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This paper provides a comprehensive analysis of the performance of variable speed pure
proportional navigation (PPN) guidance law. Although capturability analysis of constant speed
proportional navigation guidance law has been addressed by researchers, the engagement
equations involved are highly nonlinear and solving them is a complex procedure, often resulting
in complex functions. In the literature, a qualitative analysis technique is commonly employed
to determine the capture conditions for the constant speed PPN guidance law without actually
solving the equations of motion. However, in the case of varying interceptor velocity, which
this paper addresses, has remained an open problem. In this paper a qualitative approach is
used to determine the capture conditions of a variable speed interceptor which uses PPN to
generate lateral acceleration commands to achieve interception. The paper utilizes a velocity
variation method that encompasses switching between different velocity values, allowing for the
identification of capture conditions that account for both abrupt and gradual velocity changes.

I. Introduction
In this paper, we present a qualitative analysis of the capturability of the proportional navigation (PN) guidance

law for time-varying interceptor speeds against a non-maneuvering but moving target. In the literature, captuarbility
analysis of PN guidance law has been presented for constant speeds, stationary targets, and variable lateral acceleration
bounds but not for time-varying speeds. The case of time-varying speed is a very important aspect of PN guidance,
as most interceptors exhibit speed variations that are mostly dependent on largely uncontrollable factors such as drag,
propulsion characteristics, etc. From this point of view, this paper makes a significant contribution not just in theoretical
capturability analysis but also because it addresses a practically relevant scenario and departs from the simplistic
assumption of constant velocity models.

Proportional navigation (PN) guidance law and its variants have been studied extensively in the literature. It is
the most frequently used guidance law due to its computational simplicity, effectiveness, robustness, and ease of
implementation [1]. PN guidance was first introduced in the literature by Yuan [2], and was extensively studied and
implemented in tactical interceptors by Hughes aircraft company [3]. A linearized interceptor–target engagement
geometry is introduced in [4]. Since closed-form solutions for PPN nonlinear equations for relative motions are difficult
to obtain, a qualitative analysis to determine the capture conditions for the PPN guidance law was introduced in [5],
which discusses the qualitative study of proportional navigation against non-maneuvering targets. Subsequently, a
similar analysis was also done for maneuvering targets in [6, 7] to determine a set of sufficient conditions for which the
interceptor can capture a target undergoing constant target maneuvers. Becker [8] discussed a closed-form solution
of the PPN nonlinear equations of motion for an interceptor pursuing a non-maneuvering target using the methods
from the theory of complex functions and obtaining the sufficient conditions for interception. In [9], the qualitative
analysis method was extended to the capturability analysis of PPN against maneuvering target with a time-varying
normal acceleration. A Lyapunov function technique is used in [10] for time-varying target maneuvers considering
two-dimensional space. An extension of the Lyapunov approach to the three-dimensional space is given in [11, 12].
A qualitative analysis of augmented pure proportional navigation (APN) is also discussed in [13]. Besides APN,
several other guidance laws were also derived to account for target lateral acceleration. Some of them had PN-based
formulations [14], whereas others were based on optimal control [15] and game-theoretic problem formulation [16, 17].
A survey of many traditional and modern guidance laws are available in [18, 19].

Several guidance laws have been proposed to intercept moving targets. However, most of them do not investigate the
impact of the interceptor’s longitudinal acceleration on the trajectory. One exception is the TPN guidance law, where the
longitudinal acceleration is applied not by design but by virtue of the interceptor acceleration being at an arbitrary angle
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to its velocity vector. In addition to TPN, several approaches were applied to address the interceptor’s variable speed
in guidance problems. A standard solution to the variable-speed guidance problem is presented in [20] by adding an
acceleration compensation term to the LOS rate in the guidance law. In [21], a generalized proportional navigation law is
used to generate lateral acceleration commands to minimize the effect of the interceptor and target’s constant longitudinal
acceleration and guide the interceptor toward the target. In [22], an approximate guidance law with a modified APPN is
considered to achieve interception during the boost and decelerating phases of the interceptor. In [23–25], the authors
analyze the collision course for a variable-speed interceptor and define a guidance law that steers the heading of the
interceptor to the collision course based on optimal control and differential game formulations. In [26], the authors
establish an optimal guidance law for an interceptor with a time-varying guidance gain and time-varying time-to-go that
accounts for the effect of the interceptor’s future velocity changes. A time-varying linear pursuit–evasion game model
with bounded controls is presented for the interceptor, and the target having variable speeds and lateral acceleration
limits in [27, 28]. In [29], optimal guidance-to-collision guidance law was developed specifically for an exo-atmospheric
interception scenario between an accelerating interceptor and a constant-speed target. In [30], interception of stationary
targets by interceptors with arbitrary time-varying velocity is considered. A speed control-based guidance concept
is presented in [31]. In [32], an optimal interceptor guidance law is used for target interception while imposing a
predetermined terminal intercept angle with varying interceptor and target speeds. In [33], a linear quadratic guidance
law with intercept angle constraints is used for varying speed adversaries. The performance of PPN-guided interceptors
with arbitrary time-varying speed against stationary targets is explained in [34]. A guidance system with separate
impact point prediction, specifically to deal with time-varying speeds of interceptors and target and a guidance law for
generating the steering command to nullify the heading error is proposed in [35]. In [31, 36], a new guidance strategy is
proposed in which variable speed is used as a guidance command, and it entirely ignores lateral acceleration as a steering
mechanism. In [37], a mathematical analysis of the capturability of PPN guidance law, when the missile-to-target range
fluctuates with time due to target maneuver, was presented for constant speed interceptor and a similar capturability
analysis was extended in [38] for variable speed interceptors. In [39], a qualitative study of post-launch capturability of
a PN guidance law was discussed for the interceptor, where the interceptor and the target have lateral and longitudinal
accelerations. But it considered the engagement from a favourable initial condition for interception. In [40], in our prior
work, we introduced a longitudinal acceleration-based variable speed (LAVS) guidance law which commands both
lateral acceleration and longitudinal acceleration. Lateral acceleration command is generated from conventional PN
guidance law, and longitudinal acceleration is given by a new method inspired by hawk’s attack [41].

Even though most of the variable speed guidance laws described above use PN or its variants, there is no capturability
analysis for PN guidance law with time-varying speeds for moving targets available in the literature. This paper presents
a qualitative analysis of variable speed PN guidance law against a non-maneuvering but moving target.

This paper is organized as follows: Section II discusses the problem formulation and preliminary analysis. Section
III covers the qualitative analysis of the relative velocity equations. Section IV examines different capture conditions
for the variable speed PPN guidance law when applied to non-maneuvering targets. Finally, Section V outlines the
conclusions and potential future works as extensions of this work.

II. Problem Formulation and Preliminary Analysis
Consider the engagement geometry in the plane, as shown in Fig. (1). Point mass models of target T and interceptor

M are considered with velocities 𝑉𝑀 and 𝑉𝑇 . Here, 𝑅 is the distance from the interceptor to the target, 𝜃 is the line of
sight angle, 𝛼𝑀 is the heading angle of the interceptor, and 𝐴𝑀 is the lateral acceleration of the interceptor.

The equations of the relative motion between the interceptor and the target can be written as

𝑉𝑅 = 𝑉𝑇 cos 𝜃 −𝑉𝑀 cos (𝛼𝑀 − 𝜃) (1)

𝑉𝜃 = −𝑉𝑇 sin 𝜃 −𝑉𝑀 sin (𝛼𝑀 − 𝜃) (2)

The lateral acceleration of the pursuer defined by PN guidance law, and the heading angle rate can be represented as

¤𝛼𝑀 = 𝑁 ¤𝜃 (3)

where 𝑁 is the navigation constant, ¤𝜃 line of sight angle rate, ¤𝛼𝑀 heading angle rate, and the lateral acceleration
command is given by

𝐴𝑀 = 𝑁𝑉𝑀
¤𝜃 (4)
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Fig. 1 Engagement geometry

Integrating Eqn. (3), we will get
𝛼𝑀 − 𝛼𝑀0 = 𝑁 (𝜃 − 𝜃0) (5)

where 𝛼𝑀0 is the initial heading angle, and 𝜃0 is the initial line of sight angle. Consider

𝑘 = 𝑁 − 1 (6)

and
𝜙0 = −𝑁𝜃0 + 𝛼𝑀0 (7)

where 𝑘 and 𝜙0 are constants that depend on the initial conditions and parameters. Substituting these constants in Eqn.
(5), we will get

𝛼𝑀 − 𝜃 = 𝑘𝜃 + 𝜙0 (8)

Let 𝜈 =
𝑉𝑀

𝑉𝑇
define the velocity ratio, which will be subject to changes as the interceptor speed varies with time.

Substituting Eqn. (8) in Eqns. (1), and (2), and considering the fact that 𝜈 is varying throughout the engagement, relative
motion equations can be written as

𝑉𝑅 (𝜃, 𝜈) = cos 𝜃 − 𝜈 cos (𝑘𝜃 + 𝜙0) (9)

𝑉𝜃 (𝜃, 𝜈) = − sin 𝜃 − 𝜈 sin (𝑘𝜃 + 𝜙0) (10)

The above equations align with the formulation given in [5]. However, in the proposed formulation, we assume that the
velocity ratio 𝜈 can vary between two bounds given by 𝜈 ∈ [𝜈min, 𝜈max]. Note that this variation can happen not only
because the interceptor speed varies but may also happen due to the varying speed of the target, or both.

III. Qualitative Analysis
This section presents a qualitative analysis to determine the conditions for a successful capture by an interceptor

against a non-maneuvering target. The engagement equations are nonlinear; hence, obtaining a closed-form analytical
solution is challenging. This analysis assumes that the interceptor’s speed is greater than that of the target during the
engagement. The roots of the Eqns (9) and (10) are 𝜃𝑅 and 𝜃 𝜃 , respectively. The following lemmas can be defined for a
constant 𝜈.
Lemma 1. For any given 𝜈𝜖 [𝜈min, 𝜈max], if 𝜈 > 1 and 𝑘𝜈 > 1 the roots of the equations 𝑉𝑅 (𝜃, 𝜈) = 0 and 𝑉𝜃 (𝜃, 𝜈) = 0
alternate along 𝜃 axis.
Lemma 2. For any given 𝜈𝜖 [𝜈min, 𝜈max], if 𝜈 > 1 and 𝑘𝜈 > 1,

𝑉𝑅 (𝜃 𝜃 )
𝑑𝑉𝜃

𝑑𝑡
(𝜃 𝜃 ) > 0 (11)

3

D
ow

nl
oa

de
d 

by
 I

nd
ia

n 
In

st
itu

te
 o

f 
Sc

ie
nc

e 
on

 J
ul

y 
25

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

19
88

 

https://arc.aiaa.org/action/showImage?doi=10.2514/6.2024-1988&iName=master.img-000.jpg&w=254&h=198


where 𝜃 𝜃 is the roots of 𝑉𝜃 (𝜃, 𝜈) = 0
These lemmas were proved in [5] for a fixed value of 𝜈. Since we assume the value of 𝜈 also to be fixed within the

given bound, the same lemmas still hold. However, since 𝜈 can have different values in this paper, we need a somewhat
more generalized analysis and modified results. Consider that the 𝜈 axis is normal to the plane of the paper with (𝑉𝜃 ,𝜃)
and (𝑉𝑅,𝜃) are two axes in the plane. The graph between 𝑉𝜃 or 𝑉𝑅, 𝜃, and 𝜈 can be represented by a manifold when
plotted. We will now show that if we select any plane parallel to (𝑉𝜃 , 𝜃) or (𝑉𝑅, 𝜃) plane we will get the curves for
a particular 𝜈𝜖 [𝜈min, 𝜈max]. If we project all the curves to (𝑉𝜃 , 𝜃) and (𝑉𝑅, 𝜃) plane for all 𝜈, the roots of 𝑉𝜃 and 𝑉𝑅

passes through some bands on the 𝜃 axis.
Fig. 2 shows the plots 𝑉𝜃 𝑣𝑠. 𝜃 and 𝑉𝑅 𝑣𝑠. 𝜃 for 𝜈𝜖 [𝜈min, 𝜈max]. The bands shown are the values of 𝜃 for which 𝑉𝜃

(or 𝑉𝑅) become zero for some value of 𝜃 for 𝜈𝜖 [𝜈min, 𝜈max]. The bands are numbered by superscripts 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2,
𝑖 + 3 and subscripts 𝜃, and 𝑅 where, 𝜃 and 𝑅 denote that these are the roots of 𝑉𝜃 and 𝑉𝑅, respectively. In addition, we
also denote the boundaries of these bands by 𝜈min and 𝜈max, implying that these boundaries correspond to the minimum
and maximum values of 𝜈. Note that, although there is a definite lower bound on 𝜈 (𝜈 > 1, given by Lemma 1 and
2), there is no fixed upper bound, implying that 𝜈max can be very large indeed. To represent this fact we also show a
boundary on the bands at 𝜈 = ∞. The boundaries on 𝜃 for these bands are represented by 𝜃 with superscripts 𝑖 − 1, 𝑖,
𝑖 + 1, 𝑖 + 2, 𝑖 + 3 which represent the band number and subscripts 𝜃, and 𝑅 where, 𝜃 and 𝑅 denote that these are the roots
of 𝑉𝜃 and 𝑉𝑅, respectively. In addition, the specified and 𝜈 = ∞ represent that the specified 𝜃, as shown, corresponds to
the 𝜈 for 𝜈min, 𝜈max, and 𝜈 = ∞, respectively.

Our analysis identified two distinct categories of bands of 𝜃, which are obtained when 𝜈 changes. The first category
exhibits an increasing trend in 𝜃 𝜃 or 𝜃𝑅 as 𝜈 increases from 𝜈min to 𝜈max, whereas the second category shows an opposite
behavior, with 𝜃 𝜃 or 𝜃𝑅 decreasing as 𝜈 increases from 𝜈min to 𝜈max. In Fig. 2, 𝜃 𝜃 is decreasing when 𝜈 increases in
𝜃𝑏𝑎𝑛𝑑 𝑖−1
𝜃

and 𝜃𝑏𝑎𝑛𝑑 𝑖
𝜃

and 𝜃 𝜃 is increasing when 𝜈 increases in 𝜃𝑏𝑎𝑛𝑑 𝑖+1
𝜃

and 𝜃𝑏𝑎𝑛𝑑 𝑖+2
𝜃

. Similar behaviour also can be
noticed for bands in 𝑉𝑅 vs. 𝜃 curves. However, we observe that the only variation in 𝑘 (where 𝑘 > 1 ) and 𝜙0 affects the
location of these bands. We will now present analytical results to substantiate some of the abovementioned observations.

The following analysis facilitates the identification of these bands. From Eqn. (10), 𝑉𝜃 = 0 yields

− sin 𝜃 − 𝜈 sin (𝑘𝜃 + 𝜙0) = 0 (12)

Hence
𝜃 = sin−1 [−𝜈 sin(𝑘𝜃 + 𝜙0)] (13)

sin−1 does not exist for |−𝜈 sin(𝑘𝜃 + 𝜙0) | > 1. Which gives

−1
𝜈

≤ sin(𝑘𝜃 𝜃 + 𝜙0) ≤
1
𝜈

(14)

The value of 𝜈 will vary for variable speed interceptors, but it must fall within a specific range defined by a minimum
value 𝜈min and a maximum value 𝜈max. It is important to identify the maximum possible 𝜈 and minimum possible 𝜈 for
an interceptor to find its capture conditions. To continue this analysis, we will assume that 𝜈𝑚𝑎𝑥 = ∞. Hence, from Eqn.
(14), we can write

sin(𝑘𝜃 𝜃∞ + 𝜙0) = 0 (15)

𝑘𝜃 𝜃∞ + 𝜙0 = 𝑛𝜋 (16)

where 𝜃 𝜃∞ represents the roots for 𝑉𝜃 when 𝜈 = ∞. Additionally, the variable 𝑛 takes integer values of 0,±1,±2, and so
on, indicating different band numbers. 𝜃 𝜃∞ for the 𝑛𝑡ℎ band is represented by 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃∞ , which is given by

𝜃𝑏𝑎𝑛𝑑 𝑛
𝜃∞ =

𝑛𝜋 − 𝜙0
𝑘

(17)

Similarly, from Eqn. (9)
cos 𝜃 = 𝜈 cos(𝑘𝜃 + 𝜙0) (18)

Eqn. (18) can be used to find 𝜃𝑏𝑎𝑛𝑑 𝑛
𝑅∞ , which represents 𝜃𝑅∞(the roots for 𝑉𝑅 when 𝜈 = ∞) for the 𝑛𝑡ℎ band, which is

given by

𝜃𝑏𝑎𝑛𝑑 𝑛
𝑅∞ =

(2𝑛−1) 𝜋
2 − 𝜙0

𝑘
(19)
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(a)

(b)

Fig. 2 Qualitative description: (a) 𝑉𝜃 (𝜃, 𝜈), (b) 𝑉𝑅 (𝜃, 𝜈).
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(a)

(b)

Fig. 3 Band diagram. (a) 𝑉𝜃 vs. 𝜃 and , (b) 𝑉𝑅 vs. 𝜃

Fig. 3a and Fig. 3b show the band diagrams for 𝑉𝜃 vs. 𝜃 and 𝑉𝑅 vs. 𝜃, respectively. In Fig. 3a, two categories of bands,
𝐵1
𝜃

and 𝐵2
𝜃
, are shown. Similarly, in Fig. 3b, two categories of bands 𝐵1

𝑅
and 𝐵2

𝑅
are shown. Those bands are defined as

follows.
𝐵1
𝜃 = [𝜃 𝜃 (𝜈min), 𝜃 𝜃 (𝜈max)] (20)

In 𝐵1
𝜃

band 𝜃 𝜃 increases as 𝜈 increases from 𝜈min to 𝜈max. If maximum value of 𝜈max is extended to ∞ then the band can
be defined as

𝐵1
𝜃∞ = [𝜃 𝜃 (𝜈min), 𝜃 𝜃 (∞)] (21)

Similarly
𝐵2
𝜃 = [𝜃 𝜃 (𝜈max), 𝜃 𝜃 (𝜈min)] (22)

In this band 𝜃 𝜃 decreases as 𝜈 increases from 𝜈min to 𝜈max. If maximum value of 𝜈max is extended to ∞, then the band
can be defined as

𝐵2
𝜃∞ = [𝜃 𝜃 (∞), 𝜃 𝜃 (𝜈min)] (23)

Similarly bands for 𝑉𝑅 vs. 𝜃 curves are defined as follows.

𝐵1
𝑅 = [𝜃𝑅 (𝜈min), 𝜃𝑅 (𝜈max)] (24)
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𝐵1
𝑅∞ = [𝜃𝑅 (𝜈min), 𝜃𝑅 (∞)] (25)

In these bands 𝜃𝑅 increases as 𝜈 increases from 𝜈min to 𝜈max. Similarly

𝐵2
𝑅 = [𝜃𝑅 (𝜈max), 𝜃𝑅 (𝜈min)] (26)

𝐵2
𝑅∞ = [𝜃𝑅 (∞), 𝜃𝑅 (𝜈min)] (27)

In these bands 𝜃𝑅 decreases as 𝜈 increases from 𝜈min to 𝜈max.
There is a lower bound on 𝜈 (𝜈 > 1, given by Lemmas 1 and 2). Substituting this lower bound 𝜈 = 1 in Eqn 14, we get

sin−1 (−1) ≤ (𝑘𝜃 + 𝜙0) + 𝑛𝜋 ≤ sin−1 (1) (28)

2𝑛𝜋 − 𝜋

2
≤ (𝑘𝜃 + 𝜙0) + 𝑛𝜋 ≤ 2𝑛𝜋 + 𝜋

2
(29)

Here, 𝜃 represents 𝜃 𝜃 (𝜈min = 1). Hence,

𝑛𝜋 − 𝜋
2 − 𝜙0

𝑘
≤ 𝜃 𝜃 (𝜈min) ≤

𝑛𝜋 + 𝜋
2 − 𝜙0

𝑘
(30)

Eqn. (30) represents the possible range for 𝜃 𝜃 for 𝜈min. Similarly, the range for 𝜃𝑅 for the lower bound on 𝜈 (𝜈 > 1,
given by Lemma 1 and 2) can be calculated from Eqn. (9) as follows.

−1
𝜈

≤ cos(𝑘𝜃 + 𝜙0) ≤
1
𝜈

(31)

−1
𝜈

≤ sin
( 𝜋
2
+ 𝑘𝜃 + 𝜙0

)
≤ 1

𝜈
(32)

At 𝜈 = 1
sin−1

(
−1
1

)
≤ 𝑛𝜋 + 𝜋

2
+ 𝑘𝜃 + 𝜙0 ≤ sin−1

(
1
1

)
(33)

2𝑛𝜋 − 𝜋

2
≤ 𝑛𝜋 + 𝜋

2
+ 𝑘𝜃 + 𝜙0 ≤ 2𝑛𝜋 + 𝜋

2
(34)

Here, 𝜃 represents 𝜃𝑅 (𝜈min = 1). Hence

(𝑛 − 1)𝜋 − 𝜙0
𝑘

≤ 𝜃𝑅 (𝜈𝑚𝑖𝑛) ≤
𝑛𝜋 − 𝜙0

𝑘
(35)

Eqn. (35) represents the possible range of 𝜃𝑅 for 𝜈min.
Lemma 3. If 𝜈 lies in [𝜈min, 𝜈max], then the roots of 𝑉𝜃 and 𝑉𝑅 for the 𝑛𝑡ℎ band lie 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃
= [𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃min
, 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃max
] and

𝜃𝑏𝑎𝑛𝑑 𝑛
𝑅

= [𝜃𝑏𝑎𝑛𝑑 𝑛
𝑅min

, 𝜃𝑏𝑎𝑛𝑑 𝑛
𝑅max

] respectively.
Proof. From Eqns. (12) and (18), we will get two different functions for 𝜈

𝜈𝜃 (𝜃) =
− sin 𝜃

sin(𝑘𝜃 + 𝜙0)
(36)

𝜈𝑅 (𝜃) =
cos 𝜃

cos(𝑘𝜃 + 𝜙0)
(37)

where, 𝜈𝜃 (𝜃) is a function of 𝜈 for 𝑉𝜃 = 0 and and it has singular points when 𝜃 =
𝑛𝜋−𝜙0

𝑘
. Similarly, 𝜈𝑅 (𝜃) is a function

for 𝜈 for 𝑉𝑅 = 0 and it has singularities when 𝜃 =
(2𝑛−1) 𝜋

2 −𝜙0
𝑘

. These functions are continuous for all 𝜃 except on the
singular points. The Intermediate Value Theorem [42] states that if a function 𝑓 (𝑥) is continuous on a closed interval
[𝑎, 𝑏], and if 𝑦0 is any number between 𝑓 (𝑎) and 𝑓 (𝑏), then there exists at least one value 𝑐 in the interval [𝑎, 𝑏] such
that 𝑓 (𝑐) = 𝑦0. In other words, if a function is continuous on an interval, it takes on all intermediate values between its
endpoint values. By the intermediate value theorem, we know that for any value of 𝜈 between 𝜈𝑚𝑖𝑛 =

− sin 𝜃𝜃 (𝜈min )
sin(𝑘𝜃𝜃 (𝜈min )+𝜙0 )

and 𝜈𝑚𝑎𝑥 =
− sin 𝜃𝜃 (𝜈max )

sin(𝑘𝜃𝜃 (𝜈max )+𝜙0 ) there exists a corresponding value of 𝜃 𝜃 between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 . This is because the
function 𝜈𝜃 is continuous and takes on all values between 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 as 𝜃 varies between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 . Therefore,
for any value of 𝜈 in the range of the function, the corresponding value of 𝜃 𝜃 lies between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 .
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Lemma 4. A variable speed interceptor pursuing a non-maneuvering target and following PPN guidance law with 𝜈 > 1
and 𝑘𝜈 > 1, then the bands 𝐵1

𝜃
, 𝐵2

𝜃
, 𝐵1

𝑅
, and 𝐵2

𝑅
will not overlap each other.

Proof. There are three possible categories of overlapping.
Case A: Overlapping between bands in 𝑉𝜃 vs. 𝜃.
Case B: Overlapping between bands in 𝑉𝑅 vs. 𝜃 .
Case C: Overlapping between bands of 𝑉𝜃 vs. 𝜃 with bands of 𝑉𝑅 vs. 𝜃 .
This section discusses all the cases one by one.
Case A: Overlapping between bands in 𝑉𝜃 vs. 𝜃.
Fig. 3a illustrates four combinations of adjacent bands on the 𝑉𝜃 vs. 𝜃 curve: two adjacent 𝐵1

𝜃
bands, two adjacent

𝐵2
𝜃

bands, 𝐵1
𝜃

followed by 𝐵2
𝜃

in the same order, and 𝐵2
𝜃

followed by 𝐵1
𝜃
. Eqn. (30) gives the 𝜃 𝜃 corresponds to the

lowest 𝜈 (here 𝜈 = 1). But it has two boundary values, 𝑛𝜋− 𝜋
2 −𝜙0
𝑘

and 𝑛𝜋+ 𝜋
2 −𝜙0
𝑘

. Selection of boundary value 𝜃 𝜃 (𝜈min)
depends on the category of the band. In 𝐵1

𝜃
band, 𝜃 𝜃 increases as 𝜈 increases from 𝜈min to 𝜈∞. Since 𝜃 𝜃 (𝜈 = ∞) is

already calculated in Eqn. (17) as 𝑛𝜋−𝜙0
𝑘

, 𝜈min should be lesser than 𝑛𝜋−𝜙0
𝑘

. Hence, possible value for 𝜈min in 𝐵1
𝜃

from
Eqn. (30) is 𝑛𝜋− 𝜋

2 −𝜙0
𝑘

. Similarly ( 𝑛𝜋+
𝜋
2 −𝜙0
𝑘

) can be used as 𝜃 𝜃 (𝜈min) for band 𝐵2
𝜃
. These limiting values are also used

to discuss the conditions of non-overlapping between two adjacent bands in the 𝑉𝜃 vs. 𝜃 curve.
A1. Condition of non-overlap between two adjacent 𝐵1

𝜃
bands.

Two adjacent 𝐵1
𝜃

bands given in Fig. 3a are Band 𝑖 + 1 and Band 𝑖 + 2. Let us consider 𝑖 + 1 is the 𝑛𝑡ℎ and 𝑖 + 2 is 𝑛 + 1𝑡ℎ
band. The condition for non-overlap between these bands is obtained from Fig. 3a given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝜃 (𝜈min ) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃 (𝜈=∞) ≥ 0 (38)

Substituting from Eqns. (17) and (30),

(𝑛 + 1)𝜋 − 𝜋
2 − 𝜙0

𝑘
− 𝑛𝜋 − 𝜙0

𝑘
=

𝜋

2𝑘
(39)

Hence, inequality in Eqn (38) is a valid inequality from Eqn. (39) and the gap between two adjacent 𝐵1
𝜃

bands is
calculated as 𝜋

2𝑘 . Hence two adjacent 𝐵1
𝜃

bands will not overlap.
A2. Condition of non-overlap between two adjacent 𝐵2

𝜃
bands.

Two adjacent 𝐵2
𝜃

bands given in Fig. 3a are Band 𝑖 − 1 and Band 𝑖. Let us consider 𝑖 − 1 is the 𝑛𝑡ℎ and 𝑖 is 𝑛 + 1𝑡ℎ band.
The condition of non-overlap between these bands is obtained from Fig. 3a given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝜃 (𝜈=∞) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃 (𝜈min ) ≥ 0 (40)

Substituting from Eqns. (17) and 30,

(𝑛 + 1)𝜋 − 𝜙0
𝑘

−
𝑛𝜋 + 𝜋

2 − 𝜙0

𝑘
=

𝜋

2𝑘
(41)

Hence, inequality in Eqn. (40) is a valid inequality from Eqn. (41) and the gap between two adjacent 𝐵2
𝜃

bands is
calculated as 𝜋

2𝑘 . Hence, two adjacent 𝐵2
𝜃

bands will not overlap.
A3. Condition of non-overlap between 𝐵1

𝜃
followed by 𝐵2

𝜃
.

Two bands which obey the condition 𝐵1
𝜃

followed 𝐵2
𝜃

given in Fig. 3a are Band 𝑖 + 2 and Band 𝑖 + 3. Let us consider 𝑖 + 2
is the 𝑛𝑡ℎ and 𝑖 + 3 is 𝑛 + 1𝑡ℎ band. The condition of non-overlap between these bands is obtained from Fig. 3a given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝜃 (𝜈=∞) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃 (𝜈=∞) ≥ 0 (42)

Substituting from Eqn. (17),
(𝑛 + 1)𝜋 − 𝜙0

𝑘
− 𝑛𝜋 − 𝜙0

𝑘
=

𝜋

𝑘
(43)

Hence, inequality in Eqn (42) is a valid inequality from Eqn. (43) and the gap between these bands is calculated as 𝜋
𝑘

.
Hence, these bands will not overlap.
A4. Condition of non-overlap between 𝐵2

𝜃
followed by 𝐵1

𝜃
.

Two bands which obey the condition 𝐵2
𝜃

followed 𝐵1
𝜃

given in Fig. 3a are Band 𝑖 and Band 𝑖 + 1. Let us consider 𝑖 is the
𝑛𝑡ℎ and 𝑖 + 1 is 𝑛 + 1𝑡ℎ band. The condition of non-overlap between these bands is obtained from Fig. 3a given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝜃 (𝜈min ) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃 (𝜈min )− ≥ 0 (44)
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Substituting from Eqn. (30),
(𝑛 + 1)𝜋 − 𝜋

2 − 𝜙0

𝑘
−
𝑛𝜋 + 𝜋

2 − 𝜙0

𝑘
= 0 (45)

Eqn. (45) indicates that the boundaries of bands in this condition may touch each other at 𝜈 = 1. But Lemma 1 says
𝜈 > 1 and 𝐵1

𝜃
and 𝐵2

𝜃
show opposite variations in 𝜃 𝜃 when 𝜈 increases. Hence, these bands will never overlap when

𝜈 > 1
Case B. Overlapping between bands 𝑉𝑅 vs. 𝜃 .
Fig. 3b illustrates four combinations of adjacent bands on the 𝑉𝑅 vs. 𝜃 curve:
B1: Two adjacent 𝐵1

𝑅
bands.

B2: Two adjacent 𝐵2
𝑅

bands.
B3: 𝐵1

𝑅
followed by 𝐵2

𝑅
.

B4: 𝐵2
𝑅

followed by 𝐵1
𝑅

.
Eqn. (35) gives two boundary values for 𝜃𝑅 (𝜈min), (𝑛−1) 𝜋−𝜙0

𝑘
, and 𝑛𝜋−𝜙0

𝑘
. Here, (𝑛−1) 𝜋−𝜙0

𝑘
is used as 𝜃𝑅 (𝜈min) for 𝐵1

𝑅

because 𝜃𝑅 increases as 𝜈 increases from 𝜈min to 𝜈∞. Since 𝜃𝑅 (𝜈 = ∞) is already calculated in Eqn. (19) as
2𝑛−1

2 𝜋−𝜙0
𝑘

,

𝜈min should be lesser than
2𝑛−1

2 𝜋−𝜙0
𝑘

for 𝐵1
𝑅

(See Fig. 3b) Hence, possible value for 𝜈min in 𝐵1
𝑅

from Eqn. (35) is
(𝑛−1) 𝜋−𝜙0

𝑘
. Similarly ( 𝑛𝜋−𝜙0

𝑘
) can be used as 𝜃𝑅 (𝜈min) for band 𝐵2

𝑅
.

B1. Condition of non-overlap between two adjacent 𝐵1
𝑅

bands.
Two adjacent 𝐵1

𝑅
bands given in Fig. 3b are Band 𝑖 and Band 𝑖 + 1. Let us consider 𝑖 is the 𝑛𝑡ℎ and 𝑖 + 1 is 𝑛 + 1𝑡ℎ band.

The condition of non-overlap between these bands is obtained from Fig. 3b given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝑅 (𝜈min ) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅 (𝜈=∞) ≥ 0 (46)

Substituting from Eqns (19) and (35),

((𝑛 + 1) − 1)𝜋 − 𝜙0
𝑘

−
(2𝑛−1)

2 𝜋 − 𝜙0

𝑘
=

𝜋

2𝑘
(47)

Hence, inequality in Eqn (46) is a valid inequality from Eqn. (47) and the gap between two adjacent 𝐵1
𝑅

bands is
calculated as 𝜋

2𝑘 . Hence, two adjacent 𝐵1
𝑅

bands will not overlap.
B2. Condition of non-overlap between two adjacent 𝐵2

𝑅
bands.

Two adjacent 𝐵2
𝑅

bands given in Fig. 3b are Band 𝑖 + 2 and Band 𝑖 + 3. Let us consider 𝑖 + 2 is the 𝑛𝑡ℎ and 𝑖 + 3 is
𝑛 + 1𝑡ℎ band. The condition of non-overlap between these bands is obtained from Fig. 3b given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝑅 (𝜈=∞) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅 (𝜈min ) ≥ 0 (48)

Substituting from Eqns. (19) and (35),

2(𝑛+1)−1
2 𝜋 − 𝜙0

𝑘
− 𝑛𝜋 − 𝜙0

𝑘
=

𝜋

2𝑘
(49)

Hence, inequality in Eqn. (48) is a valid inequality from Eqn. (49) and the gap between two adjacent 𝐵2
𝑅

bands is
calculated as 𝜋

2𝑘 . Hence, two adjacent 𝐵2
𝑅

bands will not overlap.
B3. Condition of non-overlap between 𝐵1

𝑅
followed by 𝐵2

𝑅
.

Two bands which obey the condition 𝐵1
𝑅

followed 𝐵2
𝑅

given in Fig. 3b are Band 𝑖 + 1 and Band 𝑖 + 2. Let us consider 𝑖 + 1
is the 𝑛𝑡ℎ and 𝑖 + 2 is 𝑛 + 1𝑡ℎ band. The condition of non-overlap between these bands is obtained from Fig. 3b given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝑅 (𝜈=∞) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅 (𝜈=∞) ≥ 0 (50)

Substituting from Eqn (19),
2(𝑛+1)−1

2 𝜋 − 𝜙0

𝑘
−

2𝑛−1
2 𝜋 − 𝜙0

𝑘
=

𝜋

𝑘
(51)

Hence, inequality in Eqn (50) is a valid inequality from Eqn. (51) and the gap between these bands is calculated as 𝜋
𝑘

.
Hence, these bands will not overlap.
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B4. Condition of non-overlap between 𝐵2
𝑅

followed by 𝐵1
𝑅

.
Two bands which obey the condition 𝐵2

𝑅
followed 𝐵1

𝑅
given in Fig. 3b are Band 𝑖 + 3 and Band 𝑖 (Band 𝑖 will repeat

after Band 𝑖 + 3). Let us consider 𝑖 + 3 is the 𝑛𝑡ℎ and 𝑖 is 𝑛 + 1𝑡ℎ band. The condition of non-overlap between these
bands is obtained from Fig. 3b given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝑅 (𝜈min ) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅 (𝜈min ) ≥ 0 (52)

Substituting from Eqn. (35),
((𝑛 + 1) − 1)𝜋 − 𝜙0

𝑘
− 𝑛𝜋 − 𝜙0

𝑘
= 0 (53)

Eqn. (53) indicates that the boundaries of bands in this condition may touch each other at 𝜈 = 1. But Lemma 1 says
𝜈 > 1 and 𝐵1

𝑅
and 𝐵2

𝑅
show opposite variations for 𝜃𝑅 when 𝜈 increases. Hence, these bands will never intersect when

𝜈 > 1
Case C: Overlapping between bands of 𝑉𝜃 vs. 𝜃 with bands of 𝑉𝑅 vs. 𝜃 .
This section discusses all the possible cross overlapping between the bands of 𝑉𝜃 vs. 𝜃 with bands of 𝑉𝑅 vs. 𝜃. Fig. 3
will give all possible combinations of adjacent bands.
C1. Condition of non-overlap between 𝐵1

𝑅
followed by 𝐵2

𝜃
.

Two bands that obey the condition 𝐵1
𝑅

followed by 𝐵2
𝜃

given in Fig. 3 are Band 𝑖 for 𝐵1
𝑅

and 𝐵2
𝜃
. Let us consider 𝑖 is the

𝑛𝑡ℎ Band. The condition of non-overlap between these bands is obtained from Fig. 3 given as

𝜃𝑏𝑎𝑛𝑑 𝑛
𝜃 (𝜈=∞) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅 (𝜈=∞) ≥ 0 (54)

Substituting from Eqns (17) and (19),
𝑛𝜋 − 𝜙0

𝑘
−

2𝑛−1
2 𝜋 − 𝜙0

𝑘
=

𝜋

2𝑘
(55)

Hence, inequality in Eqn (54) is a valid inequality from Eqn. (55) and the gap between these bands is calculated as 𝜋
2𝑘 .

Hence, these bands will not overlap.
C2. Condition of non-overlap between 𝐵1

𝜃
followed by 𝐵2

𝑅
.

Two bands which obey the condition 𝐵1
𝜃

followed 𝐵2
𝑅

given in Fig. 3 are Band 𝑖 + 1 for 𝐵1
𝜃

and Band 𝑖 + 2 for 𝐵2
𝑅

(or
Band 𝑖 + 2 for for 𝐵1

𝜃
and Band 𝑖 + 3 for 𝐵2

𝑅
). Let us consider 𝐵1

𝜃
is the 𝑛𝑡ℎ and 𝐵2

𝑅
is (𝑛 + 1)𝑡ℎ band. The condition of

non-overlap between these bands is obtained from Fig. 3 given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝑅 (𝜈=∞) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃 (𝜈=∞) ≥ 0 (56)

Substituting from Eqns (17) and (19),

2(𝑛+1)−1
2 𝜋 − 𝜙0

𝑘
− 𝑛𝜋 − 𝜙0

𝑘
=

𝜋

2𝑘
(57)

Hence, inequality in Eqn (56) is a valid inequality from Eqn. (57) and the gap between these bands is calculated as 𝜋
2𝑘 .

Hence, these bands will not overlap.
C3. Condition of non-overlap between 𝐵1

𝑅
followed by 𝐵1

𝜃
.

Two bands which obey the condition 𝐵1
𝑅

followed 𝐵1
𝜃

is given in Fig. 3 are Band 𝑖 + 1 for 𝐵1
𝑅

and Band 𝑖 + 1 for 𝐵1
𝜃
. Let

us consider 𝐵1
𝜃

and 𝐵1
𝑅

are 𝑛𝑡ℎ bands. The condition of non-overlap between these bands is obtained from Fig. 3 given
as

𝜃𝑏𝑎𝑛𝑑 𝑛
𝜃 (𝜈min ) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅 (𝜈=∞) ≥ 0 (58)

Substituting from Eqns (19) and (30),
𝑛𝜋 − 𝜋

2 − 𝜙0

𝑘
−

2𝑛−1
2 𝜋 − 𝜙0

𝑘
= 0 (59)

Eqn. (59) indicates that the boundaries of bands in this condition may touch each other at 𝜈 = ∞ for 𝐵1
𝜃

and 𝜈 = 1 for
𝐵1
𝑅

. As 𝜈 > 1 and 𝜈 < ∞ (since 𝜈 can be arbitrarily large value) these two bands never intersect.
C4. Condition of non-overlap between 𝐵2

𝑅
followed by 𝐵2

𝜃
.

Two bands which obey the condition 𝐵1
𝑅

followed 𝐵1
𝜃

given in Fig. 3 are Band 𝑖 + 3 for 𝐵2
𝑅

and Band 𝑖 + 3 for 𝐵2
𝜃
. Let

us consider 𝐵2
𝜃

and 𝐵2
𝑅

are the 𝑛𝑡ℎ bands. The condition of non-overlap between these bands is obtained from Fig. 3
and is given as

𝜃𝑏𝑎𝑛𝑑 𝑛
𝜃 (𝜈=∞) − 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅 (𝜈min ) ≥ 0 (60)
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Substituting from Eqns (17) and (35),
𝑛𝜋 − 𝜙0

𝑘
− 𝑛𝜋 − 𝜙0

𝑘
= 0 (61)

Eqn. (61) indicates that the boundaries of bands in this condition may touch each other at 𝜈 = ∞ for 𝐵2
𝜃

and 𝜈 = 1 for
𝐵2
𝑅

. In practice, if 𝜈 > 1 and 𝜈 < ∞ these two bands never intersect.
C5 and C6. Conditions of non-overlap between 𝐵2

𝜃
followed by 𝐵1

𝑅
and 𝐵2

𝑅
followed by 𝐵1

𝜃
.

Two bands which obey the condition 𝐵2
𝜃

followed 𝐵1
𝑅

is given in Fig. 3. Band 𝑖 + 1 for 𝐵1
𝑅

and Band 𝑖 for 𝐵2
𝜃

(and Band
𝑖 for 𝐵1

𝑅
and Band 𝑖 − 1 for 𝐵2

𝜃
). Two bands which obey the condition 𝐵2

𝑅
followed 𝐵1

𝜃
is given in Fig. 3 are Band 𝑖 + 2

for 𝐵2
𝑅

and Band 𝑖 + 2 for 𝐵1
𝜃
. The conditions are given as

𝜃
𝑏𝑎𝑛𝑑 (𝑛+1)
𝑅𝜈𝑚𝑖𝑛

− 𝜃𝑏𝑎𝑛𝑑 𝑛
𝜃𝜈𝑚𝑖𝑛 ≥ 0 (62)

𝜃𝑏𝑎𝑛𝑑 𝑛
𝜃𝜈𝑚𝑖𝑛 − 𝜃

𝑏𝑎𝑛𝑑 (𝑛+1)
𝑅𝜈𝑚𝑖𝑛

≥ 0 (63)

These two conditions are proved using a different approach. If there is an overlap between 𝐵2
𝜃

and 𝐵1
𝑅

(or 𝐵2
𝑅

and 𝐵1
𝜃
),

there will be a 𝜈 at which 𝜃 𝜃=𝜃𝑅. This 𝜈 can be found out by equating Eqns. (36) and (37)

cos 𝜃
cos(𝑘𝜃 + 𝜙0)

=
− sin 𝜃

sin(𝑘𝜃 + 𝜙0)
(64)

cos 𝜃 sin(𝑘𝜃 + 𝜙0) + sin 𝜃 cos(𝑘𝜃 + 𝜙0) = 0 (65)

sin((𝑘 + 1)𝜃 + 𝜙0) = 0 (66)

(𝑘 + 1)𝜃 + 𝜙0 = 𝑛𝜋 (67)

𝑘𝜃 + 𝜙0 = 𝑛𝜋 − 𝜃 (68)

Substituting Eqn. (68) in Eqns. (36) and (37)

𝜈𝑅 =
cos 𝜃

cos(𝑛𝜋 − 𝜃) =
cos 𝜃

cos 𝑛𝜋 cos 𝜃
=

1
cos 𝑛𝜋

= ±1 (69)

𝜈𝜃 =
− sin 𝜃

sin(𝑛𝜋 − 𝜃) =
sin 𝜃

cos 𝑛𝜋 sin 𝜃
=

1
cos 𝑛𝜋

= ±1 (70)

Eqns. 69 and 70 prove that 𝜃 𝜃 = 𝜃𝑅 at 𝜈 = 1 (−1 is neglected because speed ratio is always positive). But Lemma 1 say
𝜈 > 1 and when 𝜈 increases from 𝜈𝑚𝑖𝑛 to 𝜈𝑚𝑎𝑥 , 𝜃 𝜃 and 𝜃𝑅 move in opposite directions (one will increase and the other
will decrease) from an angle 𝜃 𝜃 = 𝜃𝑅 at 𝜈 = 1. For example, consider the condition 𝐵2

𝜃
followed by 𝐵1

𝑅
, which is the

adjacency between and Band 𝑖 for 𝐵1
𝑅

in 𝑉𝑅 𝑣𝑠 𝜃 and Band 𝑖 − 1 for 𝐵2
𝜃
𝑉𝜃 𝑣𝑠 𝜃. Since band 𝑖 − 1 of 𝐵2

𝜃
which shows

a property of decreasing 𝜃 𝜃 when 𝜈 increases and opposite behaviour for 𝐵1
𝑅

in 𝑉𝑅 𝑣𝑠 𝜃. So we can say that when 𝜈

increases from 𝜈𝑚𝑖𝑛 to 𝜈𝑚𝑎𝑥 , 𝜃 𝜃 and 𝜃𝑅 move in opposite directions from a point at which 𝜈 = 1 . Consequently, the
occurrence of any overlap is prevented, ensuring the fulfillment of inequality (62). Similar explanation can be also given
for inequality (63). Hence all the conditions of non-overlap are proved.

Lemma 1 shows the roots of 𝑉𝜃 and 𝑉𝑅 alternate along the 𝜃 axis for a constant 𝜈. But for variable speed interceptor,
we need to consider the entire band of 𝜃 where the roots of 𝑉𝜃 and 𝑉𝑅 lie for different 𝜈.
Lemma 5. Let 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃
and 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅
be the bands of roots of the 𝑉𝜃 (𝜃, 𝜈) and 𝑉𝑅 (𝜃, 𝜈) curves for 𝜈𝜖 [𝜈min, 𝜈max], along

the 𝜃 axis, where 𝑛 = 0,±1,±2,±3..., represents the band numbers. If 𝜈 > 1 and 𝑘𝜈 > 1 for all 𝜈𝜖 [𝜈min, 𝜈max], then the
bands of roots of 𝑉𝜃 (𝜃, 𝜈) and 𝑉𝑅 (𝜃, 𝜈) alternate along the 𝜃 axis .
Proof Consider Fig. 4, 𝜃𝑏𝑎𝑛𝑑 1

𝜃
,𝜃𝑏𝑎𝑛𝑑 2

𝜃
, 𝜃𝑏𝑎𝑛𝑑 3

𝜃
... are the bands of roots of 𝑉𝜃 and 𝜃𝑏𝑎𝑛𝑑 1

𝑅
, 𝜃𝑏𝑎𝑛𝑑 2

𝑅
, 𝜃𝑏𝑎𝑛𝑑 3

𝑅
... are the

bands of roots of 𝑉𝑅. Lemma 4 explores the characteristics of the bands and shows that there is no overlap between any
of them. According to Condition A3 (See Eqn. (43)), the gap between two 𝜃 𝜃 bands is 𝜋

𝑘
. Similarly, Condition B3 (See

(Eqn. 51)) states that the gap between two 𝜃𝑅 bands is also 𝜋
𝑘

. However, the separation between 𝜃 𝜃 and 𝜃𝑅 bands, as
indicated by Condition C1 (See Eqn. (55)), is 𝜋

2𝑘 . These properties remain valid only if the bands of 𝜃 𝜃 and 𝜃𝑅 alternate
in sequence.
Lemma 6. Let 𝜃𝑏𝑎𝑛𝑑 𝑛

𝜃
and 𝜃𝑏𝑎𝑛𝑑 𝑛

𝑅
be the bands of roots of the 𝑉𝜃 (𝜃, 𝜈) and 𝑉𝑅 (𝜃, 𝜈) curves for 𝜈𝜖 [𝜈min, 𝜈max], along

the 𝜃 axis, If 𝜈 > 1 and 𝑘𝜈 > 1 for all 𝜈𝜖 [𝜈min, 𝜈max], then all the roots 𝜃 𝜃 in that band satisfy the condition

𝑉𝑅 (𝜃 𝜃1)
𝑑𝑉𝜃

𝑑𝜃
(𝜃 𝜃1) > 0 (71)
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Fig. 4 Band Diagram

Here, 𝜃 𝜃1 represents any root within the 𝜃 𝜃 band for 𝜈 = 𝜈1 where 𝜈1𝜖 [𝜈min, 𝜈max].
Proof This lemma can be proved by considering 𝑉𝜃 for 𝜈1 and 𝑉𝑅 for 𝜈2 where 𝜈2𝜖 [𝜈min, 𝜈max].

𝑉𝜃 (𝜃 𝜃1) = − sin 𝜃 𝜃1 − 𝜈1 sin (𝑘𝜃 𝜃1 + 𝜙0) (72)

𝑉𝑅 (𝜃 𝜃1) = cos 𝜃 𝜃1 − 𝜈2 cos (𝑘𝜃 𝜃1 + 𝜙0) (73)

Differentiating Eqn. (72)
𝑑𝑉𝜃 (𝜃 𝜃1)

𝑑𝜃
= − cos 𝜃 𝜃1 − 𝑘𝜈1 cos (𝑘𝜃 𝜃1 + 𝜙0) (74)

Hence,

𝑉𝑅 (𝜃 𝜃1)
𝑑𝑉𝜃 (𝜃 𝜃1)

𝑑𝜃
= 𝑘𝜈1𝜈2 cos2 (𝑘𝜃 𝜃1 + 𝜙0) − 𝑘𝑣1 cos 𝜃 𝜃1 cos(𝑘𝜃 𝜃1 + 𝜙0) + 𝑣2 cos 𝜃 𝜃1 cos(𝑘𝜃 𝜃1 + 𝜙0) − cos2 𝜃 𝜃1 (75)

Equating Eqn. (72) to zero, we can formulate

𝑘𝜈1𝜈2 cos2 (𝑘𝜃 𝜃1 + 𝜙0) = 𝑘𝜈1𝜈2 + 𝑘𝜈2 sin 𝜃 𝜃1 sin(𝑘𝜃 𝜃1 + 𝜙0) (76)

and
cos2 (𝜃 𝜃1) = 1 + 𝜈1 sin 𝜃 𝜃1 sin(𝑘𝜃 𝜃1 + 𝜙0) (77)

Substituting Eqns. (76) and (77) in Eqn. (75)

𝑉𝑅 (𝜃 𝜃1)
𝑑𝑉𝜃 (𝜃 𝜃1)

𝑑𝜃
= 𝑘𝜈1𝜈2 + 𝑘𝜈2 sin 𝜃 𝜃1 sin(𝑘𝜃 𝜃1 + 𝜙0) − 𝑘𝑣1 cos 𝜃 𝜃1 cos(𝑘𝜃 𝜃1 + 𝜙0) + 𝑣2 cos 𝜃 𝜃1 cos(𝑘𝜃 𝜃1 + 𝜙0)

− 1 − 𝜈1 sin(𝜃 𝜃1) sin(𝑘𝜃 𝜃1 + 𝜙0) (78)

𝑉𝑅 (𝜃 𝜃1)
𝑑𝑉𝜃 (𝜃 𝜃1)

𝑑𝜃
= 𝑘𝜈1𝜈2 − 1 + sin(𝑘𝜃 𝜃1 + 𝜙0) sin 𝜃 𝜃1 (𝑘𝜈2 − 𝜈1) − cos(𝑘𝜃 𝜃1 + 𝜙0) cos 𝜃 𝜃1 (𝑘𝑣1 − 𝜈2) (79)

𝑉𝑅 (𝜃 𝜃1)
𝑑𝑉𝜃 (𝜃 𝜃1)

𝑑𝜃
= 𝑘𝜈1𝜈2 − 1 + (𝑘𝜈2 − 𝜈1)

2
(cos((𝑘 + 1)𝜃 𝜃1 + 𝜙0) − cos((𝑘 − 1)𝜃 𝜃1 + 𝜙0)

− (𝑘𝑣1 − 𝜈2)
2

(cos((𝑘 + 1)𝜃 𝜃1 + 𝜙0) + cos((𝑘 − 1)𝜃 𝜃1 + 𝜙0) (80)

𝑉𝑅 (𝜃 𝜃 )
𝑑𝑉𝜃 (𝜃 𝜃 )

𝑑𝜃
= 𝑘𝜈1𝜈2 − 1 − (𝑘 + 1) 𝜈1 − 𝜈2

2
cos((𝑘 + 1)𝜃 𝜃1 + 𝜙0) − (𝑘 − 1) 𝜈+𝜈2

2
cos((𝑘 − 1)𝜃 𝜃1 + 𝜙0) (81)

The satisfaction of𝑉𝑅 (𝜃 𝜃 ) 𝑑𝑉𝜃 (𝜃𝜃 )
𝑑𝜃

> 0 of Eqn. (81) depends on the values of cos((𝑘+1)𝜃 𝜃1+𝜙0) and cos((𝑘−1)𝜃 𝜃1+𝜙0).
This leads to the existence of four possible conditions, which are described below.
Case 1. cos((𝑘 + 1)𝜃 𝜃1 + 𝜙0) = 1 and cos((𝑘 − 1)𝜃 𝜃1 + 𝜙0) = 1
Hence,

(𝑘𝜈1𝜈2 − 1) − (𝑘 + 1) 𝜈1 − 𝜈2
2

− (𝑘 − 1) 𝜈1 + 𝜈2
2

> 0 (82)
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(𝜈2 − 1) (𝑘𝜈1 + 1) > 0 (83)

which is satisfied when 𝜈2 > 1
Case 2. cos((𝑘 + 1)𝜃 𝜃1 + 𝜙0) = 1 and cos((𝑘 − 1)𝜃 𝜃1 + 𝜙0) = −1
Hence,

(𝑘𝜈1𝜈2 − 1) − (𝑘 + 1) 𝜈1 − 𝜈2
2

+ (𝑘 − 1) 𝜈1 + 𝜈2
2

> 0 (84)

(𝜈1 + 1) (𝑘𝜈2 − 1) > 0 (85)

which is satisfied when 𝑘𝜈2 > 1
Case 3. cos((𝑘 + 1)𝜃 𝜃1 + 𝜙0) = −1 and cos((𝑘 − 1)𝜃 𝜃1 + 𝜙0) = 1
Hence,

(𝑘𝜈1𝜈2 − 1) + (𝑘 + 1) 𝜈1 − 𝜈2
2

− (𝑘 − 1) 𝜈1 + 𝜈2
2

> 0 (86)

(𝜈1 − 1) (𝑘𝜈2 − 1) > 0 (87)

which is satisfied when 𝜈1 > 1 and 𝑘𝜈2 > 1.
Case 4. cos((𝑘 + 1)𝜃 𝜃1 + 𝜙0) = −1 and cos((𝑘 − 1)𝜃 𝜃1 + 𝜙0) = −1
Hence,

(𝑘𝜈1𝜈2 − 1) + (𝑘 + 1) 𝜈1 − 𝜈2
2

+ (𝑘 − 1) 𝜈1 + 𝜈2
2

> 0 (88)

(𝜈2 + 1) (𝑘𝜈1 − 1) > 0 (89)

which is satisfied when 𝑘𝜈1 > 1
In summary, if 𝜈1 > 1,𝜈2 > 1, 𝑘𝜈1 > 1, and 𝑘𝜈2 > 1, then 𝑉𝑅 (𝜃 𝜃1) 𝑑𝑉𝜃 (𝜃𝜃1 )

𝑑𝜃
> 0

IV. Capture Conditions
This section will determine the conditions under which the interceptor can successfully intercept the target.

This analysis considers a varying speed interceptor that employs the PPN guidance law in an attempt to capture a
non-maneuvering target. Consider the Fig. 5, It is possible to identify the following bands. which do not overlap, as
shown in the analysis in the previous section.

𝐵1+
𝜃 = {𝜃 : 𝜃𝜖𝐵1

𝜃 , 𝑉𝑅 (𝜃, 𝜈) > 0}
𝐵1−
𝜃 = {𝜃 : 𝜃𝜖𝐵1

𝜃 , 𝑉𝑅 (𝜃, 𝜈) < 0}
𝐵2+
𝜃 = {𝜃 : 𝜃𝜖𝐵2

𝜃 , 𝑉𝑅 (𝜃, 𝜈) > 0}
𝐵2−
𝜃 = {𝜃 : 𝜃𝜖𝐵2

𝜃 , 𝑉𝑅 (𝜃, 𝜈) < 0}
𝐵1+
𝑅 = {𝜃 : 𝜃𝜖𝐵1

𝑅, 𝑉𝜃 (𝜃, 𝜈) > 0}
𝐵1−
𝑅 = {𝜃 : 𝜃𝜖𝐵1

𝑅, 𝑉𝜃 (𝜃, 𝜈) < 0}
𝐵2+
𝑅 = {𝜃 : 𝜃𝜖𝐵2

𝑅, 𝑉𝜃 (𝜃, 𝜈) > 0}
𝐵2−
𝑅 = {𝜃 : 𝜃𝜖𝐵2

𝑅, 𝑉𝜃 (𝜃, 𝜈) < 0} (90)

𝜎+
𝜃 min = {𝜃 : 𝑉𝜃 (𝜃, 𝜈) > 0, 𝜈 = 𝜈min}

𝜎+
𝜃 max = {𝜃 : 𝑉𝜃 (𝜃, 𝜈) > 0, 𝜈 = 𝜈max}
𝜎−
𝜃 min = {𝜃 : 𝑉𝜃 (𝜃, 𝜈) < 0, 𝜈 = 𝜈min}

𝜎−
𝜃 max = {𝜃 : 𝑉𝜃 (𝜃, 𝜈) < 0, 𝜈 = 𝜈max}

𝜎+
𝑅 min = {𝜃 : 𝑉𝑅 (𝜃, 𝜈) > 0, 𝜈 = 𝜈min}

𝜎+
𝑅 max = {𝜃 : 𝑉𝑅 (𝜃, 𝜈) > 0, 𝜈 = 𝜈max}
𝜎−
𝑅 min = {𝜃 : 𝑉𝑅 (𝜃, 𝜈) < 0, 𝜈 = 𝜈min}

𝜎−
𝑅 max = {𝜃 : 𝑉𝑅 (𝜃, 𝜈) < 0, 𝜈 = 𝜈max} (91)

The conditions for interception are well-defined in the literature. If 𝑉𝜃 = 0 and 𝑉𝑅 < 0, the interceptor is on a
collision course. Conversely, if 𝑉𝜃 = 0 and 𝑉𝑅 > 0, the interceptor is on an inverse collision course. In our analysis, 𝐵1−

𝜃
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Fig. 5 Band Diagram. (a) 𝑉𝜃 vs. 𝜃 and , (b) 𝑉𝑅 vs. 𝜃

and 𝐵2−
𝜃

are the bands where the roots 𝜃 𝜃 inside these bands are stable fixed points (equilibrium points). The roots in
𝐵1−
𝜃

and 𝐵2−
𝜃

for a given 𝜈 ∈ [𝜈min, 𝜈max] represent the collision course because roots in these regions have 𝑉𝜃 = 0 and
𝑉𝑅 < 0 (see Fig. 5). However, since 𝜈 can vary between the given limits as the interceptor approaches the target, the
actual root at which the interception occurs may vary within the band. The fact that inside the band 𝑉𝑅 < 0, irrespective
of what the value of 𝜈 is, ensures that interception will eventually happen. It is clear from the graphs given in Fig. 5
that, whatever the initial point outside the 𝐵1+

𝜃
and 𝐵2+

𝜃
bands, they move to the collision course in the direction of the

arrows provided in the graph. Similarly, the roots in 𝐵1+
𝜃

and 𝐵2+
𝜃

have unstable equilbrium points. The roots in 𝐵1+
𝜃

and
𝐵2+
𝜃

represent the case when 𝑉𝑅 > 0 with the possibility of 𝑉𝜃 becoming zero thus leading to inverse collision course.
Although there is a possibility that the point may come out of these bands, but still interception cannot be guaranteed
inside these bands. (see Fig. 5).

Before we state the main theorem of the paper, we need to consider a few special cases. Velocity of the interceptor
may vary either gradually or through sudden changes, such as switching between two velocities. The most extreme
circumstance for the investigation of the variable speed interceptor is switching between two extreme velocities. In this
paper, we investigate switching between maximum and minimum velocities of the interceptor, which will account for
the challenges posed by gradual changes in speed and velocity switching inside the minimum-maximum limits.

We can identify several types of velocity switching for the interceptor from the Fig. 6 given as follows.
1) Switching the velocity ratio from 𝜈max to 𝜈min outside the 𝐵1−

𝜃
and 𝐵2−

𝜃
bands: It is represented by switching

from 𝑎 to 𝑎′ in the Figure 6. Even though it changes the curve for 𝜈max to 𝜈min the behaviour of both the graphs
remains the same for 𝑎 and 𝑎′. When switching happens from 𝜈max to 𝜈min graph shifts from 𝑎 to 𝑎′ and continues
towards the collision course point at 𝑜1 instead of 𝑜. The same scenario is also depicted in the polar plane, as
shown in Figure 7. It illustrates the identical behavior as described earlier. In practical terms, when the switching
happens from 𝜈max to 𝜈min, the speed of the interceptor obviously reduces, and as a result, the rate of reduction of
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Fig. 6 Switching Diagram. (a) 𝑉𝜃 vs. 𝜃 and , (b) 𝑉𝑅 vs. 𝜃

𝑅 and 𝜃 also reduces. However, it will still reach the collision course at 𝑜1.
2) Switching the velocity ratio from 𝜈min to 𝜈max outside the 𝐵1−

𝜃
and 𝐵2−

𝜃
bands: This situation is demonstrated in

Figure 6 by the switching from 𝑏′ to 𝑏. Both graphs show a similar trend, that is, they move towards 𝐵1−
𝜃

band
and the paths are shown in Figure 6 by an arrow. Finally, it reaches the stable point 𝑜 instead of 𝑜1. From a
practical point of view, when the velocity of the interceptor increases, magnitude 𝑉𝜃 and 𝑉𝑅 also increase which
may result in faster interception.

3) Switching the velocity ratio from 𝜈max to 𝜈min inside the 𝐵1−
𝜃

and 𝐵2−
𝜃

bands: The scenario depicted in Figure 6
shows the switching from 𝑐 to 𝑐′. where 𝑉𝜃 crosses the 𝜃 axis and changes its positive value to a negative value
but it does not become zero. The interceptor then follows the path of 𝜈min and eventually reaches the collision
course at 𝑜1. In a practical sense, when the interceptor changes its speed within the stable bands it needs to apply
lateral acceleration opposite to the prior lateral acceleration direction to change the direction of 𝑉𝜃 .

4) Switching the velocity ratio from 𝜈min to 𝜈max inside the 𝐵1−
𝜃

and 𝐵2−
𝜃

bands: This situation is illustrated in
Figure 6 by the switching from 𝑑 to 𝑑′. When the switch occurs, 𝑉𝜃 crosses the 𝜃 axis and changes from a
negative value to a positive value but it does not become zero. The interceptor then follows the path of 𝜈max and
ultimately reaches the collision course at 𝑜. This behaviour is also presented in the polar plane (see Figure 7).
In a practical sense, when the interceptor changes its speed within the stable bands, it needs to apply a lateral
acceleration in the opposite direction to the prior lateral acceleration in order to change the direction of 𝑉𝜃 .

5) Switching the velocity ratio from 𝜈max to 𝜈min at the root 𝜃 𝜃 (𝜈max) and switching the velocity ratio from 𝜈min to
𝜈max at the root 𝜃 𝜃 (𝜈min): The switching point 𝑜 is used for switching from 𝜈max to 𝜈min and 𝑜1 i is used for
switching from 𝜈min to 𝜈max as shown in Figure 6. The point 𝑜 and 𝑜1 are considered as the roots of the graphs for
𝜈max and 𝜈min, respectively, which are stable nodes indicating that the collision course starts at those conditions.
Any disturbance on 𝑉𝜃 will not affect the collision course because the interceptor is at a stable root and it will
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return to the collision course at the same root. However, changing 𝜈 causes a change in the equilibrium point.
When 𝜈 switches from 𝜈max to 𝜈min, the graph jumps from 𝑜 to 𝑜′ and follows the path of 𝜈min, so that, finally the
collision course starts at 𝑜1. If the switching happens from 𝑜′1 to 𝑜1 it will follow the path of 𝜈max, so that, finally
the collision course starts at 𝑜. The physical interpretation is that, a change in the interceptor velocity disturbs the
collision course, and then, its 𝑉𝜃 changes so as to achieve a new collision course with a new interception angle.

6) Switching the velocity ratio from 𝜈max to 𝜈min and 𝜈min to 𝜈max at corresponding roots in the unstable bands 𝐵2+
𝜃

and𝐵1+
𝜃

: The roots inside the bands 𝐵2+
𝜃

and 𝐵1+
𝜃

correspond to inverse collision course. Consider the point 𝑒′
which corresponds to the unstable root for 𝜈min when 𝜈 switches to 𝜈max it moves away from the inverse collision
course and eventually reaches the collision course at point 𝑜. Similarly, when switching occurs at 𝑓 from 𝜈max to
𝜈min which is the unstable root for 𝜈max it moves away from inverse collision course and reaches the collision
course point in the 𝐵2−

𝜃
band. Hence, it can be concluded that even small changes in velocity can alter the inverse

collision course, even if the roots are within the 𝐵2+
𝜃

and 𝐵1+
𝜃

bands. As a result of the velocity change, the
collision course may be attained at a different band.

7) Switching the velocity ratio from 𝜈max to 𝜈min and 𝜈min to 𝜈max to reach inverse collision course: Consider an
engagement with a velocity ratio 𝜈max which reaches the point 𝑒 in Figure 6. If we switch to 𝜈min, the reaching
point becomes an inverse collision course. Similarly, if we move along the path of 𝜈min which reaches at 𝑓 ′ and if
we switch to 𝜈max it will reach 𝑓 , which is also an inverse collision course. Inference is that when the interceptor
is in 𝐵2+

𝜃
and 𝐵1+

𝜃
bands, the velocity changes may cause the interceptor to go to an inverse collision course.

8) Finite number of switching inside the stable bands: If we consider a finite number of switches within the 𝐵1−
𝜃

and 𝐵2−
𝜃

bands, it is observed that the interceptor crosses the 𝜃 axis a finite number of times. It will never reach
the collision triangle until the switching stops. For instance, when the interceptor switches at 𝑐, it moves to 𝑐′

and continues the path of 𝜈min bands in the direction of the arrow. When it reaches the switching point 𝑑′, if we
allow it to switch to 𝑑, it will reach 𝑑 and follow the path of 𝑉𝑚𝑎𝑥 and loops the path 𝑐, 𝑐′, 𝑑′, 𝑑, if we follow a
similar switching pattern. The last switching will determine the path towards the collision triangle. If it reaches
𝑐′, it will follow the path of the 𝜈min and if it reaches 𝑑, it will follow the path of the 𝜈min, as shown in Figure 6.

9) Infinite number of switching inside the stable bands: This case is complex, and we do not have results for it,
although it might be possible to prove convergence to collision under certain circumstances. But we point out
that it is an unrealistic case in a real scenario.

Theorem 1. A variable speed interceptor pursuing a non-maneuvering target and following PPN guidance law with
𝜈 > 1 and 𝑘𝜈 > 1 will be able to capture the target from all initial conditions lying outside the 𝐵1+

𝜃
and 𝐵2+

𝜃
bands, with

the possible exception of infinite number of speed ratio switching inside the bands 𝐵1−
𝜃

and 𝐵2−
𝜃

during the engagement.
Proof. Lemma 5 and Lemma 6 will give sufficient conditions to prove Theorem 2. Fig. 6 and 7 can be used to arrive at
a result that all the initial conditions except for the bands 𝐵1+

𝜃
and 𝐵2+

𝜃
will move to the collision bands in 𝐵1−

𝜃
and 𝐵2−

𝜃

independent of any speed variations except infinite switching of speed ratio between the two minimum and maximum
values inside 𝐵1−

𝜃
and 𝐵2−

𝜃
. Lemma 5 and Lemma 6 ensure that any change in 𝜈 will not cause change in the value of 𝑉𝑅

from 𝑉𝑅 < 0 to 𝑉𝑅 > 0 because all the changes in 𝜈 inside the 𝐵1−
𝜃

and 𝐵2−
𝜃

happens with the condition that 𝑉𝑅 < 0.
The switching Cases from 1-5 and 8 also prove Theorem 1. Case 9 describes the switching of speed ratio inside the
capture bands (𝐵1−

𝜃
and 𝐵2−

𝜃
).

Theorem 2. If the initial position of the interceptor is inside the 𝐵1+
𝜃

and 𝐵2+
𝜃

bands, It leaves these bands. It intercepts
the target when the velocity changes, except for the velocity changes towards the inverse collision course.
Proof. The bands 𝐵1+

𝜃
and 𝐵2+

𝜃
exhibit a property where both 𝜎𝑅𝑚𝑎𝑥 and 𝜎𝑅𝑚𝑖𝑛 are greater than zero. As a result,

the interceptor follows an inverse collision course when located within these bands. However, a change in velocity
causes the interceptor to deviate from the inverse collision course and enter the (𝐵1−

𝜃
and 𝐵2−

𝜃
) bands. This engagement

scenario is illustrated in Fig. 6 and Fig. 7, specifically in the switching case described in Case 6, transitioning from 𝑒′ to
𝑒 and ultimately reaching 𝑜. It is important to note that if any switching occurs similar to Case 7 (𝑒 to 𝑒′ or 𝑓 ′ to 𝑓 ), the
interceptor will resume an inverse collision course.
Corollary 1. An inverse collision course can be achieved only 𝐵1+

𝜃
and 𝐵2+

𝜃
.

Proof. Any variation outside the band will not allow the interceptor to re-enter into 𝐵1+
𝜃

and 𝐵2+
𝜃

bands (see Fig. 6)
hence it is possible to say that the inverse collision course will be achieved only in these bands.
Corollary 2. Once the interceptor enters the 𝐵1−

𝜃
and 𝐵2−

𝜃
bands, it is impossible to maneuver the interceptor outside of

these bands through velocity variations.
Proof. Fig. 6 and 7 give an insight that whatever the velocity changes inside the (𝐵1−

𝜃
and 𝐵2−

𝜃
) causes the interceptor

jump from one point to another inside the corresponding band only. Hence, it is possible to claim that interception is
guaranteed inside the (𝐵1−

𝜃
and 𝐵2−

𝜃
) bands except perhaps for the infinite switching case.
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Fig. 7 A representation of the roots 𝑉𝑅 (𝜃, 𝜈) and 𝑉𝜃 (𝜃, 𝜈) in polar plane.

Corollary 3. It is possible to control the interception angle between 𝜃 𝜃 (𝜈min) and 𝜃 𝜃 (𝜈max) by varying the speed of the
interceptor.
Proof. Based on the observations depicted in Figure 6 and 7, it is evident that once the interceptor reaches the collision
course, it gradually converges towards the target along the 𝜃 𝜃 line. Furthermore, any variations in velocity lead to
corresponding changes in the 𝜃 𝜃 value, which ranges between 𝜃 𝜃 (𝜈min) and 𝜃 𝜃 (𝜈max).

V. Conclusions
This paper gives a qualitative analysis of a variable speed PPN guidance law against a non-maneuvering target.

The bands of the line of sight angle, in which the relative components of velocity become zero, are defined, and the
properties of these bands are described. These properties define capture conditions for a variable speed PPN guidance
law against a non-maneuvering target. The method for capturing a non-maneuvering target, even if the interceptor
target engagement is on an inverse collision course, is also discussed. We employed velocity switching between the
maximum and minimum velocities of the interceptor, encompassing the complexities arising from gradual changes in
speed and velocity transitions within the prescribed limits. Future work will involve extending the qualitative analysis
of the variable speed PPN guidance law against maneuvering targets and targets that have both maneuvering and
non-maneuvering phases in their engagement. Additionally, determining the capture conditions with a variable speed
PPN guidance law when the interceptor’s speed is lower than the target is also an interesting future direction of research.
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