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Visualization of incrementally 
learned projection trajectories 
for longitudinal data
Tamasha Malepathirana 1, Damith Senanayake 1, Vini Gautam 2,11, Martin Engel 3, 
Rachelle Balez 3, Michael D. Lovelace 4,5, Gayathri Sundaram 12, Benjamin Heng 6, 
Sharron Chow 6, Christopher Marquis 7, Gilles J. Guillemin 4,8, Bruce Brew 4,5,9, 
Chennupati Jagadish 10, Lezanne Ooi 3* & Saman Halgamuge 1*

Longitudinal studies that continuously generate data enable the capture of temporal variations 
in experimentally observed parameters, facilitating the interpretation of results in a time-aware 
manner. We propose IL-VIS (incrementally learned visualizer), a new machine learning pipeline that 
incrementally learns and visualizes a progression trajectory representing the longitudinal changes in 
longitudinal studies. At each sampling time point in an experiment, IL-VIS generates a snapshot of the 
longitudinal process on the data observed thus far, a new feature that is beyond the reach of classical 
static models. We first verify the utility and correctness of IL-VIS using simulated data, for which 
the true progression trajectories are known. We find that it accurately captures and visualizes the 
trends and (dis)similarities between high-dimensional progression trajectories. We then apply IL-VIS 
to longitudinal multi-electrode array data from brain cortical organoids when exposed to different 
levels of quinolinic acid, a metabolite contributing to many neuroinflammatory diseases including 
Alzheimer’s disease, and its blocking antibody. We uncover valuable insights into the organoids’ 
electrophysiological maturation and response patterns over time under these conditions.

Longitudinal studies offer an important perspective on evolving biological systems in domains such as 
microbiology, viral epidemiology, and developmental etiology. By visualizing the data generated from such 
evolving systems at different time intervals, analysts can piece together a more complete picture of the aspects 
of interest and their journey through time. Owing to the typically large number of variables considered in 
these studies, dimensionality reduction often plays a key role in data visualization. The fundamental concept of 
dimensionality reduction is to transform a distance matrix defined on a high-dimensional dataset into a low-
dimensional space. A multitude of dimensionality reduction techniques exists for visualization, from methods 
based on statistical and linear methods (e.g., PCA1 and MDS2) to that based on topological analysis (e.g., t-SNE3 
and UMAP4).

However, frequently used visualization methods such as t-SNE and UMAP are non-parametric, meaning 
that they do not retain a parametric model for future use with batches of subsequently obtained data which 
is a crucial necessity in longitudinal studies. Consequently, the visualizations generated by these methods at 
different sampling time points can change drastically with each other when new data is incrementally added 
(Fig. 2B). This volatility to incremental data undermines the reliability of insights and interpretations derived 
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from these methods. Our previous work, Self-Organizing Nebulous Growths (SONG)5 was proposed with the 
need for a parametric visualization method in mind. SONG is capable of integrating multiple batches of new data 
while generating progressive/evolving visualizations, without unduly distorting the already inferred knowledge. 
Therefore, we extend the ability of parametric dimensionality reduction methods such as SONG to derive insights 
into longitudinal studies.

We propose IL-VIS (Incrementally Learned Visualizer), a machine-learning pipeline that aims to 
visualize longitudinal data obtained from cortical organoids, providing insights into the progression of their 
electrophysiological properties as shown in Fig. 1. We hypothesize that the progression of the electrophysiological 
properties of an organoid can be represented as a trajectory ( TH ) of the high-dimensional Multi-Electrode-Array 
(MEA) data. We aim to obtain a low-dimensional (2D) representation ( TL ) of TH while keeping the longitudinal 
relationships intact to study the temporal changes of the electrophysiological properties over the experimented 
period. A good visualization method should be able to project TH to TL as accurately as possible while implicitly 
capturing the time axis as shown in Fig. 1C. IL-VIS employs an incremental learning approach, wherein it learns 
about MEA data belonging to one sampling timepoint of an organoid at-a-time (Fig. 1). This incremental process 
enables IL-VIS to generate visualizations of ongoing experiments with the existing data and generate improved 
visualizations when new data of the same experiment is available.

First, we validate IL-VIS on simulated data to demonstrate that it accurately projects the original high-
dimensional trajectories onto 2D visualizations while capturing their trends and (dis)similarities in progressions. 
Furthermore, we show that IL-VIS is robust to varying degrees of (1) noise in data and (2) gaps between the 
sampling time points. Second, we apply IL-VIS to data from experimental cortical organoids derived from 
Alzheimer’s disease (AD) patients and healthy individuals. The generated visualizations are subsequently used 
to gain insights into the maturation of organoids when exposed to “quinolinic acid (QUIN)”—a metabolite 
known to play a role in many neuroinflammatory diseases including AD6 and its blocking antibody: “anti-QUIN 
monoclonal antibody (anti-QUIN)”7. We observe that the progression of the electrophysiological properties 
corresponding to the organoids exposed to anti-QUIN exclusively shows a distinct behavior compared to 
organoids exposed to other treatments, irrespective of the AD/healthy status. Furthermore, by comparing the 
progression of organoids treated with varying levels of QUIN and anti-QUIN, we find that anti-QUIN can 
sequester endogenous and exogenous QUIN, offering valuable insights into its therapeutic effects.

Results
Overview of IL‑VIS
IL-VIS (Fig.  1) incrementally learns a high-dimensional trajectory TH representing the progression of 
electrophysiological properties of an organoid over n sampling timepoints and visualizes it in 2D.

The m(= 9) signals corresponding to the m electrodes in the MEA at each sampling timepoint i, where 
1 ≤ i ≤ n , are divided into segments of 4 s each. Each segment, denoted as ti,j for the jth segment at the ith 
sampling timepoint, undergoes preprocessing using fast Fourier transformation (FFT)8 (see “Methods”). The 
collection of pre-processed ti,j segments ∀j forms the ith data increment, represented as Ii (illustrated in Fig. 1A). Ii 
is then reduced to 2D using the incrementally trained dimensionality reduction model based on SONG (Fig. 1B).

The model is trained for n sessions, once for each sampling timepoint. At session i, Ii is combined with the 
existing data ( 

⋃i−1
k=1 Ik ), and the combined dataset Di =

⋃i
k=1 Ik is used to train the existing model parameters 

θi−1 to produce updated parameters θi . θi is then used to generate a 2D visualization Vi that visualizes all the 
increments from I1 to Ii (Fig. 1C). The median of each Ii in Vi is traced from 1 to i in order to obtain TL that 
visualizes the progression of the organoid’s electrophysiological properties over time. If n is sufficiently high, we 
would expect the consecutive and continuous data increments from an organoid to form a gradual progression 
and appear seamlessly connected, generating a continuous visualization. In the absence of such a continuous 
stream of data, a good visualization method should identify the trajectory progression even using discrete 
increments.

When visualizing the electrophysiological progression of a single organoid, the direction of the trajectory 
cannot be compared to another independently visualized organoid. Therefore, we extend IL-VIS to jointly model 
multiple organoids, allowing us to examine the directions of trajectories compared to each other and identify 
(dis)similarities in the electrophysiological progression of the corresponding organoids (see Fig. 6A–D, explained 
later).

In subsequent sections, we report two sets of results using (1) simulated data and (2) experimental MEA data 
obtained from cortical organoids.

Simulated data
Several studies have observed a gradual and non-linear increase in the electrical activity of brain organoids as 
they mature, characterized by parameters such as spike frequency, bursts, and synchrony9,10. This increase in 
activity is indicative of the development of more complex and mature synaptic connections among neurons and 
stronger electrical transmission within the organoids11. We verify IL-VIS’s ability to visualize this gradual but 
non-linear progression of electrophysiological properties as captured in high-dimensional data over time, in 
a 2D representation. However, it is possible that the actual progression of the electrophysiological properties 
may not show a gradual progression. This could be due to various factors such as developmental pathology, the 
influence of a disease, or administered therapeutic stimuli. After confirming that IL-VIS can accurately capture 
the expected gradual increase trend in healthy organoids, we can use IL-VIS to identify deviations from these 
trends resulting from the factors described above. Next, we validate IL-VIS’s capability to capture the (dis)
similarities between multiple progression trajectories. This feature allows for visualization of the effect of different 
treatments on the electrophysiological progression of multiple organoids relative to each other.
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Figure 1.   Schematic representation of “IL-VIS” using (A) MEA signals from n sampling timepoints, (B) 
the incrementally learned dimensionality reduction model, and (C) 2D partial visualizations generated to 
cover the progression of electrophysiological properties of the organoid thus far. (A) The activity of the brain 
organoid is recorded by 9 electrodes ( e1 – e9 ) of an MEA plate in n sampling timepoints. These recordings are 
segmented into 4-s intervals. Each segment, denoted as ti,j (jth signal segment of the ith sampling timepoint), is 
pre-processed using FFT (“Methods”). The resulting frequency components for each segment are represented 
as the segment’s features ( f1, ..., fk ). Ii is a collection of M pre-processed segments recorded at the ith sampling 
timepoint ( Ii = {ti,j for jε{1, ..,M}} ). The n increments corresponding to the n timepoints, are shown in 
different colors that are consistent throughout the diagram. (B) The dimensionality reduction model is 
trained for n sessions, once for each sampling timepoint in the biological experiment. At session i, the model 
parameters θi are learned by updating the parameters from the previous session ( θi−1 ) using Di =

⋃i
j=1 Ij , and 

a partial visualization Vi is generated. (C) Each data point in a partial visualization corresponds to a compact 
representation of a 4-s segment. The directed arrows map the medians of the increments learned so far in 
chronological order to visualize the trajectory representing the progression of the organoid’s electrophysiological 
properties up to that point in time. Note that none of the axes corresponds to time but the time axis is implicit in 
the visualized trajectory.
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We generate simulated data for which the corresponding high-dimensional trajectory TH of the visualized 
trajectory TL is known. Specifically, we formulate a set of non-linear high-dimensional trajectories { TH

r  where 
rε{1, ..., 4} } that gradually progress with time. The details related to the formation of Ii , 1 ≤ i ≤ n in each TH

r  can 
be found in “Methods”.

IL‑VIS generates evolving visualizations capturing the underlying trends
Figure 2 shows the visualizations obtained using PCA and UMAP in place of SONG in IL-VIS in which PCA 
fails to capture the non-linearity present in data, while UMAP fails to generate evolving visualizations across 
the sessions. Additional experiments with Independent Component Analysis (ICA), Multi-Dimensional Scaling 
(MDS), and t-distributed Stochastic Nonlinear Embedding (t-SNE) are provided in the supplementary Fig. 2. 
These experiments demonstrate that they either fail to preserve the non-linearity, generate evolving visualizations 
(by preserving the orientation of the trajectories), or both. In contrast, by using SONG, as shown in Figs. 3 and 4, 
visualizations successfully capture the gradually increasing trend and the non-linearity of the high-dimensional 
trajectories (see Supplementary Fig. 1 for pairwise Euclidean and geodesic distance heatmaps between the 
increments in TH

r  and TL
r  ). Significantly, IL-VIS also generates evolving visualizations, preserving the relative 

structure between the increments or the orientation across incremental visualizations, confirming that IL-VIS 
could be used for gaining insights from ongoing experiments. This ability stems from two key factors. Firstly, 
SONG operates as a parametric method, and secondly, IL-VIS preserves and reuses these parameters throughout 
iterations. To elaborate further, we conducted an additional experiment in which we reset the parameters at 
the beginning of each session, intentionally excluding the carryover of parameter values from the previous 
session. The resulting visualizations are shown in Supplementary Fig. 3. Notably, across sessions, the orientation 
of the trajectories is not preserved when the parameters are not carried forward. While it is conceivable to 
manually reorient the trajectories of each visualization, this approach may be impractical for intricate trajectories, 
highlighting a limitation of this approach. This underscores the significance of parameter continuity in preserving 
the meaningful evolution of visual representations over time. Additionally, we verify the manifold preservation 
quality of the SONG embeddings in Supplementary Fig. 4, and the method’s capability to cater to an even higher 
dimensional space (up to 10,000) in Supplementary Fig. 5.

IL‑VIS is robust to noise and gaps in the data
To replicate random noise arising from biological and non-biological variations in real data, we add random 
Gaussian noise (20%) to each data increment in TH

1  (see “Methods”) and visualized in Fig. 3B–E. Despite the 
presence of this added noise, TL

1  successfully preserves the trend and non-linearity of TH
1  (Fig. 3B–E). However, as 

Figure 2.   2D visualizations obtained by the pipeline when modeling TH
1  using (A) PCA, (B) UMAP and (C) 

SONG as the dimensionality reduction technique. TH
1  was defined on a pseudo-temporal parameter t (Eq. 2 in 

“Methods”). φi(t) is noise sampled from a Gaussian distribution (see “Methods”). � is the percentage of noise 
added which is 20% for this experiment. Five increments of data points are formed ( n = 5 ) for each trajectory 
with no sampling gaps ( δ = 0 ) in between thus each increment contains 100 data points (see “Methods”). N 
corresponds to the number of data points used in each visualization. Each row contains the five visualizations 
generated at the five sessions where a new data increment is introduced at each session. At session i, all the 
increments thus far (i.e., Di =

⋃i
k=1 Ik ) are visualized. In visualizations with multiple increments, different 

increments are displayed in varying intensities of the same color. The stronger the intensity, the newer the 
increment. By tracing the medians of the subsequent increments chronologically, the emergence of TL

1  which 
is a 2D representation of TH

1  is observed. (A) PCA generated progressive visualizations but failed to preserve 
the non-linearity of TH

1  . (B) UMAP preserved the non-linearity of TH
1  but failed to generate progressive 

visualizations over the sessions. (C) SONG preserved the non-linearity while generating progressive 
visualizations over the sessions.
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the noise level increases from 0 to 20%, there’s a corresponding decrease in the smoothness of TL
1  (Supplementary 

Fig. 6).
Although the processes underlying the biological experiments are continuous, the recorded features are 

discrete and the sampling time points may have considerable gaps between them. To replicate this, we introduce 
minor, medium, and major gaps between the increments in TH

1  (“Methods”) and visualize them in Fig. 3C-E. 
Despite such gaps, TL

1  captures a gradually increasing and non-linear path along which TH
1  progresses, suggesting 

that IL-VIS can handle datasets with considerable gaps and noise. When major gaps are introduced (where 
δ = 99 ), five different clusters are visualized each corresponding to an increment instead of a continuous 
progression (Fig. 3E). This agreed with our expectations because IL-VIS had very limited information about 
continuity.

IL‑VIS captures (dis)similarities between the trajectory progressions
The progression of electrophysiological properties of multiple organoids with different exposures may correspond 
to different trajectories in the high-dimensional space. Capturing the (dis)similarities between these trajectories 
and visualizing them as they evolve in a shared space would offer insights into the (dis)similarities in their 
electrophysiological progressions. For instance, a comparison between the electrophysiological maturation of 
organoids exposed and not exposed to a particular treatment would assist in understanding the treatment’s effect. 
We validate this capability of IL-VIS as below.

First, we jointly model and plot two independent randomly-generated non-linear trajectories ( TH
1  , and TH

2  ) 
designed to originate at the same position while diverging at higher t values in Fig. 4A. As the new increments are 
added, the corresponding low dimensional trajectories TL

1  and TL
2  exhibit an increasing difference, highlighting 

Figure 3.   2D visualizations obtained by IL-VIS showed its capability in generating evolving visualizations 
capturing the gradually increasing and non-linear trends of a simulated 100-dimensional non-linear trajectory 
TH
1  (A) without noise/gaps, (B) with noise, (C) with noise and minor sampling gaps between increments, 

(D) with noise and medium sampling gaps between increments, and (E) with noise and major sampling gaps 
between increments. TH

1  was defined on a pseudo-temporal parameter t (Eq. 2). φi(t) is noise sampled from 
a Gaussian distribution (“Methods”). � is the percentage of noise added: 0% for (A) and 20% for (B–E). For 
each experiment, five data increments were formed ( n = 5 ). The number of data points in each increment was 
determined based on δ and was 100, 100, 75, 50, and 100 for experiments (A–E) respectively (see “Methods”). N 
corresponds to the number of data points used in each visualization. Each row contains the five visualizations 
generated at the five sessions where a new data increment is introduced to IL-VIS at each session. At session 
i, all the increments thus far (i.e., Di =

⋃i
k=1 Ik ) are visualized. In visualizations with multiple increments, 

different increments are displayed in varying intensities of the same color. The stronger the intensity, the newer 
the increment. By tracing the medians of the subsequent increments chronologically, the emergence of TL

1  which 
is a 2D representation of TH

1  is observed. Each consecutive visualization has maintained the structure across 
the previous visualization allowing us to relate between the visualizations. Furthermore, the progressiveness of 
the gradually increasing trajectory is captured by placing each new increment further away from the previous 
increments (Supplementary Fig. 1). IL-VIS shows robustness to noise (B) and minor to major gaps (C–E).
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their growing dissimilarity in later increments. Next, we extend the experiment by incorporating two secondary 
trajectories TH

3  and TH
4  , along with the principal trajectories ( TH

1  and TH
2  ). TH

3  and TH
4  are created as combinations 

of TH
1  and TH

2  , based on a similarity factor α (“Methods”). Specifically, when α = 1 , TH
3  coincides with TH

1  , and 
TH
4  coincides with TH

2  . Conversely, when α = 0 , TH
3  coincides with TH

2  , and TH
4  coincides with TH

1  . For 0 < α < 1 , 
TH
3  and TH

4  would be exhibiting intermediate characteristics between TH
1  and TH

2  along the trajectory continuum. 
The resulting 2D visualizations in Fig. 4B, C showcase these distinctive traits in the low-dimensional trajectories. 
Notably, when α > 0.5 , TL

3  is visualized closer to TL
1  than TL

2  , and conversely, TL
4  is visualized closer to TL

2  than 
TL
1  (Supplementary Table 1). Subsequently, in Fig. 4C, as α is incremented from 0.6 to 0.9, the visualizations of 

TL
3  and TL

4  gradually approach TL
1  and TL

2  , respectively. Furthermore, within trajectory pairs such as TL
1  and TL

3  
sharing similarities, i.e., when α > 0.5 , the trajectories display increased separation in later increments compared 
to earlier increments, effectively capturing subtle but important dissimilarities. The experiments described above 
combined with these results, validate IL-VIS’s ability to generate evolving visualizations that preserve the high-
dimensional trajectories’ similarity relationships.

Cortical organoids data
After validating IL-VIS on simulated data, IL-VIS is then applied to MEA data obtained from cortical 
organoids. MEA data has been previously used to assess alterations in neuronal excitability, e.g., mediated by 
neuroinflammation12. QUIN is an N-methyl-D-aspartate (NMDA) agonist generally synthesized and released 
during neuroinflammation. QUIN’s over-activation of NMDA receptors leads to neuronal excitotoxicity, thus, 
QUIN has been implicated in a range of diseases in which neurodegeneration is a key component, including AD, 
multiple sclerosis, and stroke13–16. QUIN has also recently been shown to reduce both neurite outgrowth and 

Figure 4.   2D visualizations obtained by IL-VIS showed its capability in capturing the (dis)similarities in the 
progressions of (A) two trajectories: TH

1  and TH
2  and (B) four trajectories: TH

1  and TH
2  together with TH

3  and 
TH
4  . TH

1  , TH
2  , TH

3  , and TH
4  are 100-dimensional non-linear trajectories. TH

1  and TH
2  are independent (principle 

trajectories) whereas TH
3  and TH

4  are dependent (secondary trajectories) on TH
1  and TH

2  . Specifically, TH
3  and 

TH
4  are created as compositions of TH

1  and TH
2  where a similarity factor ( α ) is used to determine how closely a 

secondary trajectory is to a principal trajectory (see Eq. 3). φi(t) is noise sampled from a Gaussian distribution 
and � is the percentage of noise added which is 0% for this experiment (“Methods”). Five increments of data 
points are formed ( n = 5 ) for each trajectory with no sampling gaps ( δ = 0 ) in between thus each increment 
contains 100 data points (“Methods”). Iri  is the ith data increment of TH

r  . N corresponds to the total number 
of data points used in each visualization. Each experiment contains five visualizations generated at the five 
sessions. At each session i, the ith data increment of all trajectories that are modeled together is introduced to 
the pipeline. Each trajectory is shown in a different color. In visualizations with multiple increments, different 
increments are displayed in varying intensities of the same color. The stronger the intensity, the newer the 
increment. By tracing the medians of the subsequent increments chronologically, the emergence of TL

r  which is a 
2D representation of TH

r  is observed. (A) TH
1  and TH

2  originate at the same position and diverge from each other 
as the increments are added which is consistent with the definition of the trajectories (B) when α = 0.8 , TL

3  is 
visualized closer to TL

1  than to TL
2  , and TL

4  is visualized closer to TL
2  than to TL

1  capturing the relative similarity 
between the principle and secondary trajectories (C) Visualizations generated at the last session ( i = 5) in four 
independent experiments with four different α values. The α was varied from 0.6 to 0.9 to observe the movement 
of TL

3  and TL
4  in reference to TL

1  and TL
2  . TL

3  and TL
4  are visualized closer to TL

1  and TL
2  respectively as the α is 

increased. Altogether, visualizations show IL-VIS’s capability in capturing the (dis)similarities in trajectory 
progressions.
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the number of synaptic spines in culture17. QUIN antibodies can provide neuroprotection7 by preventing QUIN 
binding to NMDA receptors or its uptake offering therapeutic potential for these diseases. In a previous study7, 
we showed that as little as 30 min of exposure to the same monoclonal anti-QUIN used in this study could protect 
oligodendrocyte cell line monolayers from cell death induced by QUIN. QUIN excitotoxicity and metabolism are 
very much associated with the aging process18,19, thus, the long-term effect of anti-QUIN to mitigate the effects 
of QUIN should be studied. Therefore, we analyze both the acute and chronic effects of exogenous anti-QUIN 
on both endogenous and exogenous QUIN using IL-VIS.

Our dataset (see “Methods”) contains MEA data from cortical organoids derived using four cell lines: two 
AD patients (AD1 and AD2) and two healthy controls (CN1 and CN2). Four organoids are derived from each 
cell line and exposed to one of the following four different treatments (1) untreated, (2) QUIN added, (3) anti-
QUIN added, and (4) both QUIN and anti-QUIN added (QUIN + anti-QUIN). These 16 organoids from four 
cell lines are used to test the ability of anti-QUIN to sequester, thus reducing the deleterious effects of QUIN. 
QUIN is also produced by the organoids endogenously and released into the media, where it was quantified 
at 16–30 nM (Supplementary Fig. 8). The untreated organoids are used as controls for treatments (2), (3), and 
(4), and to establish the normal maturation profile reflected in the plots discussed later in Fig. 6. In treatment 
(2), organoids are exposed to exogenous QUIN at 100 nM, i.e., 3–5 times endogenous levels but lower than the 
circulating levels in blood20. This concentration is chosen to ensure physiological relevance to test the effect of 
increased QUIN on organoids. In treatment (3), organoids are exposed to anti-QUIN alone to determine anti-
QUIN’s ability to sequester endogenous levels of QUIN. In treatment (4), organoids are exposed to both anti-
QUIN and exogenous QUIN to assess anti-QUIN’s capability to sequester higher levels of QUIN. In treatments 
(3) and (4), anti-QUIN is added at 10 µg/mL concentration to reduce extracellular QUIN concentrations and 
prevent QUIN uptake and binding to NMDA receptors.

IL‑VIS identifies the progression of the electrophysiological properties of an organoid
The progression of the electrophysiological properties of the untreated organoids, originally represented as high-
dimensional trajectories in MEA data ( TH

CN1untreated
 , TH

CN2untreated
 , TH

AD1untreated
 , TH

AD2untreated
 ) are transformed into 2D 

trajectories ( TL
CN1untreated

 , TL
CN2untreated

 , TL
AD1untreated

 , TL
AD2untreated

 ) using IL-VIS (Fig. 5 and Supplementary Figs. 9–11). 
In contrast to a conventional spike count analysis (Supplementary Fig. 12), the generated visualizations offer a 
new perspective on the changes in an organoid’s electrophysiological state over time compared to its previous 
states. For instance, in Fig. 5, the 2nd, 3rd, and 4th increments of TL

CN1untreated
 appear to move away from the 1st. 

However, the 5th and 6th increments reverse the direction and move back towards the initial state, indicating that 
the organoid’s final electrophysiological states are becoming more similar to the initial state. These visualizations 
allow us to visualize the electrophysiological progression in individual organoids.

IL‑VIS visualizes the progression of multiple organoids in the same visualization space
The spike frequency variation over the experimental period is depicted in Supplementary Fig. 12. However, it 
only shows the independent temporal variation and does not allow for a direct comparison of the effects between 
different treatments on organoids. We use IL-VIS to visualize the electrophysiological progression of the four 
organoids derived from the same cell line but exposed to different treatments in a shared space, enabling their 
comparison. Fig. 6 displays these visualizations obtained for each cell line at the end of a three-month treatment 
period.

The proximity between low-dimensional trajectories indicates the similarity in the electrophysiological 
progression of the corresponding organoids during their maturation. For instance, the increments in TL

AD2untreated
 

and TL
AD2QUIN+anti−QUIN

 (Fig. 6B) are visualized closely, signifying the similar progressions of the untreated and 
QUIN+anti-QUIN-treated organoids derived from the AD2 cell line. We use an Euclidean distance-based 
metric (“Methods”) to quantitatively assess the proximity between trajectories, which provides a measure of the 
similarity in electrophysiological progression among the organoids.

The anti‑QUIN‑treated organoid trajectory deviates from the other three conditions in all four cell lines
Figure 6 illustrates that in each cell line, the trajectory corresponding to the anti-QUIN-treated organoid 
originates and progresses at a considerable distance from the trajectories corresponding to the other three 
conditions (Untreated, QUIN, and QUIN+anti-QUIN). Additionally, the trajectory of the anti-QUIN-treated 
organoid progresses in a distinctly different direction compared to the trajectory of the QUIN-treated organoid. 
For instance, in Fig. 6A, TL

AD1QUIN
 progresses from E to W while the TL

AD1anti−QUIN
 progresses from SW to NE. 

Similarly, in Fig. 6B, TL
AD2QUIN

 (NE to SW) and TL
AD2anti−QUIN

 (SW to NE) are progressed in parallel but in opposite 
directions. These findings suggest that anti-QUIN has a unique impact on electrophysiological activity compared 
to the other treatments.

Possible anti‑QUIN sequestration of QUIN
The distances measured to trajectories of Untreated, QUIN, and QUIN+anti-QUIN-treated organoids by taking 
the trajectories of anti-QUIN-treated organoids as reference are ranked in increasing order in Table 1. For three 
of the four cell lines: AD1, AD2, and CN1, the treatments were ranked as follows: (1) untreated, (2) QUIN+anti-
QUIN, and (3) QUIN. As expected, the trajectory of the QUIN-treated organoid is the least similar (ranked 
3rd) to the trajectory of the anti-QUIN-treated organoid. The trajectory of the untreated is the closest (ranked 
1st) while the trajectory of the QUIN+anti-QUIN-treated is the second closest (ranked 2nd). By attributing 
this closeness to the level of the effective concentration of QUIN bathing the organoids, we conjecture that the 
order of effective concentration of QUIN in organoids is increasing in the specific order: anti-QUIN-treated < 
Untreated < QUIN+anti-QUIN treated < QUIN-treated, suggesting that,
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•	 The concentration levels of anti-QUIN in anti-QUIN-treated are sufficient to sequester low levels of 
endogenous QUIN found in Untreated organoids.

•	 Although not being able to fully neutralize the effect of QUIN, the concentration levels of anti-QUIN can 
sequester some exogenous QUIN found in QUIN + anti-QUIN-treated organoids.

For the remaining cell line (CN2), further investigation is needed to confirm the reason for the trajectory of the 
anti-QUIN-treated organoid being visualized closer to the trajectory of QUIN-treated than to the other two 
treatments and in particular to the Untreated organoid. One possible explanation for this would be that the 
endogenous QUIN in the Untreated CN2 is much higher after nine months than in the other three cell lines 
(Supplementary Fig. 8). However, for CN2, the placement of the trajectories of Untreated, QUIN-treated, and 
QUIN+anti-QUIN-treated organoids in Fig. 6 is consistent with the other three cell lines, i.e., the trajectory of 
QUIN-treated is closer to the trajectory of the QUIN+anti-QUIN-treated than to the trajectory of the Untreated 
organoid.

Discussion
We proposed IL-VIS, a machine-learning pipeline for visualizing high-dimensional trajectories in longitudinal 
MEA data in a 2D space.

IL-VIS has four key advantages that are important in the fields of neurodevelopmental, pharmacological, 
and disease modeling studies and we demonstrate these advantages in our results section by using simulated 
and experimental data. First, by relying less on human intervention for feature extraction, we overcome 

Figure 5.   2D visualizations obtained by IL-VIS for the Untreated CN1 organoid when modeled independently. 
I1 to I6 are the six increments corresponding to the six different time points at which the recordings were 
taken (Table 2). At session i, all the increments thus far (i.e., Di =

⋃i
k=1 Ik ) are used for training the model. 

N corresponds to the number of data points used in each visualization where each point corresponds to a 
compact representation of a 4-s recording obtained from the 9 electrodes in the respective MEA plate. The 2D 
visualizations generated from the 2nd session ( i = 2 ) onwards are shown in the sub-figures. The color intensity 
represents the organoid’s maturity. In earlier increments, the color is lighter while in later increments the color is 
darker. The medians of the subsequent increments are traced chronologically to observe the trajectory followed 
by the organoid’s electrophysiological properties.
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Figure 6.   The 2D visualizations obtained by IL-VIS for each cell line at the end of the three months treatment 
period. The MEA data from the four organoids of the same cell line, treated with Untreated, QUIN, anti-
QUIN, and QUIN+anti-QUIN, are modeled together. The data point representation is the same as Fig. 5. The 
visualizations show a unique progression in AD/CN organoids treated with anti-QUIN alone, compared to 
the progression of Untreated, QUIN-treated, or QUIN+anti-QUIN-treated organoids. (A) The anti-QUIN-
treated trajectory originates at a considerable distance and moves in a different direction from the trajectories 
corresponding to the other three treatments. In contrast, both Untreated and QUIN+anti-QUIN treated 
trajectories initiate and converge in nearby locations to each other. Although the QUIN-treated trajectory 
initiates at a considerable distance, it converges to a point closer to the Untreated and QUIN+anti-QUIN-
treated trajectories. (B) anti-QUIN-treated trajectory originates from the bottom left corner of the figure at 
a considerable distance from the three trajectories corresponding to the other three treatments which are 
originating at the right side of the figure. anti-QUIN treated trajectory propagates in the opposite direction 
(SW to NE and then towards N) than the other trajectories and converges in a distant location. The trajectories 
corresponding to the other three organoids converge closer to each other. (C) The anti-QUIN treated organoid 
is originating at a considerable distance from the other three organoids and moves in a different direction (top 
right). In contrast, the other three organoids are located more toward the bottom left corner of the figure. (D) 
The anti-QUIN treated organoid is originating at a considerable distance from all the other three organoids and 
moves towards the top left of the figure. In contrast, the other three organoids are located more toward the top 
right corner of the figure.

Table 1.   The distance measured to untreated, QUIN, and QUIN+anti-QUIN-treated trajectories by taking the 
anti-QUIN treated trajectory as reference.  Distance rank is shown in brackets. The longest distance is in bold. 

Treatment AD1 AD2 CN1 CN2

anti-QUIN 0 (–) 0 (–) 0 (–) 0 (–)

Untreated 7.82 (1) 5.44 (1) 5.91 (1) 9.61 (3)

QUIN 11.10 (3) 6.06 (3) 7.99 (3) 7.49 (1)

QUIN+anti-QUIN 9.45 (2) 5.62 (2) 7.47 (2) 8.23 (2)
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several weaknesses in conventional MEA analysis that manually extracts features such as spike rates, and 
burst rates21,22. Such methods require expertise in choosing parameters and may introduce expert biases that 
would influence all subsequent analysis tasks as discussed in a previous work23. Second, IL-VIS can model 
the data in an ongoing experiment and progressively enhance the model with the arrival of new data. This 
eliminates the need for the initial set of data to offer a complete representation of the underlying processes 
that generate data. Third, IL-VIS generates intuitive and interpretable 2D representations capturing the 
changes in progressions in the electrophysiological activity of an organoid over time. Fourth, by visualizing the 
progressions of electrophysiological properties in multiple organoids in a shared space, IL-VIS can determine 
the effect of different treatments on the same cell line and compare their effects to each other. IL-VIS makes 
the third and fourth advantages possible by preserving the heterogeneity of responses at any given timepoint 
and in between different timepoints, reflecting anything from small to large variations in electrophysiological 
properties. Moreover, we show the pipeline’s robustness to gaps and noise in data which are frequently observed 
in experimental data.

Our application of IL-VIS on experimental data allows for the identification of the effect of QUIN and anti-
QUIN on the electrophysiological activity of organoids. Results indicate that low levels of QUIN may induce 
effects on cellular health, and neurodegeneration, leading to electrophysiological alterations. Our findings are in 
agreement with recent evidence demonstrating decreased neurite growth and loss of synaptic spines in cultured 
neurons exposed to QUIN17. Furthermore, the significance of age-related changes in the kynurenine pathway 
in the brain, including QUIN accumulation, is starting to be appreciated in recent human studies of healthy 
and neurologically diseased patients24,25. Therefore, we believe our findings supporting the evidence of anti-
QUIN’s capability in sequestering varying levels of QUIN are of greater importance. More studies are needed to 
longitudinally assess the levels of QUIN, the potential correlation with known neurodegeneration biomarkers, 
and the effect of potential interventions to reduce QUIN levels. IL-VIS can play a key role in modeling data from 
such future experimental studies.

IL-VIS’s potential can be tested in new applications, including the two scenarios outlined below. First, IL-VIS 
could be used to compare the effects of different treatments, such as conducting a relative analysis of any set of 
compounds (in our study it was limited to QUIN and anti-QUIN) compared to an untreated organoid. Second, 
the distance between individual increments of an organoid’s trajectory under a specific treatment can be used 
to gauge the variability of responses in relation to the treatment time. However, conducting such an experiment 
requires a careful design with the above purpose in mind and requires generating data at regular and frequent 
intervals. In addition, we acknowledge that comparing Alzheimer’s versus control cell lines is beyond the scope 
of this study. Such a comparison necessitates more replicates to accurately represent each disease and control 
population.

Further enhancements can be made to IL-VIS. We provide suggestions for improving both the machine-
learning pipeline and the biological experimental design. For studies using MEAs with a larger number of 
electrodes, a 2D convolutional neural network can be integrated into Fourier-transformed features to leverage 
the spatial proximity of the electrodes. Additionally, a rehearsal-based strategy26, selectively storing and utilizing 
informative samples from previous increments, can be seamlessly integrated into IL-VIS to address limitations 
in storing and using all training examples. Furthermore, in contrast to dimensionality reduction techniques 
like PCA, where the axes correspond to the directions of maximum variance in the original high-dimensional 
space, manifold learning methods such as UMAP and SONG lack a direct mapping of their dimensions to 
specific features or characteristics. This highlights a unique challenge in manifold learning approaches. Given 
this distinction, future studies may delve into interpreting the intrinsic properties captured by the axes of these 
methods. In terms of biological experimental design, we recommend the following steps for more insightful 
trajectories. First, recording MEA data from multiple time points before introducing treatments would enable 
IL-VIS to learn and calibrate the variations among the organoids utilized. Second, minimizing the gaps between 
increments would enable IL-VIS to generate a smooth and continuous trajectory for each organoid. Third, 
utilizing varying concentrations of the same treatment on organoids would allow for a detailed analysis of the 
relationship between trajectories with high confidence.

In conclusion, IL-VIS presents a novel approach for analyzing high-dimensional, longitudinal MEA data, and 
offers promising potential to provide valuable insights into the electrophysiological progression of organoids 
under various treatments and conditions, ultimately advancing our understanding of complex biological 
processes.

Methods
Experimental cortical organoid‑based MEA data
All research was conducted in accordance with the requirements of the University of Wollongong Human 
Research Ethics Committee (13/299). The iPSCs utilized in this study have been described previously27–29 under 
HREC approval 13-299 (UOW). The fibroblasts were originally obtained from the Coriell Institute27 and the 
Centre of Healthy Brain Ageing (CHeBA) Research Bank under HREC approval HC17865 (UNSW). Coriell 
Institute ensures informed consent is obtained when collecting the samples. Participants from the CHeBA 
research bank were a part of the Sydney Memory and Ageing Study and/or were assessed in the clinic as detailed 
below. Participants took part in a detailed cognitive and medical assessment with the option to donate a sample. 
The participants were deemed able to provide informed consent based on clinical assessment and the informed 
consent was obtained from all the patients. A knowledgeable informant (close friend or family member) was also 
interviewed at this time. The assessment measures were (1) neuropsychiatric assessments assessing dementia, 
mild cognitive assessment and cognitive decline; (2) broad range of sociodemographic, lifestyle and cardiac, 
physical and mental health factors; (3) blood samples and genotyping; (4) subgroups with MRI scans (structural 
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and functional) and for studies of falls and balance, inflammatory and metabolic markers, and prospective 
memory. These assessments were conducted by the clinicians at CHeBA at UNSW Sydney.

The dataset contains MEA recordings obtained from cortical organoids derived from four different cell lines: 
two healthy control cell lines (UOWi001-A and UOWi002-A) and two Familial AD patient cell lines (UOWi003-A 
and UOWi009-A). Both AD patient lines carry mutations in the PSEN1 gene that encodes Presenilin 1, A248E 
or S290C, as described in Maksour et al.30 and demonstrate alterations in neuronal excitability30. Human brain 
organoids31 produced from iPSCs based on the protocol by Salick et al.32 and described in Maksour et al.29 were 
cultured for up to 9 months. The organoids were plated after being cultured for 5 months, the treatments were 
added after 6 months from being plated (see Table 2) and the activity was recorded after a day, a week, a month, 
and 3 months. The durations between the recordings were selected with the intention to measure both the acute (1 
day) and chronic (1 week, 1 month, and 3 months) effects of the treatments. The decision to include various time 
intervals stemmed from the unique nature of organoid cultures, which allow for extended periods of analysis with 
microelectrode arrays not fully exploited by the current literature because they focus on shorter time frames (of 
the order of days). In contrast, our sampling method aimed to capitalize on the extended culture periods possible 
for organoids. Furthermore, it is critical to note that our study does not involve direct comparisons between 
different cell lines. Instead, we focus on comparing organoids derived from the same cell line but treated with 
different treatments. Consequently, all organoids derived from a specific cell line share identical time intervals. 
While certain cell lines may exhibit experimentally missing time points, the absence or inclusion of these points 
among the various cell lines does not alter the outcomes of our analysis.

The selection of the exogenous QUIN concentration of 100 nM was based on our previous research, which 
demonstrated chronic QUIN toxicity and subcellular changes including dendritic varicosities and microtubule 
alterations in neurons using a 350 nM dose33,34. Additionally, other studies have shown neuronal damage 
following exposure to only 100 nM QUIN for several weeks35. Considering the longer duration of our study 
(lasting 3 months after treatment), we opted to use a lower concentration to assess the effects of physiologically 
elevated levels of QUIN, while likely retaining a substantial proportion of neurons alive, and thus being able 
to examine the effects on organoids’ electrophysiological firing parameters. An anti-QUIN concentration of 
10 µg/mL was used based on our previous study of the anti-QUIN’s ability to rescue oligodendrocyte cell lines 
from QUIN toxicity7. QUIN was also produced by the organoids endogenously which were quantified by gas 
chromatography–mass spectrometry (GC–MS) in the range 16–30 nM (Supplementary Fig. 8).

MEA recordings
The organoids from each cell line were plated on a separate multi-well MEA plate, resulting in a total of four 
plates corresponding to the four cell lines. Within the multi-well MEA, each organoid was placed in a distinct 
well, where each well was composed of a 3 × 3 grid of titanium nitride electrodes. Each electrode has a diameter 
of 30 µ m with an inter-electrode distance of 200 µ m. The electrodes in each well recorded the electrophysiological 
activity of the organoid in it at varying time intervals. MEA data were recorded at a sampling frequency of 25 
kHz using the multi-channel systems data acquisition system. At each sampling time point (represented by a row 
in Table 2), the media was changed and the recordings were taken before the media change.

Increment formation
The data increments were formed based on the sampling timepoints of the captured MEA recordings. Specifically, 
the pre-processed MEA signal segments obtained at sampling timepoint i for a given cell line constituted the 
i-th increment ( Ii ) specific to that cell line (Table 2). For each cell line, i = 1 is when the first measurement was 
recorded and 1 ≤ i ≤ 6 . Note that the number of increments (the range of i) vary for each cell line, but this does 
not interfere with our modeling because we only compare and model the organoids from the same cell line.

MEA pre‑processing
The recorded MEA signals were passed through a third-order high-pass Butterworth filter at 300 Hz to remove 
low-frequency artifacts23. Each recording was segmented into 4-s non-overlapping windows. The 4-s segment 
length was empirically determined by experimenting with varying segment lengths. Specifically, we conducted 
a systematic exploration of different window lengths, ranging from 1 to 20 s, considering the typical total length 
of the signal, approximately 2 min. Our experiments took into account various factors, including the duration of 
events of interest such as spikes or bursts, the computational cost of the algorithm, and the quality of the resulting 

Table 2.   MEA signal recording availability for each cell line. The treatments were added after 6 months and 
the activity was recorded after a day, a week, a month, and 3 months. The table represents the MEA recording 
availability for each cell line and their corresponding increment ID ( Ii)

Organoid age Treatment time (t) CN1 CN2 AD1 AD2

5 months – I1 – I1 –

6 months (drugs added) t = 0 I2 I1 I2 I1

6 months & 1 day t = 1 day I3 I2 I3 -

6 months & 1 week t = 1 week I4 I3 I4 I2

6 months & 1 month t = 1 month I5 I4 I5 I3

6 months & 3 months t = 3 months I6 I5 I6 I4
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visualizations. Based on these considerations, we found that a 4-s window length yielded optimal results. MEA 
signals are often distorted with noise and disturbance which are not well understood in the time domain as it is 
in the frequency domain. Therefore, we used FFT to represent the signal segments in the frequency domain8. The 
FFT is an efficient implementation of the discrete Fourier transform. Once the FFT of the MEA signal segment 
was obtained, we computed the Fourier amplitude spectrum of the discrete frequencies. Since the MEA signals 
are real-valued, the obtained Fourier transformation is conjugate symmetric. Therefore, we only used the first 
half of the amplitude spectrum while leaving out the second half. We then reduce the number of features in the 
frequency domain to 1000 before applying dimensionality reduction.

Simulated dataset
Trajectory formation
To simulate random non-linear trajectories, we propose the following method. We first generate a line L and 
subsequently transform it to a non-linear trajectory T (both L and T are in D-dimensional space). Specifically, 
L originates from a point p and has the gradient d. The pseudo-temporal parameter t is used to describe points 
along the line L. The vector form of L can be represented as shown in Eq. (1) where the intercepts ( p1, p2, ..., pD ) 
and the coefficients ( d1, d2, ..., dD ) were randomly generated.

L was then transformed into a non-linear trajectory T by taking the square of the components in randomly 
selected dimensions (Eq. 2).

TH
1  and TH

2  were created from Eq. (2) using two different random initializations. In addition to TH
1  and TH

2  , which 
we assume to be independent of each other, there is the need to create trajectories that exhibit some similarity 
or show some dependence on each other to verify IL-VIS’s capability in capturing (dis)similarities in trajectory 
progressions. Therefore, TH

3  and TH
4  were defined as compositions of TH

1  and TH
2  (Eq. 3). The similarity factor ( α ) 

determines how closer the secondary trajectory ( TH
3  or TH

4  ) is to its principal trajectory ( TH
1  or TH

2 ).

Increment formation
In the simulation experiments, the data increments ( I1,...,In ) were formed by generating a set of points along 
the trajectory TH

r  at varying intervals of t that are disjoint and increasing. For each increment Ii , an interval was 
defined (Eq. 4) based on i and the sampling gap size δ . Consequently, for each integer t value, we created one 
data point, resulting in a total of (100− δ) data points per increment.

For example, in experiments without a sampling gap ( δ = 0 ), 100 data points were generated for each data 
increment. The t value varied from 0 to 99 for the first increment ( i = 1 ), and from 100 to 199 for the second 
increment ( i = 2 ) where subsequent increments followed the same pattern. Similarly, in experiments with a 
sampling gap of size 25, 75 data points were generated for each increment. The t value varied from 0 to 74 for the 
first increment ( i = 1 ), from 100 to 174 for the second increment ( i = 2 ) and subsequent increments followed 
the same pattern.

Noise addition to the trajectory
We introduce noise for two purposes. First, to approximate random noise arising from biological and non-
biological variations in real data, φi(t) was added to the data points in each increment Ii (Eq. 5). Specifically, for 
each D-dimensional data point, φi(t) was added independently to each dimension. φi(t) was sampled from a 
Gaussian distribution with a mean of 0 and a standard deviation (SD) specific to each dimension. To vary the 

(1)
L = < d1t + p1, d2t + p2, ..., dDt + pD >

where d =< d1, d2, ..., dD > and p =< p1, p2, ..., pD >

(2)
T = < (d1t + p1)

a1 , (d2t + p2)
a2 , ..., (dDt + pD)

aD >

where {a1, a2, ..., aD}ε{1, 2}

(3)

if TH
1 = < (A1

1t + B11)
a11 , (A1

2t + B12)
a12 , ..., (A1

Dt + B1D)
a1D > and

TH
2 = < (A2

1t + B21)
a21 , (A2

2t + B22)
a22 , ..., (A2

Dt + B2D)
a2D >

TH
3 =αTH

1 + (1− α)TH
2

TH
3 = < α(A1

1t + B11)
a11 + (1− α)(A2

1t + B21)
a21 ,α(A1

2t + B12)
a12 + (1− α)(A2

2t + B22)
a22 , ...,

α(A1
Dt + B1D)

a1D + (1− α)(A2
Dt + B2D)

a2D >

TH
4 =(1− α)TH

1 + αTH
2

TH
4 = < (1− α)(A1

1t + B11)
a11 + α(A2

1t + B21)
a21 , (1− α)(A1

2t + B12)
a12 + α(A2

2t + B22)
a22 , ...,

(1− α)(A1
Dt + B1D)

a1D + α(A2
Dt + B2D)

a2D >

where {a11, ..., a
1
D}

⋃
{a21, ..., a

2
D}ε{1, 2}

(4)Ii = {TH
r (t) � 100(i − 1) ≤ t < 100i − δ & t ∈ Z}
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amount of noise in each experiment, φi(t) was scaled by the parameter � . � allows for control over the magnitude 
of the noise added to the data points.

Second, for the experiment with the largest sampling gap (when δ = 99 ), the process described in section 
“Increment formation” would only yield one data point per increment. It is important to note that our objective 
is not to interpolate values between the sampled points but rather to overcome this limitation and obtain multiple 
data points per increment. We add noise to the above point generating 100 points per increment. This noise was 
sampled from a Gaussian distribution with a mean of 0 and an SD of 0.001.

Incrementally learned dimensionality reduction module
Dimensionality reduction algorithm
IL-VIS needs an accurate dimensionality reduction algorithm that caters to incrementally gathered high-
dimensional data. This algorithm should be capable of retaining a set of parameters that can be updated over 
time as new data is incorporated. To this end, we selected our recently proposed parametric algorithm SONG.

The functionality of SONG can be summarised in three primary iterative steps: (1) vector quantization, (2) 
self-organization, and (3) dimensionality reduction. In vector quantization, the high-dimensional input space 
X = {x ∈ ℜD} is partitioned based on the high-density regions in the input distribution, and each partition 
is represented by a high-dimensional coding vector, c ∈ ℜD . In the self-organization step, the set of coding 
vectors C = {c ∈ ℜD} , are connected based on their proximity to approximate the input topology, effectively 
parametrizing the input space. An edge between two coding vectors is assigned a higher weight if a dense region 
of input points lies in between the neighborhoods of the two connected coding vectors, and a lower weight if 
otherwise. The resulting coding vectors C and their adjacency matrix E create a weighted graph G = {C,E} , 
that could be used to generate a neighborhood distribution. In the dimensionality reduction step, a set of 
2D vectors Y = {y ∈ ℜ2} which has a bijective correspondence with C are defined, i.e., the input xk ∈ ℜD is 
visualized as yk ∈ ℜ2 . By minimizing the cross entropy between the neighborhood graph in the input space and 
the 2D representations, the topology of the input space is then projected onto the 2D space. For more detailed 
information on SONG refer to work5.

Unlike many other dimensionality reduction methods, SONG can retain the information about the data it 
has seen previously by means of retaining the parameters at time t ( θt ). θt consists of the coding vectors Ct , the 
edges Et , and the corresponding low-dimensional vectors Yt at time t ( θt = {Ct ∪ Et ∪ Yt} ). When new data 
is presented, rather than arbitrarily reinitializing all the relevant visualizations, SONG fine-tunes θt to adapt to 
the new data. This allows SONG to adjust existing visualizations and interpretations to suit the changes coming 
with the new data, thereby making it more suitable for longitudinal studies.

Incremental training
The dimensionality reduction model is incrementally trained for n sessions, one each per sampling time point, 
where at each session i the newly generated data from the current sampling timepoint i is incorporated into 
the existing model. When incrementally training a parametric model using only the newly encountered data, 
it experiences a phenomenon known as catastrophic forgetting36. The model may forget previously learned 
knowledge as it acquires new knowledge. Therefore, at each session i, we perform fine-tuning on the existing 
parameters θi−1 using the combined data from all the sampling time points up to and including time point i, 
denoted as Di =

⋃i
k=1 Ik . This process allows us to obtain updated parameters θi , mitigating forgetting and 

ensuring the generation of reliable visualizations.
At the end of each training session i, the updated parameters θi are used to transform Di into 2D 

representations which are then visualized through a scatter plot.

Median tracing
The medians of the visualized data increments are calculated using the 2D coordinates of the representative data 
points. The calculated medians are then traced chronologically to observe the emergence of a trajectory in the 
2D space. The median was used instead of the mean as medians are less impacted by possible outliers.

Euclidean distance metric
A Euclidean distance-based metric was used to quantify the (dis)similarity of progressions of any two trajectories. 
The metric calculates the average Euclidean distance between the medians of the corresponding increments in 
the considered trajectories. Equation (6) calculates the distance between two 2D trajectories A and B, each with 
n increments. axi  and ayi  correspond to the medians of the dimensions x and y in the ith increment of trajectory 
A. bxi  and byi  correspond to the medians of the dimensions x and y in the ith increment of trajectory B.

(5)
Ii ={TH

r (t)+ �φi(t) � 100(i − 1) ≤ t < 100i − δ & t ∈ Z}

φi(t) ∼ N(0, SD2)

(6)D(A,B) =
1

n

n∑

i=1

[(axi − bxi )
2 + (a

y
i − b

y
i )

2]1/2
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Spike detection
MEA data were also analyzed using Neuroexplorer v5 software tool37. The reference channel was subtracted, a 
band pass filter (Butterworth) from 300 to 1000 Hz was applied and spikes were detected using the threshold 
crossing algorithm. The threshold was calculated as -4.0*Median Sigma (MS), whereby MS is equal to the median 
of the signal absolute values.

Data availability
 Experimental data supporting the findings of this paper are available from L.O. upon request.

Code availability
All code related to simulation trajectory formation, MEA data pre-processing and the proposed incremental 
pipeline could be found in the following repository https://​github.​com/​Tamas​haM/​Incre​menta​lFram​ework.
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