution happens via spatial slices that evolve in time. Since EE
is a quantity that can be defined at any instant of time in quantum mechanical theories, one would like to
associate it to suitably defined asymptotic data on a Cauchy slice. Indeed, the Ryu-Takayanagi formula [3, 4]
is a realization of that expectation.

2We will be more precise later.
3The approach angle has a natural ordering, and allows a (bulk-motivated) notion of inclusion of symmetric

spi-subregions on the boundary. This allows us to meaningfully retain a notion of “size” of the symmetric
spi-subregion. But we emphasize that this should not be conflated mindlessly with the size of an ordinary
subregion.

4Other than the general understanding that there is some notion of an asymptotically AdS spacetime that
breathes life into quantum gravity in AdS. Similar statements hold in flat space as well.
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We believe that the structural differences we see in spi-subregions, are closely related
to the lack of locality in the hologram of flat space. To explain this, let us first review
some facts. In order to define a finite entanglement entropy for subregions in quantum
field theory [19], we need to introduce two length scales. The first is an IR scale, which
captures the subregion size. The second is a UV cut-off, which is necessary to regulate
the short-distance divergences of local QFT. This UV cut-off is not merely a technicality,
but related ultimately to the fact that entanglement is naturally associated to algebras of
observables and not to states in QFT [20, 21].

A basic fact about holographic entanglement entropy in AdS/CFT [3, 4] is that it requires
the introduction of only one of these scales. This is related to the fact that CFT does not
have an intrinsic scale, and the IR scale associated to the subregion size is in effect taken to
be the AdS length scale L. In global AdSd+1, a spherical subregion on the boundary Sd−1 is
defined by a dimensionless solid Sd−2-ball determined by a point on Sd−1 (the center of the
ball) and the polar angle that captures the (angular) radius of the ball. Similarly in Poincare
AdS, the boundary Minkowski spacetime metric is built of dimensionless coordinates except
for the overall dimensions provided by the AdS length scale. More general subregions require
more complicated data, but this data is again dimensionless.

We will see that a loosely similar situation arises in asymptotically flat spaces as well,
but with some conceptually crucial differences. Just as in AdS, in order to define a finite
(holographic) entanglement entropy, we need a bulk IR cutoff in flat space. But the (bulk)
areas of the associated RT surfaces scale as volumes on the screen, and not as areas [11–13].
Since they are extensive on the screen and diverge as the screen radius goes to infinity, they
are naturally viewed as IR divergences. A second feature is that these IR divergences are
the only divergences in the entanglement entropy, there are no other (in particular no UV)
divergences. It has been suggested that the holographic duality is an IR/IR duality in flat
space, and that the degrees of freedom are not those of a local QFT, but those of long
strings [22]. The non-local interactions associated to the long strings are consistent both with
the volume scaling as well as the absence of UV divergences that we find.

We will be dealing with classical bulk EFT in this paper, as in the case of the EE
computations in the original Ryu-Takayanagi papers [3, 4, 23]. Of course, one could consider
quantum corrections in the bulk. It would then become natural to have divergences in the
bulk EE which can be interpreted as corrections to the bulk Newton’s constant [24]. These
divergences show up via EE of bulk fields in the EFT across the RT surface. Computing
this in AdS can be done using the quantum extremal surface (QES) prescription [25]. Since
it is a bulk prescription, it has natural adaptations to flat space as well.5 When we talk
about UV/IR divergences in this paper we mean divergences in the holographic dual theory

— in the bulk they translate to divergences due to the unbounded RT surface and its area.
This should not be confused with the divergences in Newton’s constant which are cured by
the QES prescription due to entanglement of bulk fields across the RT surface. This latter
aspect should work largely analogously in both AdS and flat spaces, so our focus in this
paper will be on the features that are special to flat space.

5See [26] for some discussions on this.
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The screens in flat space on which previous definitions of holographic EE were made [11–
13] become more comprehensible when viewed as regulators of EE for spi-subregions, by
making the parallels and distinctions with AdS clearer. In AdS, since the dual description is
a CFT, there is no scale associated to the “size” of a subregion. Instead one has a cut-off that
regulates the UV divergences of the CFT. The opposite is true in flat space, where the required
cut-off is (presumably) in the length of the long string, and there is no regulator needed for
the UV because of the UV-finiteness of strings. This perspective we feel, underscores the
relationship between the screen in flat space vs. the screen in AdS, and the fact that we
are dealing with a sort of “symmetry” between the two holographic theories. Holographic
correspondence [27, 28] and black holes [29] have been studied previously in flat space with
screens, and striking similarities have been noted with AdS/CFT.

The main goal of the first part of this paper is to build enough background in both
AdS and flat space to clarify the notion of a spi-subregion. The AdS discussion is to be
viewed as a biased review that emphasizes the elements that will be useful in our comparisons
with flat space — even a reader familiar with AdS RT surfaces may find it useful to skim
through this discussion because some of the details we need maybe unfamiliar. Once the
AdS discussion is in place as a relatively familiar foil, the flat space discussion can proceed
(hopefully) painlessly. One of our key observations is that there is enough structure on spi to
define a d-parameter family of bi-partitions of spi in a bulk spacetime that is d+1 dimensional.
This data should be compared to the data required to specify a spherical subregion on the
boundary of global AdS — the “center” of the spherical subregion and the “size” of the
subregion. In asymptotically flat space, the situation is quite different structurally, but
there still exists the notion of a symmetric spi-subregion that is the analogue of a spherical
subregion. We describe this later, but the impatient reader can glance at section 4.3 and
figures 4, 5 and 6. Remarkably, it turns out that we can generalize this further and in fact
come up with the notion of a more general spi-subregion when d > 2. The fact that they
exist only in d > 2 should be compared to the fact that in AdS3 all boundary subregions
are “spherical” subregions while in higher dimensional AdSd+1 there are more complicated
possibilities. The distinction between a spi-subregion and an ordinary subregion also results
in some crucial differences in their unions and intersections.

Once the notion of a spi-subregion is well-defined, a pragmatic question we will address
is that of RT surfaces in asymptotically flat spaces that contain black holes. Here again,
viewing the screen as a regulator (and only indirectly as a box for the black hole) is cleaner,
because the RT surfaces in the geometry are again determined by asymptotic data (ie., the
spi-subregion) and the black hole. When one is fixing boundary conditions for black hole
RT surfaces on the screen on the other hand, it is less clear whether they have invariant
meaning as holographic data. Here instead we get to view the screen radius simply as a
regulator for the area functional. Perhaps for these reasons, while RT surfaces for empty flat
space with screens have been studied in the literature, they have not been studied in the
setting of flat space black holes. We do this in some detail here. The problem involves two
pieces of dimensionless data — the ratio of the horizon radius to the screen radius, and the
spi-subregion. We will identify the phase transitions in RT surfaces as we vary this data and
will see a close parallel with RT surface phase transitions in small and large AdS black holes.
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This paper can be viewed as another step in the direction initiated in [13] and developed
further in [26]. The discussion here is self-contained. A related comment is that even though
background subtraction for entropies in flat space has been around since the famous paper
of [30], there are multiple hints [26] that this may require a better understanding. See e.g.
footnote on p. 71 of [31]. In this paper, we find it most natural to interpret the screen
as an IR scale, which is natural from the perspective advocated in [22]. A v2 of [26] that
incorporates some of the refinements we have learnt here and strengthens the manifesto
presented there, is in the pipeline.6

2 Ryu-Takayanagi data in AdS

We start by defining a spherical subregion on the boundary of AdS. In global AdS we can
place it around the North pole without loss of generality. With this choice, the subregion is
characterized by the polar angle θ = θ∞ = const. The boundary subregion is a codimension-2
surface in AdSd+1.

In suitably defined Poincare coordinates (see appendix, and in particular (A.3) and (A.10))
we can write

Σd
i=2X2

i

X2
1

= tan2 (θ) =

R2 − x2
1

x2
1

+ 1
4

(
L

x1
− z2

Lx
− (R2 − t2)

Lx

)2
 (2.1)

where the first expression defines the angle in terms of AdS embedding coordinates. Here
R2 ≡ Σd−1

i=1 x2
i . In the limit z → 0, setting t = 0 and θ ≡ θ∞ we get,

tan2 (θ∞) =

R2 − x2
1

x2
1

+ 1
4

(
L

x1
− R2

Lx1

)2


⇒ sec (θ∞) = 1
2

(
L

x1
+ R2

Lx1

)
(2.2)

We can re-write the above equation as

(x1 − L sec(θ∞))2 +Σd−1
i=2 x2

i = L2 tan2 (θ∞) (2.3)

which is a Sd−2 sphere on the boundary with radius R = L tan (θ∞) with its centre at
x1 = L sec(θ∞). This is the spherical subregion on Poincare boundary that maps to the
θ = θ∞ spherical subregion on the global AdS boundary. Note that this sphere is centred off
the origin because of the relative orientation of the Poincare and global coordinates. With
the conventional definition of coordinates as in (A.3) and (A.10) the origin of the boundary
Minkowski geometry lies along the Xd axis in global coordinates. We can center the sphere at
origin by exchanging X1 and Xd in (A.10). This aligns the origin of the boundary Minkowski
geometry with the north pole in global AdS. Then the analogue of (2.2) is

2 cot (θ) = L

R
− R

L
(2.4)

6Let us note that the Page curve discussion of [26] is insensitive to these nuances, because islands are not
anchored to the screen.
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On solving for R we get R = L(csc (θ∞) − cot (θ∞)). This spherical subregion can be
compared directly with the subregion discussed in [32]. A quantity β was defined in [32]
which is related to our quantities via

R/L ≡ e−β = csc (θ∞)− cot (θ∞) (2.5)

As pointed out in the introduction, we see that the dimensionless angle θ∞ uniquely
fixes the boundary spherical subregion upto the choice of the centre of the sphere which
can be decided by setting the orientation of the north-pole in global coordinates. The IR
scale associated to the size of the subregion is given by the AdS length scale L. This is true
both in global AdS as well as Poincare. Of course these observations are natural, because
the conformal field theory does not have an intrinsic scale — L is essentially a book-keeping
length scale at this semi-classical level of discussion. A more complete bulk understanding of
holographic entanglement entropy in AdS/CFT will perhaps involve understanding it better at
finite N and ’t Hooft coupling λ, but our discussions here are limited to the semi-classical limit.

In AdS/CFT one can also consider non-spherical boundary subregions which can be
viewed as (if necessary, infinite) unions of spherical subregions. This is a consequence of the
fact that the dual theory is a QFT. While the union structure is substantially different, we will
see that a notion of general spi-subregions can be defined in asymptotically flat space as well.
In any case, these can all be characterized by dimensionless data, which is our key point here.

3 Ryu-Takayanagi surfaces in AdS

Once we have a subregion on the boundary, we can calculate the entanglement entropy of the
subregion using the Ryu-Takayanagi prescription. This states (roughly) that the entanglement
entropy of the subregion can be calculated as the area of a co-dimension 2 minimal bulk surface
anchored on the boundary of the subregion. Explicit calculation of RT surfaces and their
associated areas is often complicated, and can be done only numerically. Often in calculations
in the literature, some form of background subtraction is implemented so that the result is
finite and cut-off independent. But it should be emphasized that both the CFT quantity
we are after (namely, entanglement entropy) and the bulk Ryu-Takayanagi prescription for
computing it, are in fact cut-off dependent. So we will present some details which are often not
emphasized in the AdS calculations, in a way that can be adapted reasonably straightforwardly
to asymptotically flat space, while clarifying the similarities and distinctions.

3.1 Empty AdS

In empty AdS, the RT surfaces for spherical boundary subregions are simply horizons of
topological black holes anchored to the subregion [32]. Note that horizons are minimal surfaces.
Topological black holes are nothing but AdS-Rindler wedges and are discussed in a language
that connects with the boundary flat space, in appendix A. More generally, in asymptotically
AdS spacetimes these can be viewed as waists of asymptotic causal diamonds (ACDs) in the
language of [13]. In empty AdS they reduce to AdS-Rindler wedges. The advantage of the
ACD language is that it is amenable to generalization, and applies even when the bulk is not
empty, has black holes, is flat instead of AdS, etc. We will see that it also connects naturally
with the spi-subregion description of RT data in asymptotically flat spaces.
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𝜃∞  
𝒪 

(a) (b)

Figure 1. (a) The blue line is the RT surface associated with the subregion A (or equivalently B).
As pointed out in section 2, after the alignment of axes the North pole lines up with the origin O of
the boundary geometry. (b) The plot shows different RT surface for different subregions. The shaded
regions are the regions inside the causal wedges associated with the subregions.

For empty AdS, the boundary theory is in the vacuum, a pure state. Therefore, the
entanglement entropy of the subregion and its complement is the same. This feature of
entanglement entropy is captured by the RT surfaces — the subregion A and it complement
Ā have the same RT surface. Also, the entanglement entropy associated with the full spatial
slice of the CFT is zero, which is again given by a trivial RT-surface in the limit A → 0. The
above features are a consequence of the fact that an RT surface implements a bi-partition
of the bulk, as well as the boundary. In flat space, when our goal is to construct an RT
prescription at spi, we will see that these bi-partition properties are true there as well.

3.1.1 AdS3

We start with global AdS3 where we can easily find analytic solutions. The AdS3 metric is,

ds2 = −
(
1 + r2

L2

)
dt2 +

(
1 + r2

L2

)−1

dr2 + r2dθ2 (3.1)

Note that the angle θ here denotes a periodic coordinate with period 2π, in higher dimensions
we will use θ to denote the polar angle which has range from 0 to π. To calculate the RT-surface
we need to extremize the area functional of a curve defined by r(θ) or equivalently θ(r):

A =
∫ √(

1 + r2

L2

)−1
r′2 + r2 dθ =

∫ √(
1 + r2

L2

)−1
+ r2θ′2 dr (3.2)

Even though the functionals are equivalent in both r(θ) and θ(r) languages, the natural data
for solving the resultant differential equations will change depending on the choice. Also,
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in higher dimensions since we do not have exact analytical solutions, the two languages
give us equations that are more naturally solved in different regions of the spacetime. In
the r(θ) language it is more natural to put integration data at the deepest point in the
bulk, while the θ(r) language is more naturally adapted to a holographic perspective in
that it is natural to think of the data at r → ∞. But it should be noted that there is a
correspondence between these two kinds of data — this will be important sometimes when
we work with the r(θ) language for convenience.

Since θ is a cyclic coordinate, the Euler-Lagrange equation becomes (c is a constant
of integration),

dθ

dr
= cL

r
√
(r2 − c2)(r2 + L2)

(3.3)

Integrating (3.3) and demanding r = r∗ for θ = 0 sets c = r∗. Then the final equation
of the curve is,

θ = tan−1

 L

r∗

√
r2 − r2

∗
r2 + L2

 (3.4)

where r∗ is the closest distance from the origin and is related to θ∞ as θ∞ = tan−1(L/r∗) [14].
This is an explicit realization of our previous statement that given a background, the data at
the deepest point in the bulk can be used as a proxy for holographic RT data.

It turns out that (even though not emphasized in the literature) the above equation
is in fact the universal solution associated to spherical subregions on the boundary in any
number of dimensions for empty AdS (and not just AdS3). A similar statement will be true
in Minkowski space as well when dealing with symmetric spi-subregions — the same equation
will describe lines and (hyper-)planes in any dimension.

Asymptotically, θ∞ captures the same (holographic) data as in section 2. The integration
constant we get on integrating (3.3) is set to zero as it just rotates the curve about the origin.
Substituting this solution into the area functional (3.2) we get the entropy

S = A
4G

= 1
4G

2L ln
(√

r2 − r2
∗ +

√
r2 + L2

)∣∣∣∣∣
1/ϵ

r∗

= L

2G
ln
(

2
ϵ
√

r2
∗ + L2

)
= c

3 ln
( 2

ϵL
sin θ∞

)
(3.5)

where 1/ϵ is a large distance radial cut-off. With the coordinate redefinition r = L sinh ρ

and using c = 3L/2G, the final result is in exact agreement with the formulas in [3, 4] (see
also [33]) after a suitable renaming of the UV cut-off.

If we had treated θ as a polar angle (so that the S1 is to be viewed as two points fibered
on the θ segment) instead of as a cyclic coordinate, then the integration constant after (3.3)
integration would have to be treated more carefully. We cannot simply explain it away
as the choice of origin of the cyclic coordinate. When θ is a polar angle, the integration
constant is fixed by demanding regularity in the bulk. This is useful to remember, because
this is what happens in higher dimensions (as well as in asymptotically flat space) where
we will work with a polar angle θ.
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3.1.2 AdS4

For AdS in higher dimensions an analytic solution when working in the θ(r) set up is not known
to us, but we can still calculate the solution as a power series expansion. The AdSd+1 metric is,

ds2 = −
(
1 + r2

L2

)
dt2 +

(
1 + r2

L2

)−1

dr2 + r2dΩ2
d−1 (3.6)

and for d = 3 the area functional is,7

A = 2π

∫
r sin(θ(r))

√
1

(r2 + 1) + r2θ′(r)2

︸ ︷︷ ︸
≡ L

dr (3.7)

Since the spherical subregion is symmetrical about north pole, we an take the RT surface
to be also be symmetrical. From (3.7) the minimal surface equation is

∂

∂θ

(
r sin(θ(r))

√
1

(r2 + 1) + r2θ′(r)2

)
= d

dr

∂

∂θ′

(
r sin(θ(r))

√
1

(r2 + 1) + r2θ′(r)2

)
(3.8)

Consider a power series expansion8 for large values of r,

θ(r) =
∑
i=0

θi

ri
(3.9)

Substituting (3.9) in (3.8) and solving for the coefficients we get the solution to be,

θ(r) = θ0 −
cot(θ0)
2r2 + θ3

r3 − cos(2θ0) cot(θ0) csc2(θ0)
8r4 + . . . (3.10)

Finally Substituting this into the Lagrangian in the area functional (3.7), we get the following
expansion

L = sin(θ0)−
sin(θ0)
2r2 − 2(θ3 cos(θ0))

r3 + . . . (3.11)

Note that we have two integration constants in the final result, θ0 and θ3.
One can also choose to work in r(θ) language, by expanding around the deepest approach

location in the bulk, θ = 0. These calculations have been worked out in appendix B. It
turns out that in this language, the system can be solved in closed form and the result is
presented in eq. (B.5). In fact, (B.5) can be inverted to show that it is identical to (3.4) —
as mentioned in the previous subsection, the RT surface associated to a spherical subregion
can be written in a form independent of dimension.

The closed form expressions (B.5) or (3.4) allow us to compare the solution against (3.10)
by expanding θ at large r. It turns out that the result is precisely (3.10) once we set θ3 = 0.
The mechanism here is in fact what we outlined at the end of the previous subsection — the
expansion near r → ∞ is not automatically aware of the conditions one needs to impose in

7We have set L = 1 for the purpose of calculation. Factors of L can be restored dimensionally.
8Note that to match the dimensions here, we need to view the expansion as an expansion in the dimensionless

radial coordinate r
L

. We will emphasize an analogous feature when we work with spi-subregion data on the
conformal boundary of flat space.
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Figure 2. A Plot of RT surfaces for different subregion sizes. The plot is in conformal coordinates.
As the subregion size increases the surface penetrates deeper into the bulk. After a critical size the
disconnected RT-surface dominates over the connected surface. We have chosen a horizon radius that
is small compared to the AdS length to illustrate that the RT surfaces need not probe too close to the
horizon.

the bulk, and this leads to an extra integration constant. A similar phenomenon occurs in flat
space as well, and in empty flat space we will check this more concretely — we can exploit
the fact that the minimal surfaces associated to symmetric spi-subregions are hyperplanes
and not catenoids (or their higher dimensional generalizations).

Let us make a couple of comments. First of all, in the limit r → ∞, θ(r) = θ0 which is a
free parameter. It is in fact the same quantity θ∞ discussed in the previous sections. We
will later see that the dependence in the flat space calculations is different. The RT data
is described differently by a spi-subregion. Secondly, the entropy which is proportional to
A scales as rd−2 in AdSd+1, i.e. the entropy grows as an ‘area’ on the cut-off surface — it
is a co-dimension 3 quantity. This result is expected for a CFT, when we interpret it as a
UV cut-off. Later we will see that unlike here, for flat space calculations the entropy grows
as the volume of the cut-off surface, a co-dimension 2 quantity.

3.2 Black hole in the bulk

The Ryu-Takayanagi prescription can also be used to calculate entanglement entropy asso-
ciated with a subregion when there is a black hole in the bulk. In this case, the boundary
theory is in a mixed state. Therefore the entanglement entropy (and the RT surface) as-
sociated to a subregion and its complement are not the same. This feature is reflected by
RT surfaces as shown in figure 2.
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It is often the case that subregions have more than one extremal surfaces. In such
situations the prescription suggests that the surface with the minimal area is the acceptable
RT-surface. One such case is that of a large spherical subregion around an AdS black hole.
For large enough subregions the RT-surface is a disjointed surface which is a union of the
RT surface associated with the complement subregion and the black hole horizon as in
figure 2. As, the θ∞ increases beyond certain θcritical, the dominant curve transitions from
the connected to the disconnected surface. This can represented as [14]

A(θcritical) = A(π − θcritical) + Ωd−2rd−2
h (3.12)

where A is the area functional. As the size of the subregion A increases and becomes the
complete boundary region (i.e. in the limit that size of the complement subregion B → 0),
the RT-surface is just the black hole horizon and therefore we can conclude that the entropy
associated with the thermal state in the boundary theory is proportional to the area of
the black hole horizon.

These are well-known results of the AdS/CFT correspondence when the black hole is
large, ie., when the horizon radius satisfies rh ≳ L. One fact that will be important for us is
that similar statements are in fact true, even for small black holes. There are some differences
in detail between the two cases — e.g., the θcritical happens at a much larger value than
π/2 when rh ≫ L, while as rh → 0 it gets closer and closer to π/2. Another distinction
is that as the black hole becomes smaller, the RT surface does not probe too close to the
horizon. These observations were made in [14]. One of our results will be that RT-surfaces
in asymptotically flat space will show very similar phase transitions in the presence of an
IR cut-off rcut = R0, with the role of rh/L replaced by rh/R0. The behavior of the phase
transitions is qualitatively similar in flt space as well, once we make these replacements. RT
surfaces in flat space black holes have not been studied in quantitative detail previously,
but see [26] for some qualitative comments.

3.2.1 BTZ

Again, our goal is to emphasize the points which have close counterparts or distinctions
compared to flat space black holes.9 Just as in the empty AdS3 case, RT-surface for BTZ
geometry can be calculated analytically. The metric is,

ds2 = −
(

r2 − r2
h

L2

)
dt2 +

(
r2 − r2

h

L2

)−1

dr2 + r2dθ2 (3.13)

with similar symmetry assumptions as in section (3.1.1), the area functional to be ex-
tremized is,

A =
∫ √√√√(r2 − r2

h

L2

)−1

r′2 + r2 dθ =
∫ √√√√(r2 − r2

h

L2

)−1

+ r2θ′2 dr (3.14)

9In flat space there are no black holes in 2+1 dimensions, but there are black holes in dimensions starting
with 3+1.
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Since θ is the cyclic coordinate we get the Euler-Lagrange equations as

dθ

dr
= cL

r
√
(r2 − c2)(r2 − r2

h)
(3.15)

Integrating (3.15) and demanding r = r∗ for θ = 0 sets c = r∗. The final equation of
the curve is,

θ = L

rh
tan−1

(
rh

r∗

√
r2 − r2

∗
r2 − r2

h

)
(3.16)

where, r∗ is the closest distance from the origin and is related to θ∞ as
θ∞ = L/rh tanh−1(rh/r∗) [14]. As before the integration constant we get in (3.15) is set to
zero as it just rotates the curve about the origin. Substituting this solution into the area
functional (3.14) we get the entropy as

S = A
4G

= 1
4G

2L ln
(√

r2 − r2
∗ +

√
r2 − r2

h

)∣∣∣∣∣
1/ϵ

r∗

= L

2G
ln

 2
ϵ
√

r2
∗ − r2

h

 = c

3 ln
( 2

ϵrh
sinh

(
rh

L
θ∞

))
(3.17)

where 1/ϵ is large distance radial cut-off. After the coordinate change r = L sinh ρ one can see,
the final result is in agreement with standard CFT2 results and the cut-off gets interpreted
as a UV cut-off in the CFT [3, 4]. Some of the comments we made in empty AdS have
counterparts here, which we will not repeat. But one statement does not have a counterpart

— it is no longer true that the solution (3.16) generalizes to (black holes in) higher dimensions.

3.2.2 AdS4 Schwarzchild

Similar to section (3.1.2), we can calculate RT-surfaces in higher dimensions as a power series
expansion. The AdSd+1 black hole metric is,

ds2 = −fd(r)dt2 + 1
fd(r)

dr2 + r2dΩ2
d−1 (3.18)

where the blackening factor is,

fd(r) = r2 + 1− rd−2
s

rd−2

(
r2

s + 1
)

(3.19)

For d = 3, the area functional for the spherical subregion is,

A = 2π

∫
r(θ) sin(θ)

√
r′(θ)
f4(r)

+ r2

︸ ︷︷ ︸
L

dθ (3.20)

From (3.20) we can write the Euler-Lagrange equation as,

∂

∂r

(
r sin(θ(r))

√
r′(θ)
f4(r)

+ r2

)
= d

dθ

∂

∂r′

(
r sin(θ(r))

√
r′(θ)
f4(r)

+ r2

)
(3.21)
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With a similar method as in sec (3.1.2), we get the solution to be,

θ(r) = θ0 −
cot(θ0)
2r2 + θ3

r3 + cot(θ0)− cot3(θ0)
8r4 −

1
4 cot(θ0)

(
h3 + h − 22θ3 cot(θ0)

)
+ 2θ3

5r5 + . . .

(3.22)
On substituting this θ(r) back into the Lagrangian of (3.20) we get,

L = sin(θ0)−
sin(θ0)
2r2 + h3 sin(θ0) + h sin(θ0)− 4θ3 cos(θ0)

2r3 + . . . (3.23)

Many of the features we emphasized for the RT surface solution in empty AdS case are
also present here. We note one crucial point: the divergent terms of (3.23) are independent
of the black hole radius. Not only that, the divergent terms are exactly same as in the empty
AdS case. This is an important point and will later turn out to be a crucial difference between
the AdS and the flat space RT-surfaces. The fact that divergences are not sensitive to the
state in AdS, is a holographic hint that the dual is a local quantum field theory. We will see
that this is not the case in flat space — the divergences will indeed depend on the state. This
is yet another suggestion that the hologram of flat space is non-local.

4 Ryu-Takayanagi data in flat space

Holography in flat space is similar enough to AdS that it may be tractable, but it has enough
fundamental differences from AdS that the task is certainly not trivial. One observation
made in [13, 26] was that even in asymptotically flat space, one can construct an analogue
of an AdS-causal wedge, called the ACD. In this section we will first discuss the conformal
compactification of Minkowski space which will help us better compare and contrast the
properties of ACDs and AdS-causal wedges and define the notion of a spi-subregion. We will
be careful to keep track of some scales which are often set to unity in these discussions.

4.1 Conformal structure of flat space

Let us first set up the conformal structure of flat space with which we will work. We largely
follow the conventions of [34] while being more careful about dimensions and also working in
general dimensions. We start with the flat space Minkd+1 metric in d + 1 dimensions,

ds2 = −dt2 + dr2 + r2dΩ2
d−1 (4.1)

where dΩ2
d−1 is the metric on Sd−1. For compactification we use the following coordinate

transformations,

t + r = Λtan
(

t′ + r′

2

)
t − r = Λtan

(
t′ − r′

2

)
(4.2)

where, Λ is a dimensional parameter. This parameter is generally ignored in textbook
discussion but is important for our discussion as it sets the scale. This scale we will sometimes
relate to the radius of a screen/cut-off. The range of the new coordinates are

−π < t′ + r′ < π, −π < t′ − r′ < π, r′ > 0 (4.3)
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t=const.

r=const.I  +

I  -

i o

i + 

i - 
Figure 3. A plot of the (t′, r′) coordinates of 2-dimensional flat space. The blue lines are the constant
time slices and the red line are constant space slices.

The metric becomes,

ds2 = Ω2(−dt′2 + dr′2 + sin2 r′ dΩ2) (4.4)

where, Ω is the conformal factor

Ω = Λ2

4 sec2
(

t + r

2

)
sec2

(
t − r

2

)
(4.5)

The relation between these coordinates can be given as,

tan t′ = 2Λt

Λ2 − t2 + r2 (4.6a)

tan r′ = 2Λr

Λ2 − r2 + t2 (4.6b)

These are noteworthy formulas. On comparing (4.6) with (A.13) we see that if we consider
the flat space at the boundary of AdS, this dimension Λ is automatically the IR scale
L of AdS. This observation is interesting because it is another suggestion that Λ is best
interpreted as an IR scale.

Later in this section we will set Λ to be the radius of the cut-off which is the IR scale
of our problem. For further reference we also define p and q via

t′ = p + q r′ = p − q (4.7)

These coordinates will be useful for working with ACDs.
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4.2 Asymptotic causal diamonds

We want to construct analogues of AdS-causal wedges for asymptotically flat space. This can
be done using the idea of an Asymptotic Causal Diamond (ACD) introduced in [13, 26].

Let us start by clarifying the distinction between an AdS-causal wedge and an AdS-
Rindler wedge in our nomenclature. We will use the term AdS-causal wedge for bulk causal
wedges anchored to the boundary of general asymptotically AdS spacetimes. When we
restrict our attention to empty AdS, they will reduce to AdS-Rindler wedges.10 Often we
will be interested in boundary subregions which are spherical. The boundary projections of
AdS-causal wedges in such cases will simply be boundary causal diamonds associated to these
spherical subregions. These can equivalently be defined via two points on the boundary —
the future and past vertices of this boundary causal diamond. One of the main observations
of [13] was that even though there is no causal structure on the null boundary of flat space, the
idea of working with two points (one each on I + and I −) generalizes in a useful way. The
analogues of bulk causal wedges can be defined using these two vertices even in asymptotically
flat space and these are what ACDs are.

We will often be interested in symmetric ACDs. These are obtained by choosing the
vertices symmetrically on I + and I − around a convenient t = 0 slice in the bulk.11 They
can be defined via

C = I−(Q) ∩ I+(−Q), where Q ∈ I +, −Q ∈ I − (4.8)

where I+ and I− denote future and past light cones of a point in the spacetime manifold,
extended to include the conformal boundaries. We do not have to work necessarily with
symmetric ACDs — we can choose the past and future points to be P and −Q instead of Q

and −Q, say — but it is often sufficient to do so. In particular in empty Minkowski space
this corresponds to a choice of time slice which can be reached via an isometry.

4.2.1 Rindler wedge as an ACD in empty Minkowski space

Just as the AdS-causal wedge becomes more tractable in the case of empty AdS where it
reduces to AdS-Rindler, the ACD becomes simpler in Minkowski space.

It is useful to start with a bulk construction to get some intuition about ACD. We start
with a causal diamond in the bulk defined as the intersection of the past light cone of a point
pF with time coordinate t > 0 and the future light cone of a point pP with t < 0. This is a bulk
causal diamond and it can be shown to be the causal development of a spherical region [13]

C ≡ I+(pP ) ∩ I−(pF ) (4.9)

We will call the points pP and pF the “vertices” of the causal diamond. When the points are
placed symmetrically around the t = 0 slice, it is a symmetric causal diamond. The location
of the vertices of a symmetric causal diamond are of the form,

pF = (t, x1, x2, . . . , xd) pP = (−t, x1, x2, . . . , xd) (4.10)
10AdS isometries can be used to map any AdS-Rindler wedge to another. Some related facts are discussed

in appendix A.
11This (useful) choice of the t = 0 slice can depend on the physics we are considering — if we wait long

enough, black holes can evaporate away, for example.

– 15 –



J
H
E
P
0
6
(
2
0
2
4
)
0
6
8

in d + 1 dimensions. The (past) light cone of a point (T, R, θ′, ϕ′
1, . . . , ϕd−2) is given by,

−(t − T )2 + r2 + R2 − 2rR
(
cos θ cos θ′ + sin θ sin θ′

(
. . .
))

= 0 (4.11)

where the . . . can be explicitly written down but are unnecessary for our present purposes.
Without loss of generality we can always choose our axes such that pF aligns with the pole.
This sets θ′ = 0 and we get,

−(t − T )2 + r2 + R2 − 2rR cos(θ) = 0 (4.12)

In conformal coordinates we have the following relations,

t = Λtan p + tan q

2 r = Λtan p − tan q

2
T = ΛtanP + tanQ

2 R = ΛtanP − tanQ

2

Now that we have the equation for the surface of this causal diamond, we will send the
vertex to I + keeping Q fixed. This we can do by taking the limit P → π/2. Writing (4.12)
in conformal coordinates and taking the limit we get,

(tan p + tan q)− (tan p − tan q) cos (θ)− 2 tanQ = 0 (4.13)

Or in Minkowski coordinates,

t − r cos (θ)− Λ tanQ = 0 (4.14)

the coordinate Q decides the location of the vertex on I +. Thus, we finally end up with a
causal wedge attached to the I +, which is the ACD. Note that (4.14) is the equation only
for the past light cone of the ACD. We can obtain the equation of the future light cone by
setting (t → −t) (note that the past vertex of the symmetric ACD incorporates Q → −Q

so there is no need to do that in the equation).
An ACD in Minkowski space is (up to isometries) a Rindler wedge of flat space, but

with crucial emphasis on the boundary behavior of the wedge rather than the bulk behavior
(as is often the case in usual discussions). The connection with Rindler wedge can be seen
from (4.14) that an ACD is the causal development of the spatial region r cos θ > Λ tanQ.
It is instructive contrasting the structure of an ACD with that of the AdS-Rindler wedge.
The intersection of an ACD with the boundary is a co-dimension 2 surface unlike in the AdS-
Rindler wedge case where its intersection with the AdS boundary is a co-dimension 1 surface.
This can be seen by setting the limit p → π/2 in (4.13) after solving for cos θ. We end up with

cos (θ) = 1 (4.15)

One of the most fundamental differences between a Minkowski ACD and an AdS-Rindler
wedge is in their waist. The waist of the symmetric ACD can be simply obtained by setting
t = 0 in (4.14)

r cos (θ) = −Λ tanQ (4.16)
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Figure 4. The plot of a symmetric ACD (green) inside the conformal diagram of empty Minkowski
space.

𝜃𝑎𝑠𝑦𝑚𝑝  

(a) (b)

Figure 5. (a) The blue curve is the waist of an ACD in Minkowki space. It is also the RT surface
associated to the boundary data θasymp, and is plotted by treating r′ and θ as polar coordinates
in (4.17). The data specified by θasymp is equivalent to that in tanQ. But the former can be viewed
as data intrinsic to spi, while the latter is more naturally thought of as data on I . (b) The waists of
the ACD have been plotted for different values of the vertex location. As the vertex moves towards
future timelike infinity, the waist becomes wider and eventually the entire spacetime ends up in the
causal diamond.
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-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

𝑟′ = 𝜋 𝑟′

𝑟′ = 0 

(a) (b)

Figure 6. (a) The t = 0 slice of compactified Minkowski space in 1 + 1D. The poles are at r′ = 0
(North) and π (South). South pole is the point at infinity of r. (b) The t = 0 slice of compactified
Minkowski space in 2 + 1D. The South pole is the point at infinity of r in higher dimensions also.

This is just a hyperplane — unsurprising, because in empty flat space the causal surface
is also the extremal surface and therefore has minimal area. In conformal coordinates this
surface is given by,12

tan (r′/2) cos (θ) = − tanQ (4.17)

Unlike in AdS the waist always lands on antipodal points on spi in the conformal diagram.
We will discuss this point in detail in the next sub-section.

The coordinate r′ is often treated as an angle since (4.4) is the metric of a cylinder with
r′ as the polar angle. With this interpretation in mind we can re-cast (4.17) as,

1 + z = − x

tan(Q) . (4.18)

This equation interprets the waist of an ACD as the intersection of the unit sphere x2 +
y2 + z2 = 1 with the plane given by (4.18).13 This sphere is essentially the t = 0 spatial
slice and the south pole (r′ = π) is the point at infinity of r. This r → ∞ is a “point” in
all dimensions as illustrated in the figure 6.

These discussions are in the setting of empty Minkowski space, but the asymptotic
data defined via conformal coordinates can be used as holographic data more generally in
asymptotically flat spacetimes. This is done via the notion of a spi-subregion.

4.3 Symmetric spi-subregions

Due to the absence of a well-defined boundary causal structure, identifying analogues of
boundary subregions is not straightforward in flat space. So we first observe that in an

12Note that t′ = 0 and t = 0 coincide in the two coordinates.
13This discussion is specific to 2+1 dimensional Minkowski space, but the discussion generalizes to N

dimensions trivially upon replacing z with the Cartesian direction to the North pole, xN , and replacing x with√
x2

1 + x2
2 + . . . + x2

N−1 in (4.18). We will often discuss things in 3+1 dimensional Minkowski space where
the subtleties we care about are already visible.
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asymptotically AdS spacetime, subregions on the boundary can also be characterized via the
minimal surfaces anchored to them. These minimal surfaces are the waists of AdS-causal
wedges which can also be viewed (in empty AdS) as the horizons of AdS-Rindler. This
suggests that we should use the waist of an ACD in empty Minkowski space as a tool for
characterizing “subregion data” in flat space. We will first do this for the flat space analogue
of a spherical subregion — we will call the resulting object, a symmetric spi-subregion. In the
next subsection we will generalize the discussion to general spi-subregions. It turns out that
waists of ACDs approach antipodal points on spi at the conformal boundary. For symmetric
spi-subregions, these waists tend to become (hyper)planar at infinity.14

Once you fix the origin and the radius of the spherical subregion, the AdS-Rindler wedge
is uniquely defined. In other words the position of the vertices of an AdS-Rindler wedge
uniquely fixes the boundary subregion. The analogous statement in asymptotically flat space
is that a symmetric spi-subregion can be defined via the vertices of a symmetric ACD. As
long as the angular locations of the vertices are left unchanged, changing the null (Q and −Q)
coordinate of the vertex of a symmetric ACD on I simply changes the angle of approach
of the minimal surface at spi in conformal coordinates. See figure 5(b). Not in particular
that the waist always goes to antipodal points. Even though structurally quite different, this
angle has some similarities to the θ∞ angle we discussed when discussing spherical subregions
in AdS. Just as for a spherical subregion in AdS, apart from its “center”, there is only one
real number worth of data that is needed to specify a symmetric spi-subregion. In AdS,
we called it θ∞, here we will call it the asymptotic approach angle, θasymp. It defines the
symmetric spi-subregion, once we choose the North pole on spi. This θasymp is essentially
the same data as tanQ, but it is convenient to give it a geometric interpretation intrinsic
to spi that will clarify why we call it the approach angle. The data Q on the other hand, is
more manifestly associated to the vertices of the ACD and is best viewed as living on I . If
the spacetime differs from empty Minkowski space in the bulk (e.g., when there is a black
hole) then this θasymp is the true holographic data that one should work with in defining an
RT surface. We will explicitly do such calculations in the next section.

Figure 5(a) gives a geometric definition of θasymp. It is simply a convenient angle one can
define for lines (or hyperplanes) that reach infinity in conformal coordinates. Let us determine
it explicitly as a small exercise, and also to connect it to the Q data. We are interested in
determining the “slope” of the equation for the waist (4.17), treated as an equation in polar
coordinates, at spi. From the geometry of figure 5(a) we see that the slope of the curve is

dy′

dx′ =
dy′/dθ

dx′/dθ
= (dr′/dθ) sin θ + r′ cos θ

(dr′/dθ) cos θ − r′ sin θ
(4.19)

From the equation of the waist, we have

dr′

dθ
= − 2 tanQ sin θ

tan2 Q + cos2 θ
(4.20)

14Note that there are non-trivial minimal surfaces in d > 2. What happens to these minimal surfaces in the
asymptotic limit, is related to the notion of a general spi-subregion. In Mink3, minimal surfaces are always
straight lines.
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The slope at θ = π/2 is therefore

slope = dy′

dx′

∣∣∣
θ=π/2, r′=π

= 2
π tanQ

(4.21)

θasymp = π − tan−1
( 2

π tanQ

)
(4.22)

The above result is valid when Q ∈
(
0, π

2
)
. After a similar calculation valid for higher

vertices, we get the final result

θasymp =

− tan−1
(

2
π tan Q

)
for Q ∈

(
−π

2 , 0
)

π − tan−1
(

2
π tan Q

)
for Q ∈

(
0, π

2
) (4.23)

Note that in empty Minkowski space, θasymp is related to the closest distance of approach
of the minimal surface to the origin of the spacetime. By choosing the coordinates suitably
(and without loss of generality) we can relate it to the perpendicular distance between the
minimal surface and the r cos θ = 0 surface. This is a consequence of the fact that (− tanQ)
is related to the closest distance of approach of the minimal surface to the origin (see 4.16).

But let us make an important comment. The distance of closest approach in the bulk is
a dimensionful quantity (note that there is a Λ in (4.16)) while θasymp is dimensionless. The
choice of Λ seems arbitrary at this stage, and the asymptotic conformal data (like θasymp)
does not depend on it. But there is an eminently natural choice for Λ. This fact manifests
itself, when we use the θasymp data to compute the area of the minimal surface. The area
diverges due to the infinite volume of flat space, and this can be regulated by putting a large
radius cut-off. With a large radial cut off r = R0, the area of the minimal surface (ie., a
co-dimension 2-hyperplane in Minkowski space) is given by,

A = π
d−1

2

Γ
(

d+1
2

)Rd−1
0

(
1− tan2 Q

) d−1
2 (4.24)

Crucially, in writing this result, we have set Λ = R0. For any other choice of Λ the formula
would have two scales and we will not be able to obtain this simple and natural form by
extracting an overall factor of Rd−1

0 .
We see here that the area and therefore the entanglement entropy go as rd−1 which

gives us a volume law for the entropy on the screen, instead of the conventional area law.
This suggests two things. Firstly, it is an indication that the divergence should indeed be
viewed as an IR divergence. Secondly, it suggests that the holographic theory is a non-local
theory (for local theories the entanglement entropy goes as area law). Both these facts are
conceptually significant, and depart from what one sees in AdS/CFT when one introduces a
cut-off at super-AdS scales. This result ties in very naturally with the suggestion [22] that
the holographic duality is an IR/IR duality in flat space and sub-AdS scales, and that the
degrees of freedom are not of a local QFT — instead the dual degrees of freedom are those
of long strings. This perspective immediately explains why the interactions are non-local
(strings are not pointlike) and why there are no UV divergences (strings are UV-finite).

There is in fact a second piece of evidence that suggests that the divergence noted above
should be viewed as an IR divergence — we briefly remarked on this earlier, and it arises via
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conventional AdS/CFT. Consider the Poincare patch of AdS. The boundary of the Poincare
Patch is Minkowski space and the Penrose diagram of flat space emerges naturally there.
The dimensionful Λ that shows up there automatically is the AdS length scale, which we
know from AdS/CFT is to be viewed as an IR scale. The short calculation that demonstrates
this observation is presented in appendix A.

Let us conclude this subsection by emphasizing again that this θasymp is conceptually
different from the θ∞ discussed in section 2 in the AdS setting. The latter is a coordinate
value and therefore signifies a location on the conformal boundary whereas θasymp is not a
physical location where an observer can stand. It is more analogous to a direction of approach
to infinity, and therefore is naturally well-defined on spi. Despite this, it naturally allows an
interpretation as bi-partitioning spi (or more importantly for us, the associated bulk state).

Most of our observations in this paper only require the notion of the symmetric spi-
subregion that we have introduced in this section, but when d > 2 it is possible to generalize
this notion. This should be compared to the fact that the boundary of AdS3 has only spherical
subregions while in higher dimensions subregions can be more general. Even though not
strictly necessary for the rest of the paper, this reveals the richness of spi. We expect that
this will be significant when trying to construct a holographic theory at spi, and therefore
we develop it further in the next subsection.

4.4 General spi-subregions

In our discussion so far, we have constructed analogues of causal wedges, spherical subregions
and RT surfaces — all familiar from AdS — in asymptotically flat spaces. A natural question
that arises is whether one can extend this construction to encompass more general sub-regions
at spatial infinity. To get an understanding of this question it is useful to look at unions
of bulk causal diamonds in their ACD limit.

We will start with 2+1 dimensions where the situation is straightforward — despite some
technical complications in higher dimensions, we will in fact see that the general ideas are
valid across dimensions. The 2+1 dimensional case should be clear from figure 5(b). The
union of two ACD waists is given by the unions of the corresponding regions in that figure.
It is clear that the corresponding asymptotic data is given by the two angles of approach
at infinity — they capture one end of one of the spi-subregions and the other end of the
other. This is what we will refer to as a non-trivial union. Note that if the “centers” of
the two symmetric spi-subregions are the same, the union is simply the bigger symmetric
spi-subregion. “Bigger” here simply means the one with the bigger θasymp. We will call such a
union, a trivial union. It is straightforward to construct a general spi-subregion by arbitrary
(trivial and non-trivial) unions using these principles.

An interesting question is — what is the bulk region that is in the causal wedge of the
union of two spi-subregions. The answer to this question in flat space is distinct from that
in AdS, and is therefore more interesting. We claim15 that whenever the union involves a
non-trivial union of two ACDs, the causal wedge is the entire spacetime.16 There are a couple

15This was briefly suggested in [26].
16This comment applies to Minkowski space — of course, when there are black holes etc., there may be

regions inside horizons which are not accessible to boundary-anchored RT surfaces. Such features exist in AdS
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of ways in which one can convince oneself that this is the case. The first argument is to
note that if we had a screen in the bulk, the RT surfaces associated to the unions of the
induced screen subregions go to infinity as the screen size is sent to infinity. This is trivial
to see in 2+1 dimensions, where the only minimal surfaces are straight lines. But it is true
in higher dimensions as well, as we will argue later in this section. A second argument is
to consider unions of three spi-subregions such that the center of the third spi-subregion
is in the intersection of the first two. In such a configuration the spi-subregion that is the
union of the three is determined by the first two. Now, one can “fatten” the waist of the
third ACD by increasing its θasymp arbitrarily, or equivalently by sliding the vertices towards
timelike infinity. Under this operation, its bulk causal wedge can become arbitrarily large
and can cover the entire spacetime. This is a suggestion that the union of the first two
should contain the entire spacetime. Note that this observation fails in AdS because as
one enlarges a boundary causal diamond that is in the intersection of two other boundary
causal diamonds, it will eventually become bigger than the union of the first two. In the
analogous construction at the boundary of Minkowski space, this happens only when the
entire spacetime is in the causal wedge as well.

Note that the above two arguments are qualitatively distinct. The first one involves a bulk
cut-off, but the other can be phrased entirely in terms of the causal wedges of spi-subregion
data. We see repeated hints of this kind in this paper, that the bulk IR cut-off is a natural
part of the definition of the hologram of flat space — just as the UV cut-off is an implicit
part of the definition of the CFT in AdS/CFT. Let us also note that the causal/entanglement
wedge structure of unions here may be natural in a non-local holographic theory. In a theory
with all-to-all couplings like in SYK-like models, bi-partitions of the lattice may be more
useful than multi-partitions and their unions. Our entire discussion seems to strongly suggest
that bi-partitions are more interesting in the hologram of flat space, perhaps hinting at
the two ends of a string.

Let us now turn our discussion to higher dimensions. The discussions in all higher
dimensions are essentially identical, so we will restrict ourselves to the concrete setting of
3+1 where the subtleties are already visible. Let us consider two bulk causal diamonds with
their vertices at arbitrary point in the bulk. Then (4.11) becomes,

−(t − t1,2)2 + r2 + r2
1,2 − 2rR

(
cos θ cos θ1,2 + sin θ sin θ1,2 cos (ϕ − ϕ1,2)

)
= 0 (4.25)

where (t1, r1, θ1, ϕ1) and (t2, r2, θ2, ϕ2) are the vertices of the two causal diamonds. Taking
the limit of the vertices going to I + (keeping the angular coordinates fixed) we get the
following equations of the ACDs,

t − r (cos θ cos θ1,2 + sin θ sin θ1,2 cos (ϕ − ϕ1,2)) = Λ tanQ1,2 (4.26)

The resulting waists are two planes, a fact we could have guessed. Generically, they will
intersect. With a finite radial cutoff, a curve on the screen emerges from the intersection of
these surfaces (see figure 7). A key fact in 3+1 (and higher) dimensions is that there exist
non-trivial minimal surfaces with arbitrary curves on spherical screens. This statement is an

as well, so we will not emphasize them.
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Figure 7. The two planes (blue and brown) are the waists of two ACDs. For a finite radial cut-off,
the intersection of the planes and the screen give us a curve on the screen (bold blue curve).

aspect of the Plateau problem and was proved in extreme generality by Jesse Douglas [35].
In 2+1 dimensions, the minimal surfaces will simply be straight lines and we do not see
such a rich structure.

As the radius of the spherical cut-off approaches infinity, this curve is the data that
captures the information about the (general) spi-subregion. By taking (possibly infinite)
non-trivial unions, we can construct arbitrary spi-subregions.17 So we will focus on the case
of a single non-trivial union. Let us make it explicit in the context of two ACDs oriented so
that their waists (planes) are intersecting at right angle. We will also assume that the closest
distance of approach from the origin to either of these planes is a, the same constant. This
restricted setting is enough to capture the geometric features we wish to illustrate.

By choosing the coordinates wisely, we can write the two planes as

z + x = a, and z − x = a. (4.27)

In polar coordinates this becomes

r(cos θ + sin θ cosϕ) = a, for ϕ ∈ (0, π/2) ∪ (3π/2, 2π) (4.28)
r(cos θ − sin θ cosϕ) = a, for ϕ ∈ (π/2, 3π/2). (4.29)

We are no longer working with the North pole aligned with either of the ACDs — North pole
is now a point in the interior of their intersection for convenience. These equations can be
translated to conformal coordinates, by simply replacing r with Λ tan(r′/2) and absorbing
the scale in a via a ≡ −

√
2Λ tanQ. This leads to a generalization of (4.17) (see below) and

17This philosophy is identical to that in AdS, where general subregions can be viewed as (infinite) unions of
spherical subregions.
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Figure 8. Plot (up to overall rotation) of the surfaces in (4.30) and (4.31), where r′, θ, ϕ are treated
as spherical polar coordinates.

we can read off the θasymp from the shape of the curve at r′ = π. This is a conceptually
straightforward problem which we solve below for this relatively simple case. The details are
a bit ugly — but the resulting waist structure can be intuitively understood via surfaces of
revolutions obtained from figure 5(b) using say the green and brown regions as examples.

It is easy to see that both pieces of the curve live on planes in the bulk that are a distance
(− tanQ) from the origin of conformal coordinates,18 and therefore the magnitude of θasymp
is precisely that given in (4.23). The task is simply to determine the curve θ(ϕ) at r′ = π.
We have the equation of surfaces in conformal coordinates,

tan (r′/2)(cos θ + sin θ cosϕ) = a, for ϕ ∈ (0, π/2) ∪ (3π/2, 2π) (4.30)
tan (r′/2)(cos θ − sin θ cosϕ) = a, for ϕ ∈ (π/2, 3π/2) (4.31)

for r′ = π we have

cosθ + sin θ cosϕ = 0, for ϕ ∈ (0, π/2) ∪ (3π/2, 2π) (4.32)
cosθ − sin θ cosϕ = 0, for ϕ ∈ (π/2, 3π/2) (4.33)

from which we get the equation of boundary to be,

θ = − cot−1 (cosϕ), for ϕ ∈ (0, π/2) ∪ (3π/2, 2π) (4.34)
θ = cot−1 (cosϕ), for ϕ ∈ (π/2, 3π/2) (4.35)

The key point is that θ(ϕ) is now no longer on a circle. The relevant curve is the intersection
of the green surface and the sphere in figure 8. More generally, if we had constructed the

18We introduced a
√

2 in the relation relating a and tan Q above, to arrange this.
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union from planes that were at different values of a, we could have also gotten θasymp values
that are not constant everywhere on the curve. In other words, the θasymp data on a chosen
curve θ(ϕ) is what defines a general spi-subregion.

This observation is general. Here we demonstrated it for a union of two ACDs, but
infinite unions can lead to arbitrarily complicated spi-subregions. Note that this structure is
similar in AdS as well, once we replace θasymp with θ∞ as the quantity that has non-trivial
structure.19 By taking lower dimensional cross sections of figure 7 one can also see that
non-trivial unions of spi-subregions result in RT surfaces that include the entire bulk as
the cut-off goes to infinity, as was argued in 2+1 dimensions. A further analogy with 2+1
dimensions is that the angle dependence of θasymp on a general spi-subregion is in fact realized
in 2+1 also, when we note that the two “ends” of the subregion are the two points20 of the
S0 that is the analogue of the S1 (the ϕ-direction) in 3+1.

5 Ryu-Takayanagi surfaces in flat space

We argued in the last section that spi-subregions are the natural holographic data that
determine RT surfaces in asymptotically flat space. For empty Minkowski space, we know
that these RT surfaces are hyperplanes based on general arguments, and we computed their
areas. But determining them is a non-trivial task in asymptotically flat spaces. In this section
and the next, we will write the minimal surface equations and solve them perturbatively as
well as numerically. We will do this for empty flat space as warm up, and then for black
holes. We have discussed the AdS calculations in a form that can be adapted directly to
flat space in previous sections, so we will be able to proceed quickly.

5.1 Empty flat space

RT surfaces in empty flat space are simply lines or (hyper)planes depending on dimension.
They have been studied previously from the perspective that the RT data is to be placed
on a screen in the bulk [11–13]. Our goal in this section and part of appendix B is to
formulate the problem in a more intrinsically holographic way, by using spi-subregion data
as the input. We will see eventually that there is a natural connection between the screen
radius and the Λ of our previous section.

5.1.1 Mink3

Like AdS3, RT surfaces in 2 + 1 dimensional Minkowski space are trivially solvable. The
area functional for the co-dimension 2 surface is

A =
∫ √

r2 + r′(θ)2 dθ =
∫ √

r2θ′(r)2 + 1︸ ︷︷ ︸
L

dr (5.1)

19The comparison is for a connected subregion. Note that in AdS4, non-trivial boundary subregions can be
described by θ∞(ϕ). A non-trivial spi-subregion on Mink4 involves specification of both the curve θ(ϕ) on
which θasymp is non-vanishing, as well as the values θasymp. In our simple illustrative example, the curve was
non-trivial, but the value of θasymp was constant.

20Note that S0 is a pair of points.
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We will treat θ as a cyclic coordinate as in AdS3. We can write

dθ

dr
= c

r
√

r2 − c2
(5.2)

where c is an integration constant. Integrating (5.2) and demanding r = r∗ for θ = 0 sets
c = r∗. This is a boundary condition in the bulk.

Let us make a couple of general comments. Our discussion of RT surfaces for the various
cases in this section is done via integrating the equations of motion using data in the bulk (like
above) or asymptotic data. This is a standard choice one makes depending on convenience
in AdS as well. In other words an RT surface can determined via angle data at r → ∞ or
closest approach data at θ = 0.21 We mostly solve the system in terms of asymptotic data in
the main body of the paper, but present calculations starting from the bulk in appendix B.

A second point worthy of emphasis is that in both AdS as well as in flat space, our key
observation is that the RT surface is determined via dimensionless asymptotic data. In
AdS, this is manifest in (say) the Poincare patch where the AdS length scale is simply an
overall scale in the metric. The analogous observation in flat space is that the RT surfaces
are again determined by angle data as we discussed in the previous section. Note that the
structure of the metric is consistent with this fact, where again the scale Λ is sitting outside
expressions like (4.4) and (4.5).

Coming back to the present discussion, the equation of the curve can be written as

θ = cos−1
(

r∗
r

)
(5.3)

which is just the straight line at a distance r∗ from the origin. Substituting it back into
the Lagrangian gives us

L = r√
r2 − r2

∗
(5.4)

Integrating with proper limits (ie., from r∗ to R0) gives us (4.24). These equations, together
with (4.16) demonstrate that up to the overall conformal rescaling by Λ the asymptotic data
in the spi-subregion (captured by say Q in our discussion in the previous section) is precisely
equivalent to the data in r∗. We also learn very explicitly, that the geometry naturally
suggests that the scale Λ should be chosen to be the screen radius R0.

5.1.2 Mink4

As in AdS, the differential equation is less easily solved in higher dimensions but we can still
obtain power series solutions. This will be enough to establish that the asymptotic data is
fixed by the spi-subregion. For d = 3 the area functional is,

A = 2π

∫
r sin (θ(r))

√
r2θ′(r)2 + 1︸ ︷︷ ︸

L

dr (5.5)

21Depending on the choice of coordinates one may need to impose a regularity condition in the bulk to get
a complete match, as we discussed in the AdS case.
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Note that since a symmetric spi-subregion is symmetric about the North pole, without loss
of generality we have assumed the surface also to have the same symmetry. From (5.5) we
can write the Euler-Lagrange equation,

∂

∂θ

(
r sin (θ(r))

√
r2θ′(r)2 + 1

)
= d

dr

∂

∂θ′

(
r sin (θ(r))

√
r2θ′(r)2 + 1

)
(5.6)

Like in AdS we can try a power series expansion of for large values of r in the form22

θ(r) =
∑
i=0

θi

ri
(5.7)

Substituting (5.7) in (5.6) and comparing coefficients we get the solution to be,

θ(r) = π

2 + θ1
r

+ θ3
1

6r3 + 3θ5
1

40r5 + 5θ7
1

112r7 + . . . (5.8)

As expected, this is just the expansion of (5.3) which is the equation of a plane in 3+1
dimensions. It follows therefore from (4.16) that the data that determines the RT surface,
θ1, is nothing but the spi-subregion data, tanQ. Substituting the solution back in the
Lagrangian we get,

L = r (5.9)

Integrating with proper limits gives us again back (4.24) for d = 3.

5.1.3 Mink5

Again the differential equation is not directly solvable but we can still obtain a power series
solutions from the area functional

A =
∫

r2 sin2 (θ(r))
√

r2θ′(r)2 + 1︸ ︷︷ ︸
L

dr (5.10)

and the corresponding equations:

∂

∂θ

(
r2 sin2 (θ(r))

√
r2θ′(r)2 + 1

)
= d

dr

∂

∂θ′

(
r2 sin2 (θ(r))

√
r2θ′(r)2 + 1

)
(5.11)

A new feature is that substituting the power series expansion and solving for the coefficients
gives us an extra integration constant which we call θ2:

θ(r) = π

2 + θ1
r

+ θ2
r2 + θ3

1
6r3 + θ2

1θ2
r4 + . . . (5.12)

Substituting it in the Lagrangian we get,

L = r2 − θ2
1
2 +

θ2
2 − θ4

1
8

r2 +
3θ2

1θ2
2 − θ6

1
16

r4 + . . . (5.13)

22Again as in AdS, to keep the dimensions straight, we need to work with an expansion in r
Λ rather than r.

It is a simple but important fact that it is precisely this data that is fixed by the spi-subregion, cf. (4.16).
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The extra constant θ2 is a feature23 of all d > 3. Setting it to zero leads to a match
with our expectation that the curve is a hyperplane (ie., (5.3)) and that the area integral
functional matches with (4.24). As in AdS the extra integration constant is to be understood
as a regularity condition one needs to impose in the bulk. We solve the same system in
the r(θ) language, to illustrate this in appendix B.

5.2 Black hole in the bulk

A key advantage of the spi-subregion approach is that it allows us to cleanly separate out the
asymptotic dimensionless information that controls the RT surface, from the scale information.
In particular, we can now repeat the RT surface calculation above, in any asymptotically
flat spacetime using the same procedure. This approach is to be contrasted with trying to
define data on a finite radius screen. In the latter approach, one has to worry about (e.g.,)
the induced metric on the screen — the canonical data becomes less clear. Perhaps because
of this, even though there have been papers on RT surfaces in empty flat space anchored to
screens (ie., the hyperplanes we saw earlier24) much less effort has been directed towards RT
surfaces of flat space black holes. In this section and appendix B, we will construct these
black hole RT surfaces perturbatively (both around the asymptotic region and around the
deepest point in the bulk) and numerically (in the entire spacetime). Since there are no black
holes in 2+1 dimensional flat space, we start with 3+1 dimensions.

5.2.1 Schwarzchild4

We start from the Schwarzchild metric in 3+1 dimensions

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2dΩ2

2 (5.14)

Without loss of generality we can assume the RT surface associated to the symmetric spi-
subregion to be symmetric about the North pole. Then the area functional of a co-dimension
2 surface is,

A = 2π

∫
r sin θ

√(
1− rs

r

)−1
+ r2θ′2︸ ︷︷ ︸

L

dr (5.15)

The Euler-Lagrange equations yield

∂

∂θ

r sin θ

√(
1− rs

r

)−1
+ θ′2r2

 = d
dr

∂

∂θ′

r sin θ

√(
1− rs

r

)−1
+ θ′2r2

 (5.16)

As before, assuming a power series solution of the form

θ(r) =
∑
i=0

θi

ri
(5.17)

23The extra freedom in θ(r) appears at O(r−(d−2)) in d + 1 dimensions. In d = 3 this requires a log term in
the series expansion to get the most general solution. This is explained more completely in appendix C.

24Note however that we worked them out in terms of data at spi and not in terms of screen data directly.
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Figure 9. Plots of RT surfaces on Schwarzschild4 in (asymptotically) conformal coordinates as the
closest point of approach is varied. The plots are for rs = 0.5. The curve of farthest approach (the
reddest curve) is chosen arbitrarily, there is no interesting information to be gathered by going further
to the right. The bluest curve will be discussed further in the next section.

leads to

θ(r) = π

2 + θ1
r

− rsθ1
2r2 +

2θ3
1

3 − r2
sθ1
2

4r3 + −3r3
sθ1 − 28rsθ3

1
48r4 + . . . (5.18)

Substituting this into the Lagrangian of (5.15) we get,

L = r + rs

2 + 3r2
s

8r
+ 5r3

s − 16rsθ2
1

16r2 + 5
(
7r4

s + 16r2
sθ2

1
)

128r3 + . . . (5.19)

An analogous perturbative solution around the point of nearest approach to the horizon
is presented in appendix B. One can in fact, do more. The ODE in (5.16) can be numerically
solved with the boundary conditions

r(θ)
∣∣∣
θ=0

= r∗, r′(θ)
∣∣∣
θ=0

= 0 (5.20)

Plotting the numerical solutions, we arrive at figure 9. The figures have been plotted in
compact coordinates (ρ, ϕ) with the following identification

ρ = tanh (r), ϕ = θ. (5.21)

In figure 9 the RT surfaces start on the right side of the black hole, wrap around to the
other side and then turn around to reach the antipodal points. Of course in non-conformal
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Figure 10. A sample plot of the RT surface in physical coordinates.

coordinates, this simply corresponds to the curves becoming asymptotically planar, see
figure 10. At the turning point the slope blows up. So, we also need to solve the equations
by interchanging the independent and dependent variable in the action functional in order
to fully determine the curve.

5.2.2 Schwarzchild5

A similar calculation can be done in higher dimensions also. The results are also largely parallel
— except for the fact that there is the extra integration constant, when we perturbatively
solve the system at large r. This is the same integration constant that we found in empty
4+1 dimensional Minkowski space, and again the explanation is that it is an artifact of the
absence of manifest regularity in the bulk.

The metric for 4+1 Schwarzchild black hole is,

ds2 = −
(
1− r2

s
r2

)
dt2 +

(
1− r2

s
r2

)−1

dr2 + r2dΩ2
3 (5.22)

Again without loss of generality we are assuming the surface to be symmetric about the
pole. The area functional of the co-dimension 2 surface is

A = 4π

∫
r2 sin2 θ(r)

√√√√(1− (rs
r

)2
)−1

+ θ′(r)2r2

︸ ︷︷ ︸
L

dr (5.23)

and the equations of motion are

∂

∂θ

r2 sin2 θ(r)

√√√√(1− (rs
r

)2
)−1

+ θ′(r)2r2


= d

dr

∂

∂θ′

r2 sin2 θ(r)

√√√√(1− (rs
r

)2
)−1

+ θ′(r)2r2


(5.24)

The power series solution takes the form

θ(r) = π

2 + θ1
r

+ θ2
r2 + θ3

1 − 3r2
sθ1

6r3 + . . . (5.25)

On substituting this θ(r) back into the Lagrangian of (5.23) we get,

L = r2 + 1
2
(
r2

s − θ2
1

)
+ 3r4

s − 10r2
sθ2

1 − θ4
1 + 8θ2

2
8r2 + . . . (5.26)
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Figure 11. Plot of minimal surfaces in Schwarzschild5 in conformal coordinates. Similar comments
as in figure 9 apply.

A similar perturbative calculation where the dependent and independent variables have
been reversed, is presented in B. Just as in 3+1 dimensions, the ODE in (5.24) can be
numerically plotted with similar boundary condition as in (5.20). Plotting the solution
we get figure 11.

Some comments are in order. Firstly, if we try to calculate the distance of the RT
surface (5.25) from the r cos θ = 0 surface, we get

r cos (θ(r)) ≈ −θ1 +
rsθ1
2r

+ r2
sθ1
8r2 +

r3
sθ1
16 + rsθ3

1
3

r3 +
5r4

sθ1
128 − 43r2

sθ3
1

96
r4 + . . . (5.27)

from which we can see that as r → ∞ the distance becomes constant i.e. r cos θ ∼ −θ1. This
implies that RT surface becomes a hyperplane at large distance from the horizon. This distance
acts as the boundary data as we saw in the empty Minkowski case. Comparing to (4.16) we get

θ1 = tanQ. (5.28)

Note that in this result and indeed in the perturbative expansions above, we are again
implicitly working with r

Λ as the variable and not r. This is what ensures that the θi are
dimensionless variables. It also means that once rs

Λ replaces rs in the various expressions,
the philosophy of the calculations is identical to that in the empty Minkowski case. Of
course, this is simply an illustration that the asymptotic data, even with black holes, is
captured by spi-subregions.
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Let us repeat an important observation. In the AdS case, the divergent terms of the
Lagrangian in the area functional were independent of the black hole radius. In fact, a
stronger statement was true — the divergent terms in the AdS black hole case are the same
as those in empty AdS.25 In essence, what this is showing is that the divergence structure of
the entanglement entropy is independent of the state in AdS/CFT. This is natural because
the holographic dual of AdS gravity is a quantum field theory, and the entanglement entropy
of a quantum field theory subregion has a universal short distance divergence.

But we see that such a prescription will not work in flat space – (5.26) has an extra
divergent term compared to (5.13) which depends on the black hole radius. This is consistent
with the suggestion that the holographic dual of flat space quantum gravity is not a local
quantum field theory. We suspect that the precise expression of the result above, may be
useful in deciphering the form of flat space hologram.

6 Ryu-Takayanagi phase transitions

So far we have looked in detail at the geometry of RT-surfaces in asymptotically flat spaces,
given the boundary data Q. In this section we will present how the RT-surface behaves
as we change the “size” of this spi-subregion when there is a black hole in the bulk. For a
more intuitive understanding of this section it may be useful to take a look at the conformal
plot figure 9, a version of which we repeat in figure 12 (with emphasis on the cut-off and
some other salient features).

We start from a small spi-subregion — these correspond to the redder curves in figure 9.
These curves do not penetrate too deep into the bulk and are very similar to the empty
Minkowski curves as the space is almost flat far from black hole. Now, as the spi-subregion
size increases the curves penetrate deeper into the bulk and effects of curvature become more
prominent. One can see in figure 9 that as the asymptotic angle of approach (and therefore
the spi-subregion size) increases the RT surfaces move closer to the black hole and start to
wrap around the horizon. But there is an interesting point to note here — the most extreme
blue curve is closest to the black hole, but has a smaller asymptotic angle than the previous
curve. In other words, as the RT surfaces go deeper into the bulk beyond a certain point, the
asymptotic angle of approach (and therefore the spi-subregion size) starts to decrease again.

To better understand the geometry and physics, it is convenient to put a cut-off screen
at a finite distance from the black hole. Then the subregion size induced on the screen
can be used as a proxy for the size of the spi-subregion.26 Doing this we get the plot in
figure 12. We can see that as the surface moves closer to the black hole, the boundary
subregion size increases but only upto a critical distance — beyond which if we move any
closer, the subregion size begins to decrease.

The size of the subregion has been plotted against the distance of closest of approach
to the horizon in figure 13(a). It is clear from the plot that for a given subregion we may
have more than one extremal surface. The RT prescription suggests that we resolve this by
selecting the surface with the smallest area. The plot of area vs subregion size is presented in

25Because of this, one sometimes suppresses the divergences in the area by subtracting (3.11) from (3.23),
when one is interested in comparing the entanglement entropies.

26Note that this is merely for convenience in visualization. The holographic data is of course defined at spi.
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Figure 12. A plot of RT surfaces with horizon and a cut-off screen. In this plot for clarity we have
taken rs = 80 and R0 = rcut = 100. As the curves turn from red to blue, they get closer to the horizon

— this means initially that the spi-subregion size is increasing, but eventually it starts decreasing. This
is clear from this figure, as well as the extreme blue curve in figure 9.
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Figure 13. (a) Plot of the subregion size (taken to be the angle subtended by the intersection of the
RT-surface and cut-off screen) vs the closest distance between the RT-surface and the black hole. The
vertical axis is in radians and the horizontal axis is measured from origin, with rs = 80. (b) Plot of
the area of the RT-surface (computed as the integral of (5.15) from distance of closest approach to
rcut = 100) vs subregion size, zoomed in near the transition. We see that for the same subregion we
have two surfaces — one with higher area is closer to the black hole and therefore we discard these
surfaces.
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Figure 14. Plot of area of RT surface vs subregion size, but for the entire range of subregion sizes. The
black dashed line corresponds to the π/2 subregion on the screen. The blue dashed line corresponds
to the RT surface for the complementary subregion. The orange line is the area corresponding the
disconnected RT-surface. It is shifted by a constant (equal to the horizon area) from the dashed blue
curve. It is at the point of intersection of the blue and the orange lines the we transition from a
connected RT-surface to a disconnected RT-surface that contains the horizon.

figure 13(b). The higher area after the turnaround comes from the RT-surfaces closer than a
critical distance. Therefore the surfaces which are farther from the horizon than the critical
distance are the acceptable RT surfaces. This structure is identical to that in AdS.

As in AdS, there is one more catch — disconnected surfaces are also acceptable RT
surfaces as long as they are homologous to the subregion. So, one needs to check for such
RT-surfaces which have smaller areas than the connected surfaces. We have plotted the areas
of the relevant surfaces in figure 14. The point of intersection between the blue line and the
orange line shows the transition between connected and disconnected surfaces. Beyond this
point the RT-surface consists of the black hole horizon together with the minimal surface
corresponding to the complement of the boundary subregion under consideration. This also
suggests that it is natural to view the RT-surface for the full boundary (or spi) as the black
hole horizon. Recall that this is also the case with AdS black hole geometries.

The picture we have here is very similar to that in AdS, once we make an analogy
between rcut and the AdS length scale.27 Usually in AdS, the discussion of black hole RT
surface phase transitions is made in the context of large black holes, but the discussion can
be extended to small black holes as well [14]. There are two qualitative distinctions between
small and large AdS black holes and their RT surfaces. The first is that for small black
holes the phase transition between the connected and disconnected RT surfaces happens
closer and closer to θ∞ = π/2 as the black hole becomes smaller and smaller (ie., rs/L → 0).
The second is that for small black holes the distance of closest approach of the transition
RT surface to the horizon is comparable to the size of the horizon.28 We have checked that

27This is another hint that the screen radius is best viewed as an IR cutoff in flat space.
28For large AdS black holes the closest approach can be much smaller [14].
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both these statements are true for flat space black holes as well, as long as we replace L

with rcut. In other words the RT phase transition structure of both small and large AdS
black holes have natural analogues in flat space as well.

Let us make some comments about the screen [27]. Note that in AdS, L provides
the IR scale while the radial cut-off provides the (UV) regulator for the divergence in the
entanglement entropy/RT-surface area. Here on the other hand, the screen radius doubles
both as the IR scale and regulator, and there are no UV divergences. These observations are a
strong indication that the choice of an IR scale and its interpretation is likely of fundamental
significance in flat space quantum gravity. It was suggested in [36, 37] that the screen size
may be related to a coarse-graining scale.

7 Comments on the dual interpretation

Our results above paint a rich and suggestive picture on the bulk side of the holographic
duality. We learnt that RT surfaces in flat space have a geometric understanding in terms of
data at spatial infinity and that the bulk cut-off has an IR interpretation which is natural from
multiple perspectives. If holography in flat space is more than just fiction, it is reasonable to
suspect that these structures compute some form of entanglement entropy29 in the microscopic
theory. But since an intrinsic definition of the flat space hologram is unknown,30 we will
not be able to make a direct statement about how the entanglement (entropy) is to be
computed.31 In this section we will instead give strong evidence that the regulated areas of
the RT surfaces we have identified, compute some entanglement entropy. Precisely because
of the unavailability of a sufficiently explicit hologram, this needs a justification.

Let us step back for a moment and re-consider the AdS case: why would we think that
we are dealing with entanglement (entropy), if we were only aware of bulk calculations of RT
surfaces in AdS?32 To get some context, we start by listing some features of AdS RT surfaces.

• RT surfaces are defined by data on the conformal boundary, and this data allows the
interpretation of a bi-partitioning.

• The areas of AdS RT surfaces defined this way satisfy a whole list of entanglement
entropy inequalities (see e.g., [28], an original reference is [38]). These inequalities are
highly non-trivial to prove in conventional quantum mechanics (e.g., proof of strong
subadditivity [39]), but are simple and intuitive geometric statements from the AdS
bulk perspective.

29Even though not widely explored, we find it possible that flat space quantum gravity should perhaps be
treated as an open system. In such a scenario, the mixed density matrices of interest need not always be
reduced density matrices within a unitary theory, and we will be interested in more general von Neumann
entropies as well. But we will refer to these also loosely as entanglement entropies here, by exploiting the
possibility that they can be purified by considering also the bath.

30We will briefly mention two distinct (but possibly related) directions that have been proposed in the quest
for flat space holography, in the next section.

31But see the discussion in the last paragraph of this section.
32Note that even in AdS, apart from the case of AdS3/CFT2, direct CFT comparisons of entanglement

entropy are unavailable — weakly coupled gravity (where areas of surfaces make sense) is dual to strongly
coupled gauge theory.

– 35 –



J
H
E
P
0
6
(
2
0
2
4
)
0
6
8

• Since the hologram of AdS is a local theory, we would expect it to exhibit area scaling
of entanglement entropy. The divergent areas of the AdS RT surfaces indeed scale with
a codimension-2 divergence (we are counting boundary dimensions here).

• The conventional subregion-subregion duality in AdS is based on constructing quantum
extremal surfaces (or RT surfaces in the classical limit) to define entanglement/causal
wedges. This idea has recently had a remarkable renovation in terms of subalgebra-
subregion duality, where bulk subregions which are causally complete have been argued
to be dual to emergent type III1 algebras in the boundary theory in the large-N
limit [40]. These ideas provide a natural generalization of the notion of a boundary
subregion. A key message of these developments is that causally complete bulk regions
are associated to large-N divergences in entanglement in the holographic dual.

• It has been argued (and proved in various toy models) [41] that the existence of an RT
formula for entanglement entropy is equivalent to the quantum error correction (QEC)
property of bulk reconstruction [42]. This suggests that the “additivity anomaly” [40]
and related union/intersection properties of bulk regions within RT surfaces, are
indicators of entanglement.

There are of course many other related ideas, our goal above is simply to sample some
key features. We emphasize that in many of the above statements, the finiteness of the
entropy/area and therefore the introduction of a bulk cut-off, is crucial.

In the following, we point out that all of these bullet points have natural analogues
in flat space:

• A key result of the present paper is that the first bullet point above, is true even in
asymptotically flat space. This is a technical result — our motivation was to clarify
that the data describing an RT surface in flat space can be captured by asymptotic
data at spi. Flat space RT surfaces in terms of data on screens have been explored
before, see e.g. [11, 12]. But this is not fully satisfactory because it sacrifices some of
the spirit of holography. The results of this paper clarify that asymptotic data can do
the job in flat space as well. This makes the bulk description of RT surfaces in flat
space, as legitimate (ie., as holographic) as in AdS with the screen radius acting as a
regulator in both cases.

• As we noted above, there is a whole slew of highly non-trivial entanglement entropy
inequalities that are valid in AdS. Remarkably, there is strong evidence that all of
these are also valid in flat space in terms of regulated sizes of minimal surfaces [28].
This seems to not be as widely appreciated as it should be, even though the proofs
are entirely trivial in 2+1 dimensions [28].33 In higher dimensions, the proofs are
technically more difficult because of the complicated bulk structures that arise from
unions and intersections. (This is true even in AdS, and the complications in flat space

33In fact it was suggested in [28] that these may be the simplest proofs of these entropy inequalities in
existence. The original quantum mechanics proof of e.g. strong sub-additivity [39] is quite non-trivial. The
AdS proofs in e.g., [38] are significantly simpler, but the proofs in [28] can legitimately be called trivial, because
they follow from (sometimes elaborate) applications of triangle inequality.
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are structurally analogous and should be simpler.) These observations are a strong
suggestion that the objects computed by these flat space RT surfaces should indeed be
interpreted as entanglement entropy.

• The hologram of flat space is believed to be a non-local theory and it is a typical
expectation that such theories exhibit volume scaling of entanglement entropy and not
area scaling. The intuition is that the vacua (and excited states) of highly non-local
theories are much closer to typical states in the Hilbert space, than those of local
theories.34 Typical states under bi-partition lead to volume scaling of the entanglement
entropy, a fact that follows from Page’s theorem [44]. Such volume scaling is indeed
what we find in our flat space RT computations as well, where the leading divergence is
codimension-1 as opposed to codimension-2.

• According to subalgebra-subregion duality in AdS/CFT [40], boundary sub-algebras35

in the large-N (ie., semi-classical) limit are identified with causally complete subregions
of the bulk. In flat space, we certainly have causally complete bulk subregions,36 but
the dual theory is more mysterious. The results of [40] strongly suggest that one
should associate large-N type III1 subalgebras as the natural structure underlying
spi-subregions as well. Crucially, in both AdS and flat space, the N → ∞ limit can be
taken while keeping the bulk cut-off fixed,37 and we expect sharp bulk causal structures
to emerge in this limit.

A noteworthy feature38 of the algebra language is that the causal structure of the
boundary theory is not as directly significant in determining the bulk causal structure,
as one might have naively thought. (It is tempting to think that the absence of a
causal structure at the conformal boundary of flat space is another manifestation of this
large-N feature.) This is because time evolution on the boundary is sensitive to the
full operator algebra of the gauge theory, but the large-N limit suppresses everything
except the single trace sector. This was crucial for the discussions in [40] who show
that bulk casual diamonds that are disconnected from the boundary can be encoded in
the algebras of time bands on the boundary. Note that time bands around the t = 0
slice of spatial infinity are automatically present in the boundary of flat space as well,
and they are related to bulk causal diamonds in a manner identical to that in AdS.
With spi-subregions as duals of ACDs and time bands as duals of bulk causal diamonds,
we are lead to a picture that is naturally isomorphic to figure 1 of [40]. The claim of
the duality would be that there are natural type III1 algebras that can be associated

34This expectation has been borne out in theories like the SYK model, where the entanglement entropies of
sub-systems exhibit volume scaling [43].

35These type III1 sub-algebras subsume the notion of a boundary subregion — the older language of
subregions is what we have mostly followed in this paper, except in the present discussion.

36Causal developments of bulk subregions, (asymptotic) causal diamonds, etc. are examples of causally
complete bulk subregions.

37It is important here that the type III structure is attributed to the large-N limit and not the continuum
limit [40].

38Some of these ideas are currently being developed and we hope to report on them elsewhere.
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to these boundary regions. Clearly this is an important hint about the entanglement
structure of the non-local theory that describes flat space gravity in the large-N limit.

A related comment is that as long as we are in the large-N limit, it may be possible to
get insights about black holes in flat space, by exploiting their connections to small
black holes in AdS. The possibility that small black holes in AdS are dual to excited
M × M submatrix configurations of a large-N theory with M < N (with M/N held
fixed in the large-N limit39) has been proposed before [26, 45, 46]. It remains to be seen
if the algebra language is instructive in studying such configurations. The case studied
in [47] was for large black holes above the Hawking-Page transition, but it seems to us
that this may be inessential as long as the state has (a) a black hole interpretation, and
(b) is classically stable (even if not thermodynamically). Note in particular that one
of the crucial arguments for emergent type III1 in [47] came from the spectrum of the
Hartle-Hawking correlator, which in turn is obtained by solving the bulk wave equation
with infalling boundary conditions. Even though the explicit form of the small black
hole metric is only known numerically [48], the spectrum statement will hold true since
the natural boundary conditions are infalling.

If we step away from the large-N limit, we expect these black holes to evaporate. We
expect the bulk discussion of the flat space information paradox to proceed without
much difference from the familiar AdS-coupled-to-bath system — with the AdS length
scale replaced by the IR cut-off here.40 Note that the various technicalities we had to
deal with in the earlier sections of the paper are all related to (spi-)subregions, and these
do not show up in the discussion of evaporation. This is because we are interested in the
entanglement wedge of the full boundary theory and not that of a proper spi-subregion
when discussing the information paradox.

• Finally, let us mention that the union-intersection structure associated to quantum error
correction was already noted for flat space in [13]. In the context of subalgbra-subregion
duality, this is simply a version of the “additivity anomaly” [40]. Our observations
about non-trivial unions of distinct ACDs is nothing but an observation about the
nature of the additivity anomaly in flat space.

Before we close this section, let us emphasize once again that the entanglement entropy
we are trying to compute is that of a non-local theory. It is closer in spirit to a stringy
entanglement entropy, not a conventional local quantum field theory entropy. There has
been some progress on computing entanglement entropies in string theory recently [49, 50].
These proceed via analytic continuations [49] of type II string orbifold partition functions [50].
But it is not yet clear if one can extract information about the natural tensor factorization
structure of the Hilbert space from these seemingly formal considerations. One intriguing
observation is that the long string limit corresponds to the τ2 → 0 limit of the one loop
modular partition function integral, and this is where tachyonic divergences typically arise in

39Note that in the strict large-N limit, small black holes of this type do not evaporate.
40Just as in AdS we also have to replace RT surfaces with quantum extremal surfaces (QES). Note that

the bulk definition of QES is identical in flat space and AdS, the difference lies merely in that we are using
(spi-)subregions.
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string theories with tachyons (like the bosonic string). But the interpretation as entanglement
entropy is after an analytic continuation, so it will be very interesting to develop this fully.

8 Conclusions

Holography is believed to be a general feature of quantum gravity, and not limited to
asymptotically AdS spacetimes. The diff invariance of observables and the area law for black
hole entropy, both suggest that there is a description of quantum gravity at the boundary
of spacetime. In this paper, we have tried to take a few steps in understanding the nature
of holography in asymptotically flat spacetimes.

There is no sharp consensus on how to describe the dynamics of the holographic dual
of flat space — some like to describe it in terms of a celestial CFT which is co-dimension
2 [51], while others look for a co-dimension 1 description in terms of Carrollian theories [52].
The two descriptions must clearly be related, but the crucial question is not whether the
two are equivalent, but which of these (if either) description is more natural to describe
the dual. Note e.g., that all the information about a conventional quantum field theory
is contained in a single time slice. But for almost all questions, we find it more useful to
describe things in terms of the slightly more redundant (but more intuitive) description
that involves explicit time evolution.

Given this state of affairs, it may be worthwhile taking a step back, and identifying
the natural structures that arise in the hologram of flat space. In this paper, we have
looked for hints about the entanglement structure of flat space, which will presumably be
useful in shedding light on identifying the correct hologram. Entanglement entropy often
tells us about the useful notions of tensor factorization that are present in the system —
it has taught us about the exact locality of the boundary CFT via the RT formula, and
also the approximate locality implicit in the bulk Page curve. Therefore, coming up with
a holographic definition of entanglement entropy should be instructive for us in trying to
guess the structural aspects of the hologram. From the bulk time foliation of flat space, it is
natural to think that the entanglement entropy of flat space is best defined on its spatial
boundary. In hindsight, the naturalness of our results and the richness of structure that
we have found lends strong support to this possibility.

The reason we were able to make progress on our task, is because bulk structures gave
us important hints. We did not need all the details of the dual, we only needed to identify —

• its natural tensor factorizations, and

• determine the entanglement entropy of its interesting states (vacuum, dual of approxi-
mately thermal/black holes states), under these tensor factorizations.

Interestingly, this information is precisely what one may hope to extract from an RT surface,
and which is why the present project became tractable. Our task simplified to the identification
of spi data that defines RT surfaces in asymptotically flat space, and became solvable.

One thing we learnt from these calculations is that bi-partite entanglement entropy of the
flat space hologram has more structure than multi-partite entanglement entropy, at least in
the limit where the IR cut-off has been removed. The entire spacetime is in the entanglement
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wedge, if we take unions of non-trivial spi-subregions. This is a distinction from AdS, where
multiple non-trivial subregions need not always be able to reconstruct the entire bulk. It is
a suggestion that any two “distinct pieces” of the flat space hologram can mutually purify
each other, at least in a suitable semi-classical limit. This is suggestive of a strong form of
(ultra-holographic) non-locality that is clearly important to understand better.

A second feature we will comment on before concluding is the observation that radial
cut-offs are more naturally viewed as IR regulators and not as UV cut-offs in flat space. We
found multiple pieces of circumstantial evidence for this. IR divergences are often viewed
as more physical than UV divergences, even though this perspective is perhaps less clear
for a non-local theory. A related point mentioned in the Introduction is that even though
background subtraction has been around since [15], it has never been completely satisfactory
in flat space. Also these discussions are usually in the context of entropies computed for the
entire screen. Can one understand the correct way to incorporate IR divergences by looking
at the explicit formulas for EE for subregions on the screen (with and without black holes)
that we have provided in this paper? More generally, it seems crucial that we understand the
physics of this IR scale if we want to make conceptual progress on flat space quantum gravity.
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A AdS, AdS boundary and Minkowski space

The connection between the conformal boundary of AdS and the conformal structure of
flat space is useful for some of our discussions. The relation between global, Poincare and
AdS-Rindler patches and the fact that the boundary of AdS-Rindler is Rindler (the simplest
ACD) is also useful to keep in mind. We review these facts to set up our coordinates and
notation here.

AdSd+1 can be defined via the embedding (L is the AdS length scale)

X2
−1 + X2

0 − X⃗2 = L2 (A.1)

in d + 2 dimensional pseudo-Euclidean space with metric

ds2 = −dX2
−1 − dX2

0 + dX2
1 + . . . + dX2

d . (A.2)

Global coordinates are given by (t, r, θ1, · · · , θd−2, ϕ) via:

X−1 =
√

L2 + r2 cos(t/L) (A.3a)

X0 =
√

L2 + r2 sin(t/L) (A.3b)
X⃗2 = r2 (A.3c)
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This leads to the AdS metric in global coordinates:

ds2 = −
(
1 + r2

L2

)
dt2 + dr2(

1 + r2

L2

) + r2dΩ2
d−1 (A.4)

Here, r ∈ [0,∞), t ∈ (−∞,∞) and Ωd−1 denotes the round metric on Sd−1. The causal
structure of such spaces are more conveniently represented in compactified coordinates. We
define ρ ∈ (0, π/2) via

r = tan ρ (A.5)

then the metric looks like,

ds2 = 1
cos2 ρ

(
−dt2 + dρ2 + sin2 ρdΩ2

d−1

)
(A.6)

Therefore causal structure of AdSd+1 will be the same as that of a “solid cylinder” with metric

ds2 = −dt2 + dρ2 + sin2 ρdΩ2
d−1 (A.7)

The conformal boundary has the topology of R × Sd−1.
Poincare coordinates can be reached by the parameters (z, x0, x1, . . . , xn−1),

X−1 + Xd = L2

z
(A.8a)

Xi =
L

z
xi i ∈ (0, 1, . . . , d − 1) (A.8b)

In term of the Poincare coordinates the constraint (A.1) becomes,

X−1 − Xd = z + 1
z

(
x⃗2 − x2

0

)
(A.9)

Using this we can write,

X−1 = 1
2

(
L2

z
+ z + 1

z

(
x⃗2 − x2

0

))
(A.10a)

Xi =
L

z
xi i ∈ (0, 1, . . . , d − 1) (A.10b)

Xd = 1
2

(
L2

z
− z − 1

z

(
x⃗2 − x2

0

))
(A.10c)

The coordinate ranges are z ∈ (−∞,∞);xi ∈ (−∞,∞). This yields the following metric,

ds2 = L2

z2

(
dz2 +

(
dx⃗2 − dx2

0

))
(A.11)

The boundary in Poincare coordinates is at z → 0. The conformal boundary has the metric

ds2 = −dx2
0 + dx⃗2 (A.12)
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(a) (b)

Figure 15. (a) The yellow surfaces are surfaces of constant z and the blue surface is the surface for
z → ∞. (b) The yellow region is the full Poincare Patch.

which is just Minkowski space R1,d−1. Poincare patch does not span all of AdS — figures 15(a)
and 15(b) provide plots for different z =const. surfaces in compactified global coordinates.
As z → 0 the surfaces approach the boundary and as z → ∞ the surfaces form a wedge in
the bulk. The region beyond the wedge is not accessible to Poincare coordinates.

It should be clear that the Penrose diagram of Minkowski space is precisely the “scarf” at
the boundary of AdS Poincare patch. The compactified global coordinates θ and t act as the
conformal coordinates of space and time respectively on the boundary. To better understand
the boundary of the Poincare patch, let us look at the geometry in 2+1 dimensions. Then our
global coordinates are spanned by {t, r, θ} and the Poincare patch is spanned by {x0, x1, z}.
The relation between the two coordinates on the boundary is given by

X1
X0

= tan θ = 2Lx1
L2 − z2 + x2

0 − x2
1
−−−→
z→0

tan θ = 2Lx1
L2 + x2

0 − x2
1

(A.13a)

X0
X−1

= tan t

L
= 2Lx0

L2 − z2 − x2
0 + x2

1
−−−→
z→0

tan t

L
= 2Lx0

L2 − x2
0 + x2

1
(A.13b)

Note that these relations are the same as (4.6a) and (4.6b) with conformal factor Λ = L. This
shows explicitly that the conformal boundary of the Poincare patch is the flat space Penrose
diagram and the global coordinates θ and t act as the space-like and time-like coordinates,
respectively. It also provides another reason to think that the bulk scale in flat space is
analogous to the AdS length scale and therefore is an IR scale and not a UV cut-off.

Another important set of coordinates for us are the AdS-Rindler coordinates. These
are parameterized by (τ, ρ, u, θ1, . . . , θd−3, ϕ),

X−1 = ρ cosh u (A.14a)

X0 =
√

ρ2 − L2 sinh τ/L (A.14b)
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Figure 16. The boundary of the cylinder in figure 17. The yellow region is the Penrose diagram
of flat space and the blue region (which is the boundary of the AdS-Rindler wedge) is nothing but
a causal diamond in flat space i.e. it is the domain if dependence of a spherical subregion on the
boundary.

Figure 17. Poincare patch and Rindler patch presented for comparison.

X2
1 + X2

2 + . . . + X2
d−1 = ρ2 sinh2 u (A.14c)

Xd =
√

ρ2 − L2 cosh τ/L (A.14d)

The metric in these coordinates is,

ds2 = −
(

ρ2

L2 − 1
)
dt2 + dρ2(

ρ2

L2 − 1
) + ρ2

(
du2 + sinh2 u dΩ2

d−2

)
(A.15)
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Rindler coordinates cover an even smaller region than Poincare, and the above coordinates
lie inside the Poincare patch, see figures 16 and 17. It just spans the causal development of
one half of the t = 0 slice. It has a horizon at ρ = L and therefore it is sometimes called a
topological black hole (it is only as much a black hole as Rindler is in flat space).

One can move the AdS-Rindler patch within the full (global) AdS spacetime by using
AdS isometries. By doing this, one can in fact ensure that the boundary of AdS-Rindler
overlaps precisely with the right Rindler wedge of the boundary Minkowski space of the
Poincare patch, if one chooses.

B Solving RT surfaces around θ = 0

In this appendix, we will solve the RT surface equations in the form r(θ) instead of θ(r).
The latter form is more adapted to the asymptotic data and was discussed in the main
body of the paper, but the r(θ) form is also instructive (e.g., for understanding regularity
conditions from the bulk).

B.1 Empty AdS4

The area functional associated to (A.4) for d = 3 in the r(θ) form (after incorporating the
symmetry of the spi-subregion) is

A = 2π

∫
r(θ) sin(θ)

√
r′(θ)2

r(θ)2 + 1 + r(θ)2︸ ︷︷ ︸
L

dθ (B.1)

We have set L = 1. The equations of motion are

∂

∂r

(
r(θ) sin(θ)

√
r′(θ)2

r(θ)2 + 1 + r(θ)2

)
= d

dθ

∂

∂r′

(
r(θ) sin(θ)

√
r′(θ)2

r(θ)2 + 1 + r(θ)2

)
(B.2)

We try a power series solution of the form

r(θ) =
∑
i=0

ri θi (B.3)

The expansion is around θ = 0 which is the angular coordinate of the point of nearest approach
to origin. Substituting (B.3) in (B.2) and comparing coefficients we get the solution to be:

r(θ) = r0 +
(
r3

0 + r0
)

2 θ2 +
(
9r5

0 + 14r3
0 + 5r0

)
24 θ4 + . . . (B.4)

On comparison one can see that this is an expansion for

r = r0 sec (θ)√
1 + r2

0 tan2 (θ)
, (B.5)

which also happens to be a re-writing of (3.4), with the understanding that r0 = r∗. Finally
Substituting this into the Lagrangian of (B.1), we get the following expansion,

L = r2
0 θ +

(
8r2

0 + 5r4
0
)

6
(
r2

0 + 1
) θ3 +

(
136r2

0 + 61r6
0 + 152r4

0
)

120
(
r2

0 + 1
)2 θ5 + . . . (B.6)
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B.2 AdS4 Schwarzchild

For the AdS black hole (3.18) for d = 3, the area functional is

A = 2π

∫
r(θ) sin(θ)

√
r′(θ)
f3(r)

+ r2

︸ ︷︷ ︸
L

dθ (B.7)

from which we get

∂

∂r

(
r sin(θ(r))

√
r′(θ)
f3(r)

+ r2

)
= d

dθ

∂

∂r′

(
r sin(θ(r))

√
r′(θ)
f3(r)

+ r2

)
. (B.8)

With a similar method as in section B.1, we get the solution to be,

r(θ) = 1
2θ2

(
−r3

h − rh + r3
0 + r0

)
+ 1

24θ4
(
9r6

h + 18r4
h − r3

hr0
(
45r2

0 + 29
)

4r0

)

+ 1
24θ4

(
9r2

h − rhr0
(
45r2

0 + 29
)

4r0
+ r0 + 9r5

0 + 14r3
0 + 5r0

)
+ . . . (B.9)

On substituting this r(θ) back into the Lagrangian of (3.20) we get,

L = r2
0 θ +

(
−9r3

hr2
0 − 9rhr2

0 + 9r5
0 + 8r3

0
)

6r0
θ3 + . . . (B.10)

B.3 Mink4

For Minkowski space with d = 3, the area functional is

Ar = 2π

∫
r(θ) sin (θ)

√
r2 + r′(θ)2︸ ︷︷ ︸

L

dθ (B.11)

with the Euler-Lagrange equation

∂

∂r

(
r(θ) sin (θ)

√
r2 + r′(θ)2

)
= d

dθ

∂

∂r′

(
r(θ) sin (θ)

√
r2 + r′(θ)2

)
. (B.12)

A power series solution of the form

r(θ) =
∑
i=0

ri θi (B.13)

yields the solution

r(θ) = r0 +
r0
2 θ2 + 5r0

24 θ4 + 61r0
720 θ6 + 277r0

8064 θ8 + 50521r0
3628800 θ10 + . . . (B.14)

The right hand side is simply the expansion of r0
cos θ , connecting with what we saw in the

main text. Substituting it in the Lagrangian, we get

L = r2
0 θ + 4

3r2
0 θ3 + 17

15r2
0 θ5 + 248

315r2
0 θ7 + 1382r2

0
2835 θ9 + . . . (B.15)
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B.4 Mink5

The expressions take the form

A = 4π

∫
r(θ)2 sin2 (θ)

√
r2 + r′(θ)2︸ ︷︷ ︸

L

dθ (B.16)

with
∂

∂θ

(
r(θ)2 sin2 (θ)

√
r2 + r′(θ)2

)
= d

dr

∂

∂θ′

(
r(θ)2 sin2 (θ)

√
r2 + r′(θ)2

)
(B.17)

with the power series expansion

r(θ) = r0 +
r0
2 θ2 + 5r0

24 θ4 + 61r0
720 θ6 + 277r0

8064 θ8 + 50521r0
3628800 θ10 + . . . (B.18)

Which is the same as (B.14) as expected of a hyperplane. Substituting it in the Lagrangian,
we get,

L = r3
0 θ2 + 5

3r3
0 θ4 + 77

45r3
0 θ6 + 88

63r3
0 θ8 + 14102

14175r3
0 θ10 + . . . (B.19)

The key observation is that the extra integration constant is not present in any dimensions
in this language — the solution is manifestly regular in the bulk.

B.5 Schwarzchild4

For the Schwarzschild metric (5.14), without loss of generality we can assume the surface to
be symmetric in ϕ direction. The area functional of a co-dimension 2 surface is

A = 2π

∫
r sin θ

√(
1− rs

r

)−1
r′2 + r2︸ ︷︷ ︸

L

dθ (B.20)

and the Euler-Lagrange equation is

∂

∂r

r sin θ

√(
1− rs

r

)−1
r′2 + r2

 = d
dθ

∂

∂r′

r sin θ

√(
1− rs

r

)−1
r′2 + r2

 (B.21)

With a power series of the form

r(θ) =
∑
i=0

ri θi (B.22)

we get the solution

r(θ) = r0 +
1
2(r0 − rs) θ2 + 1

24

(
9r2

s − 29rsr0
4r0

+ 5r0

)
θ4 + . . . (B.23)

Substituting this into the Lagrangian of (B.20) we get,

L = r2
0 θ +

(
8r2

0 − 9rsr0
)

6 θ3 + . . . (B.24)

– 46 –



J
H
E
P
0
6
(
2
0
2
4
)
0
6
8

B.6 Schwarzchild5

For the 4+1 dimensional case the metric (5.22) leads to the area functional

A = 4π

∫
r2 sin2 θ

√√√√(1− (rs
r

)2
)−1

r′2 + r2

︸ ︷︷ ︸
L

dθ (B.25)

equation of motion

∂

∂r

r2 sin2 θ1

√(
1− r2

s
r2

)−1
r′2 + r2

 = d
dθ

∂

∂r′

r2 sin2 θ1

√(
1− r2

s
r2

)−1
r′2 + r2

 (B.26)

with a power series solution

r(θ) = r0 +
1
2θ2

(
r0 −

h2

r0

)
+ 1

24θ4
(
5r0 −

3h4 + 22h2r2
0

5r3
0

)
+ . . . (B.27)

On substituting this r(θ) back into the Lagrangian of (B.25) we get

L = r3
0θ2 +

(
10r4

0 − 9h2r2
0 − 5hr3

0
)

6(h + r0)
θ4 + . . . (B.28)

C RT surfaces in cylindrical coordinates

We have worked with spherical polar coordinates in most of this paper, partly because
comparisons with black hole and AdS results is easiest in that language. But when solving
for flat space RT surfaces in these coordinates, we found that the structure of integration
constants was a bit strange. With a power series expansion in powers of 1/r, we found
two integration constants in all dimensions other than 3+1 (in 2+1 the extra integration
constant was trivial, but it was there). The fact that the extremal surface equations are
second order ODEs suggests two integration constants, one of which is to be eliminated via a
bulk condition. So the absence of the second integration constant in 3+1 dimensions has to be
explained. We will do this by solving the same system in cylindrical polar coordinates, where
the system is exactly solvable in general dimensions, and finding that the extra constant
in 3+1 dimensions corresponds to a log term. In 4+1 dimensions, the solution will also
provide us a sanity check of our 1/r expansion where it reproduces both the constants after
transforming to polar coordinates. Cylindrical coordinates are also useful in showing that
the solution can be found in closed form.

The metric of the t = 0 slice of flat space in d-dimensional cylindrical coordinates can
be expressed as follows:

ds2 = dz2 + dρ2 + ρ2dΩ2
d−2 (C.1)

Assuming a surface symmetric about the pole (z-axis), which can be written as z(ρ), the
area functional is given by:

A = 2π
π−1

2

Γ
(

π−1
2

) ∫ ρd−2
√

z′(ρ) + ρ2︸ ︷︷ ︸
L

dρ (C.2)

– 47 –



J
H
E
P
0
6
(
2
0
2
4
)
0
6
8

Figure 18. Catenoid.

By solving the Euler-Lagrange equations, we find that the general solution in cylindrical
coordinates is of the form:

z = iρ 2F1

(
1
2 ,

1
2(d − 2) ; 1 +

1
2(d − 2) ;

ρ2(d−2)

b2

)
+ c (C.3)

Here, 2F1 represents a hypergeometric function.

C.1 3+1D

For a geometry where d = 3, this becomes

z = b ln (
√

ρ2 − b2 + ρ) + c (C.4)

and can be rearranged to get

ρ = b cosh
[

z

b
−
(

c

b
+ ln b

)]
(C.5)

with c = −b ln b, we obtain the equation of a catenoid (refer to figure 18)

ρ = b cosh
(

z

b

)
(C.6)

For b = 0, we get a plane:

z = c (C.7)

Expanding (C.4) for large ρ, we have:

z = c + b log
(1

ρ

)
+ b3

4
1
ρ2 + 3b5

32
1
ρ4 + 5b7

96
1
ρ6 + . . . (C.8)

From this, we observe that the Catenoid is what is responsible for the logarithmic fall off.
Therefore, the θ(r) expansion attempted in section 5.1.2 does not represent the most general
solution since it did not incorporate a logarithmic fall off. But it is the solution that we
seek, because our bulk condition eliminates the catenoid.
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C.2 4+1D

In d = 4, the most general surface is given by:

z = iρ 2F1

(
1
2 ,

1
4;

5
4;

ρ4

b2

)
+ c (C.9)

Expanding (C.9) for large ρ, we get:

z = c −
4bΓ

(
5
4

)
Γ
(

1
4

) 1
ρ
−

2b3Γ
(

5
4

)
5Γ
(

1
4

) 1
ρ5 + . . . (C.10)

Interestingly, if we write (C.9) in spherical polar coordinates (z = r cos (θ), ρ = r sin (θ)),
substitute (5.7), and expand for large radius, we recover (5.12). Therefore, we observe that
the extra constant in dimensions higher than 3+1 is visible already in an expansion in 1/r.
Essentially, the catenoid-like solution in higher dimensions does not lead to a log.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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