
Tile Size and Loop Order Selection using Machine Learning for
Multi-/Many-Core Architectures

Shilpa Babalad
shilpab@iisc.ac.in

Indian Institute of Science
Bengaluru, Karnataka, India

Shirish K Shevade
shirish@iisc.ac.in

Indian Institute of Science
Bengaluru, Karnataka, India

Matthew Jacob Thazhuthaveetil
mjt@iisc.ac.in

Indian Institute of Science
Bengaluru, Karnataka, India

R Govindarajan
govind@iisc.ac.in

Indian Institute of Science
Bengaluru, Karnataka, India

ABSTRACT
Loop tiling and loop interchange (or permutation) are techniques
that can expose task and data-level parallelisms and can exploit
data locality available in multi-dimensional loop nests. Choosing
the appropriate tile size and loop order is important to achieve sig-
nificant performance improvement. However, the effect of these
transformations on the performance of the loop nest is not straight-
forward due to the complex interplay of several architectural fea-
tures in multi-/many-core architectures. In this work, we propose
using a supervised learning technique and develop a Support Vec-
torMachine (SVM) based hierarchical classifier to identify the best-
performing tile size and loop order for a given loop nest. Our ap-
proach results in identifying tile sizes and loop orders whose per-
formance, on average, is within 18% and 9% of the optimal per-
formance for two sets of loop nests on Intel Xeon Cascadelake ar-
chitecture. Further, our method outperforms state-of-the-art tech-
niques, Pluto and Polly, with a geometric mean speedup of 1.35x
to 1.58x.

CCS CONCEPTS
• Computer systems organization → Multicore architec-
tures; • Computing methodologies → Classification and re-
gression trees; • Software and its engineering→ Compilers.

KEYWORDS
Loop transformations, Vectorization and Parallelization, Super-
vised learning, Support Vector Machine, Hierarchical Classifier
ACM Reference Format:
Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R
Govindarajan. 2024. Tile Size and Loop Order Selection using Machine
Learning for Multi-/Many-Core Architectures. In Proceedings of the 38th
ACM International Conference on Supercomputing (ICS ’24), June 04–07, 2024,
Kyoto, Japan. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3650200.3656630

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS ’24, June 04–07, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656630

1 INTRODUCTION
Loops form the major compute-intensive and data-intensive part
of many real-world applications. As per the 90-10 rule, these loops
form only 10% of the application code but account for 90% of the
application execution time. Hence, they require elaborate and ex-
tensive optimizations/transformations that, in turn, help in reduc-
ing the overall execution time of the application. The transforma-
tions are done either automatically by a compiler or manually by
the programmers, help in exploiting the architectural features like
memory hierarchy, multiple cores, vector processing units, hard-
ware prefetchers present in modern multi-/many-core systems.

Loop tiling and loop interchange are important transformations
to realize the high performance of an application consisting of
multi-dimensional loops [6]. Tiling reorganizes the traversal of the
iteration space of a loop to exploit parallelism and/or temporal
and spatial locality. Tiling transformation involves techniques for
identifying the size or shape of the tile and tiled code generation.
Identifying the tile size that results in the lowest execution time
is complex and involves developing either a heuristic approach or
an autotuner to select the tile size, making use of a cost model.
Constructing a good cost model that can represent the architecture
under consideration is hard due to the interplay among multi-level
cache hierarchies, hardware prefetch configurations, and optimiza-
tion phases of a compiler.

Application of loop permutation/interchange transformation on
a tiled code can result in multiple valid transformed loop orders [6].
The performance of a transformed loop depends on its ability to ex-
ploit multiple cores, vector processing units, multi-level cache hi-
erarchies, and hardware prefetchers present on the multi-/many-
core architectures. Existing polyhedral loop transformation tech-
niques identify and expose different types of parallelism and data
locality. They transform a given loop into a tiled loop with a legal
loop order that satisfies all the data dependencies in the original
loop. They often fail to pick the best-performing loop order.

We refer to the tile size and the loop order that results in the
lowest execution time of a loop nest as the best-performing (tile
size, loop order) combination. Informally, we also refer to these as
best-performing tile size and loop order. Note that the tile size and
the loop order together result in the best performance. To the best
of our knowledge, there does not exist any work that identifies the
best-performing tile size and loop order together for nested loops.

388

https://orcid.org/0000-0002-9114-0409
https://orcid.org/0009-0009-7202-6860
https://orcid.org/0009-0007-1550-8121
https://orcid.org/0000-0003-2517-9994
https://doi.org/10.1145/3650200.3656630
https://doi.org/10.1145/3650200.3656630
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3650200.3656630
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650200.3656630&domain=pdf&date_stamp=2024-06-03

ICS ’24, June 04–07, 2024, Kyoto, Japan Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

In this work, we propose and develop a supervised machine
learning model to predict the best-performing (tile size, loop order)
combination for a given multi-dimensional loop. More specifically,
our machine learning model is a hierarchical classifier based on
Support Vector Machine (SVM) [21]. Supervised learning models
need representative training data sets for training the model. But
research in compilers is often hampered by limited training data
sets. To overcome this problem, we use our synthetic loop genera-
tor tool to generate synthetic training data of specific characteris-
tics that are representative of real-world loops.

We develop a carefully tuned hierarchical classifier which is
trained using synthetic loops generated by our tool and predicts
the best-performing tile sizes and loop orders for loops from Poly-
bench [23, 24] test suite. For performance evaluation, we use two
different target architectures: (i) an Intel Xeon Cascadelake sys-
tem [3] with 48 processor cores and (ii) an Intel Xeon Phi Knights
Landing (KNL) system [30, 31] with 64 processor cores and 128
Vector Processing Units. The tile size and loop order predicted by
our SVM-based classifier results in transformed loops whose per-
formance is within 18% and 9% of the optimal performance for two
different test data sets on Intel Xeon Cascadelake system and 18%
and 13% of the optimal performance for two different prefetch con-
figurations on Intel Xeon Phi (KNL) system. Further, our method
outperforms state-of-the-art techniques, Pluto [11] and Polly [18]
with a geometric mean speedup of 1.35x to 1.58x.

2 BACKGROUND AND MOTIVATION
2.1 Background
Loop transformations transform a given multi-dimensional loop
into a form such that the performance of the loop improves while
retaining the correctness of its functionality. There are many loop
transformation techniques but wewill limit ourselves to loop tiling
and loop permutation [6]. Loop tiling/blocking transforms a given
multi-dimensional loop into a set of loops that perform the exact
computation but in a different order. The iteration space of the orig-
inal loop is divided into tiles/blocks such that when a tile is loaded
into the cache, all computations on this tile are completed before
moving on to the next tile. The performance of the transformed
loop is improved as the resulting loop exhibits better data locality
than the original order. Further, tiling strip mines the loop by tile
size such that the resulting loop exploits coarse-grain parallelism
and fine-grain data-level parallelism if there are no loop-carried
data dependencies in the outermost level and the innermost loop
levels, respectively. To exploit data locality, determining the size
and shape of the tile is important.

Loop interchange transformation enables permuting the loop
orders in a nested loop, such that the points in the iteration space
are traversed in a different order than the original. Given a nested
loop, one or more of its permuted loop orders can be legal (i.e., do
not violate data dependencies in the original loop). Each permuted
loop order may exploit parallelism and data locality at different
loop levels, leading to differing performance. Thus, selecting the
best-performing loop order is also important from a compiler opti-
mization viewpoint.

Consider a kernel/loop from gemver benchmark of Poly-
bench [23, 24] suite as given in Listing 1. Listing 2 shows the

tiled version of this code as generated by Polly [18]. Tiling strip-
mines the original 2-dimensional loop into a loop with 𝑓 𝑜𝑢𝑟 it-
erators. The two loop iterators 𝑖 and 𝑗 correspond to the inter-
tile traversal, while the 𝑖𝑖 and 𝑗 𝑗 correspond to the intra-tile tra-
versal within the iteration space. The four iterators can be per-
muted such that the resulting permutation should still satisfy all
the dependencies in the original loop. There are 24 such possibil-
ities; however, we consider only 6 of them where the intra-tile
iterations happen within the inter-tile iterations. These six loop
orders are: 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗), 𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖), 𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗), 𝐿4(𝑗, 𝑖, 𝑖𝑖, 𝑗 𝑗),
𝐿5(𝑗, 𝑖, 𝑗 𝑗, 𝑖𝑖), and 𝐿6(𝑗, 𝑗 𝑗, 𝑖, 𝑖𝑖).

for (i = 0 ; i <N ; i ++)
for (j = 0 ; j <N ; j ++)
x [i]= x [i]+ b e t a ∗A[j] [i] ∗ y [j] ;

Listing 1: gemver_k2 loop

#pragma omp p a r a l l e l
for (i = 0 ; i <N/T ; i ++)
for (j = 0 ; j <N/T ; j ++)
for (i i =T ∗ i ; i i <T ∗ i +T ; i i ++)
for (j j =T ∗ j ; j j <T ∗ j +T ; j j ++)
x [i i]= x [i i]+ be t a ∗A[j j] [i i] ∗ y [j j] ;

Listing 2: Tiled gemver_k2 loop

In the tiled version of the code, the tile size is another im-
portant parameter that influences the performance of the tiled
loop. In our experiments, we consider 𝑠𝑖𝑥 different tile sizes, i.e.,
8, 16, 32, 64, 128, 256. Together there are 36 possible choices (one
among 𝑠𝑖𝑥 tile sizes and independently one of the six orders 𝐿1−𝐿6)
for a given 2-dimensional loop nest. Our model predicts the best-
performing tile size (one among 𝑠𝑖𝑥 tile sizes) and loop order (one
among 𝐿1 − 𝐿6) for a given loop nest. As we will discuss later in
the paper, the performance (execution times or execution cycles)
of these different versions of a loop can differ by one to two or-
ders of magnitude. Hence, selecting the best-performing version is
a critical aspect of compiler optimization.

2.2 Motivation
This section presents the motivation for our work using a few ex-
ample loops taken from the Polybench benchmark suite [23, 24].
We show how the best-performing loop order and tile size change
across different problem sizes and prefetch configurations.

2.2.1 Heuristic-based loop order selection can lead to lower perfor-
mance: Consider a 2-dimensional loop from the 𝑔𝑒𝑠𝑢𝑚𝑚𝑣 bench-
mark, as shown in Listing 3. This loop has parallelism in the 𝑖-
dimension i.e., different iterations of the 𝑖-loop can be executed in
parallel as they are independent of each other. However, the loop
is not parallel in the 𝑗 dimension. Hence, for this loop, only loop
orders 𝐿1(𝑖, 𝑗, 𝑖𝑖, 𝑗 𝑗), 𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖), and 𝐿3(𝑖, 𝑖𝑖, 𝑗, 𝑗 𝑗) exploit coarse-
grain i.e., Single Program Multiple Data (SPMD) data-level paral-
lelism at the outermost loop. Based on this, Polly [18] and Pluto [11]
pick loop order L1.

The normalized execution cycles of 𝑔𝑒𝑠𝑢𝑚𝑚𝑣 loop for two dif-
ferent input sizes (𝑁 = 4096 and 𝑁 = 8192), two different tile sizes

389

Tile Size and Loop Order Selection using Machine Learning for Multi-/Many-Core Architectures ICS ’24, June 04–07, 2024, Kyoto, Japan

(8 and 32) and for different loop orders are reported in Table 1. The
data in each row is normalized with respect to the best-performing
loop order (one with the lowest execution time) in that row when
executed on Intel Xeon Cascadelake system.1 Polly and Pluto pick
𝐿1 as the loop order for this loop based on the heuristic used in
the framework. However, the best-performing loop order for in-
put size 𝑁 = 4096 and tile size 8 (row 1 in Table 1) is 𝐿3 and hence,
Polly and Pluto incur a performance loss of 24.3%.

for (i = 0 ; i <N ; i ++)
for (j = 0 ; j <N ; j ++) {
tmp [i]=A[i] [j] ∗ x [j]+ tmp [i] ;
y [i]=B[i] [j] ∗ x [j]+y [i] ;
}

Listing 3: gesummv loop

for (i = 0 ; i <N ; i ++)
for (j = 0 ; j <N ; j ++)
x1 [i]= x1 [i]+A[i] [j] ∗ y1 [j] ;

Listing 4: mvt_k1 loop

Table 1: Performance of 𝑔𝑒𝑠𝑢𝑚𝑚𝑣 benchmark

Normalized Execution Cycles Loop Order
Identified by

L1 L2 L3 L4 L5 L6 Polly Pluto
4K_TS8 1.243 1.204 1.000 3.515 3.626 20.505 L1 L1
8K_TS8 1.168 1.000 1.168 3.188 3.579 18.603 L1 L1
8K_TS32 1.261 1.221 1.000 1.723 2.041 15.417 L1 L1

One might argue that loop order 𝐿2(𝑖, 𝑗, 𝑗 𝑗, 𝑖𝑖) can exploit both
data-level parallelism at the innermost loop and task-level paral-
lelism at the outermost loop and hence would be a better choice.
However, for the given loop and the input size (𝑁 = 4096), 𝐿2
incurs a performance loss of 20.4%. The scatter-gather memory ac-
cesses (due to A[ii][jj] access pattern) required at the innermost
loop to exploit the data parallelism may be incurring significant
performance overhead.

2.2.2 Best-performing loop order changes across problem sizes:
For the same 𝑔𝑒𝑠𝑢𝑚𝑚𝑣 loop shown in Listing 3, the performance
for the 𝑠𝑖𝑥 loop orders for a problem size 𝑁 = 8192 and a tile size
8 is presented in row 2 of Table 1. Here, the best-performing loop
order is 𝐿2. Selecting the loop order 𝐿1, as given by Polly and Pluto,
incurs a performance loss of 16.8%. On the other hand, choosing
𝐿3 as the loop order (the best-performing loop order for 𝑁 = 4096)
also results in a similar performance loss, indicating a trade-off be-
tween data parallelism and scatter-gather overhead taking place as
the input size changes. Thus, the best-performing loop order can
change with problem size, suggesting that the input problem size
is an important factor in deciding the loop order.
1The details of our experimental framework and methodology are presented in Sec-
tion 4.

Table 2: Performance of gemver_k1 benchmark

Normalized Execution Cycles
L1 L2 L3 L4 L5 L6

TS_8 1.069 1.063 1.105 2.092 2.266 10.650
TS_16 1.041 1.192 1.142 2.070 5.305 14.385
TS_32 1.716 1.240 1.140 2.308 3.609 18.703
TS_64 1.000 3.528 1.189 2.204 4.549 25.496
TS_128 1.695 2.451 1.341 1.407 4.177 16.957
TS_256 2.095 4.967 1.826 1.946 4.644 15.604

2.2.3 Best-performing loop order changes across tile sizes: Next,
we consider the tile size 32 and problem size 𝑁 = 8192 for the
same 𝑔𝑒𝑠𝑢𝑚𝑚𝑣 loop. The performance for the different loop orders
is shown in row 3 of Table 1. Here, 𝐿3 is the best-performing loop
order. Neither Polly nor Pluto identifies 𝐿3 as the best-performing
loop order and hence, incur a performance loss of 26.1%. The 𝐿2
loop order also incurs a similar performance loss of 22.1%. This
shows that best-performing loop order also depends on the tile
size. Next, let us look at the impact of tile size on the performance
of the transformed loop.

2.2.4 Both tile size and loop order together influence the perfor-
mance: Let us consider a loop from 𝑔𝑒𝑚𝑣𝑒𝑟 . For a given problem
size 4096, we present the performance of the loop, in terms of nor-
malized execution cycles, for different tile sizes and loop orders
in Table 2. The values are normalized with respect to the best-
performing version (corresponding to tile size = 64 and loop order
𝐿1). As can be seen from the table, the default tile size (= 32) incurs
a performance loss of 14% (for the best-performing loop order) to
18.70 times (for the worst-performing loop order with the default
tile size). Further, a wrongly selected tile size and loop order can re-
sult in a performance loss that can be as high as 25.50 times. Thus,
the compiler transformation should identify the tile size and loop
order that results in the lowest execution cycles.

2.2.5 Best-performing tile size changes across problem sizes: Let
us consider a loop from the𝑚𝑣𝑡 benchmark as shown in Listing 4.
We present its performance in Table 3 for three different problem
sizes, 2048, 4096 and 8192. Each row in this table represents the
normalized execution cycles, normalized with respect to the best-
performing loop order across all tile sizes for this input size. The
first row presents the data for problem size 𝑁 = 2048 and shows
that tile size 8 gives the best performance. However, for problem
sizes𝑁 = 4096 and𝑁 = 8192, tile sizes 16 and 256 result in the best-
performing loop versions. This shows that the tile size that results
in the best performance changes across problem sizes. Fixing a sin-
gle tile size for all problem sizes incurs huge performance losses.
Loop transformation frameworks like Polly [18] and Pluto [11] ei-
ther use a default tile size (32) or require the programmer to select
the tile size manually. Fixing the tile size to 32 incurs a loss of 80.2%
for 𝑁 = 2048, 44.1% for 𝑁 = 4096, and 49.7% for 𝑁 = 8192. Fixing
the tile size to 8 incurs a loss in performance as high as 48.9% for
𝑁 = 8192.

2.2.6 Best-performing tile size changes across prefetch configura-
tions: Last, we demonstrate that the hardware prefetch configura-
tion of a processor also influences the selection of best-performing
tile size and loop order. For this, we consider two different prefetch

390

ICS ’24, June 04–07, 2024, Kyoto, Japan Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

Table 3: Performance of𝑚𝑣𝑡_𝑘1 benchmark

Normalized Execution Cycles
TS_8 TS_16 TS_32 TS_64 TS_128 TS_256

2K 1.000 2.083 1.802 4.741 5.883 1.622
4K 1.018 1.000 1.441 1.135 2.947 3.097
8K 1.489 1.500 1.497 1.347 1.134 1.000

Table 4: Performance of 𝑎𝑡𝑎𝑥_𝑘2 benchmark

Normalized Execution Cycles
TS_8 TS_16 TS_32 TS_64 TS_128 TS_256

3K_AE 1.000 1.029 1.312 1.623 1.543 3.036
3K_NE 1.254 1.000 1.436 1.387 1.867 3.806

configurations, one in which all prefetchers for both 𝐿1 and 𝐿2
caches are enabled (referred to as AllEnable or AE for short) and
another in which none of the prefetchers are enabled (referred to
as NoneEnable or NE) on Intel Xeon Phi (KNL) architecture.2

The performance of the 𝑎𝑡𝑎𝑥 loop for problem size 𝑁 = 3072 is
shown in Table 4, rows 1 and 2 for prefetch configurations AE and
NE, respectively. For each tile size, we report the performance of
the best-performing loop order (which could be different across
different tile sizes), and the values in each row are normalized
with respect to the lowest or best-performing tile size. The best-
performing tile size for AE configuration is 8 while that for NE is
16. In the NE configuration, using the best-performing tile size (8)
for theAE configuration results in a performance loss of 25.4%. Sim-
ilarly, using the default tile size (32) in AE and NE prefetch config-
urations incur performance losses of 31.2% and 43.6% respectively.

To summarize, the performance of a loop nest depends on the
complex interplay of multiple factors, including the task and data-
level parallelism exploited, the abilities of the prefetchers, the syn-
chronization overheads incurred, the data access patterns in the
loop, the size (or volume) of the data accessed. This motivates us
to formulate this as a machine-learning problem.

3 TILE SIZE AND LOOP ORDER SELECTION
PROBLEM

In this work, as mentioned earlier, we consider 2-dimensional per-
fect loop nests with 𝑠𝑖𝑥 possible legal permutations. The 𝑖 or 𝑗 or
both dimensions could be parallel depending on the dependencies
present in the loop nest. Depending on the parallelism available
in the loop nest, a specific loop order will exploit the coarse-grain
data-level parallelism in the respective inter-tile dimension of the
tiled code. Fine-grain data-level parallelism is exploited if the corre-
sponding intra-tile dimension happens to be the innermost dimen-
sion. We use Polyhedral techniques and the Polly framework [18]
to generate tiled code and to identify and exploit the parallelism
for the different loop orders.

3.1 Formulation as Machine Learning Problem
As mentioned earlier, for a given loop nest, we consider six differ-
ent tile sizes and six possible loop orders for each one of them. The
2We could not disable the prefetch configuration on the Intel Cascadelake system as
it is a part of a production cluster.

problem is to identify the best-performing tile size and loop order
combination for the loop nest. We frame this as a classification
problem and identify the input features.

3.1.1 Classification Problem: The classification problem we have
on hand is amulti-class classification problem. For this, we propose
to use the SVM classifier [21]. SVMs work by finding a hyperplane
with the highest margin that can distinguish between data of two
classes. They work well with both linear and non-linear data. They
support linear, polynomial, radial basis function (RBF) and sigmoid
kernels [21]. In our work, we propose to use amulti-class SVM clas-
sifier that uses both linear and RBF kernels. The classifier is built
using training data (loop nests generated using our loop generator
tool) whose output classes are already labelled. The features of the
training data loops form the input feature vector.

3.1.2 Input Features: The training and test loops are character-
ized by a few features referred to as input features. In the fol-
lowing discussion, X and A represent, respectively, one- and two-
dimensional arrays and f and g represent affine functions of loop
index variables i and j. We propose using the following as input
features:

(1) The dimension(s) of the original loop nest, i.e., 𝑖 or 𝑗 or both
𝑖 and 𝑗 , that has (have) parallelism. These are respectively
referred to as 𝑝𝑎𝑟𝑖 , 𝑝𝑎𝑟 𝑗 , and 𝑝𝑎𝑟𝑏.

(2) The number of references to 2-dimensional arrays of the
form A[f(i)][g(j)].

(3) The number of references to 2-dimensional arrays of the
form A[f(j)][g(i)].

(4) The number of references to 1-dimensional arrays of the
form X[f(i)].

(5) The number of references to 1-dimensional arrays of the
form X[f(j)].

(6) The number of 2-dimensional arrays of the form
A[f(i)][g(j)].

(7) The number of 2-dimensional arrays of the form
A[f(j)][g(i)].

(8) The number of 1-dimensional arrays of the form X[f(i)].
(9) The number of 1-dimensional arrays of the form X[f(j)].
(10) The problem size3 N

Different features can use different f and g functions. These fea-
tures are carefully selected, using domain knowledge, from a host
of features that characterize the performance of the given loop nest
for various loop orders and tile sizes.

The chosen input features have bearing on the architecture and
impact the performance of the loop nest. The A[f(i)][g(j)] vs.
A[f(j)][g(i)] access patterns along with the loop order capture
the locality in accesses, vector loads vs. scatter-gather accesses.
Similarly, Parallelism in i- or j-loop indicates parallel outermost
loops and vectorizable inner loops for different loop orders. Writes
to 1-D arrays and 2-D array access functions capture the dependent
loop dimension.

The input features can be easily extracted by a compiler. We re-
fer to the above as feature set 1 or 𝑓 𝑠1 for short. From this, we
derive feature set 2 (𝑓 𝑠2) by retaining features 𝑁 , the dimensions
3Our approach andmethodologyworks for anyNxM loops although the paper focuses
only on NxN loops.

391

Tile Size and Loop Order Selection using Machine Learning for Multi-/Many-Core Architectures ICS ’24, June 04–07, 2024, Kyoto, Japan

of the original loop nest, i.e., i or j or both i and j, that have paral-
lelism and removing the four features related to the total number
of arrays; further four new features related to store operations cor-
responding to 1- or 2-dimensional arrays and array access patterns
are added.

3.2 Hierarchical Classification
One approach to solving themulti-class classification problem is to
use flat classification, where the output labels belong to one of the
36 classes (corresponding to six different tile sizes and six possible
loop orders). While this approach is simple, it fails to adequately
capture the interplay between tile size and loop order. Our initial
experiments showed that this approach was about 53.09% away
from the best-performing one. An alternative approach is to build
a hierarchical classifier that predicts either the tile size or the loop
order first and then predicts the other parameter. This approach
was no better than the flat classification and also fails to capture
the interplay between tile size and loop order in the classifier.

We solve the problem by designing a hierarchical classifier
based on SVM.We propose two approaches for constructing the hi-
erarchical classifier. One is a systematic approach that explores the
design space of hierarchical classifiers. This approach is general
and can be applied to any target architecture. The other approach
uses domain knowledge and observed characteristics in training
loops to come up with a tuned hierarchical classifier. We describe
the second approach first.

3.2.1 A Tuned Hierarchical Classifier: After careful study of the
training data set and some experimentation on the validation set,
we propose a hierarchical classifier with 𝑓 𝑜𝑢𝑟 levels (see Figure. 1).
As discussed in Section 2, for loops that are parallel in the 𝑖-
dimension, loop orders 𝐿1, 𝐿2 or 𝐿3 exploit coarse-grain data-level
parallelism at the outermost level. Similarly for 𝑗-parallel loops,
loop orders 𝐿4, 𝐿5 or 𝐿6 exploit coarse-grain data-level parallelism
at the outermost level. Based on this observation, the root node
of the tree of classifiers (C1) is designed as a multi-class classi-
fier to classify the loops into one of the two categories of loop or-
ders: {{𝐿1, 𝐿2, 𝐿3}, {𝐿4, 𝐿5}}. The classification of loops belonging
to {𝐿1, 𝐿2, 𝐿3} into {𝐿4, 𝐿5} or a vice-versa would incur a large per-
formance loss. We do not consider loop order 𝐿6, as it infrequently
appears as the best-performing loop order in the training data set
on Intel Cascadelake architecture. Having obtained a broader loop
order category, we then classify the data further based on the tile
size at level-2 in the tree of classifiers.

At level-2, the left classifier (C2) predicts the tile size to
be one among the group {{𝑇 1,𝑇 2}, {𝑇 3,𝑇 4}, {𝑇 5,𝑇 6}}, for class
{𝐿1, 𝐿2, 𝐿3} loops, as training data set loops that have best-
performing tile size of𝑇 1 (tile size = 8) and𝑇 2 (tile size = 16) exhibit
similar characteristics. A similar observation was alsomade for the
classes {𝑇 3,𝑇 4} and {𝑇 5,𝑇 6}. The right classifier (C3) predicts the
tile size to be one among 𝑇 1 −𝑇 6 for class {𝐿4, 𝐿5} loops.

At level-3, on the left side, we have three classifiers. The left-
most classifier (C4) classifies the loops for tile sizes𝑇 1 and𝑇 2. The
middle (C5) and the right (C6) classifiers, respectively, predict the
loop order among 𝐿1, 𝐿2, 𝐿3 for loops whose predicted tile sizes
are {𝑇 3,𝑇 4} and {𝑇 5,𝑇 6}. The classifiers on the right side (C7 –
C11) are binary classifiers that predict the loop orders among 𝐿4

and 𝐿5 for each tile size. At level-4, we have three 3-class classi-
fiers: (C13 –C15) to classify among tile sizes {𝑇 1,𝑇 2}, (C16 –C18)
to classify among tile sizes {𝑇 3,𝑇 4}, (C19 –C21) to classify among
tile sizes {𝑇 5,𝑇 6}.

The hierarchical classifier obtained for Intel KNL architecture
is slightly different from the one shown in Figure 1. We do not
present it here due to space constraints.

3.2.2 A Systematic Approach for Classifier Design: Is there a way
to systematically design the hierarchical classifier? The design
space of the hierarchical classifier is exponential (in the number
of tile sizes and loop orders considered). We propose an approach
that is effective without incurring exponential search costs.

We start with the root node of the tree of classifiers (C1) to
classify the loops into one of the two categories of loop orders:
{(𝐿1, 𝐿2, 𝐿3), (𝐿4, 𝐿5, 𝐿6)}, based on the domain knowledge of loop
orders of 𝑖-parallel and 𝑗-parallel loops. Next, for each level, we
construct the classifier based either on the tile size or the loop or-
der, depending on whichever one has not yet been fully classified.
If the tile size classifier is considered next, then we construct all
possible classifiers for that level. For example, if we consider (T1,
· · · T6), then all possible 2-class classifiers (e.g., {(T1, T2, T3), (T4,
T5, T6)}, {(T1, T2), (T3, T4, T5, T6)}, etc.), 3-class classifiers (e.g.,
{(T1, T2), (T3, T4), (T5, T6)}, {(T1, T4), (T2, T5), (T3, T6)}, etc.), 4-
class, 5-class, and 6-class classifiers are considered. Although the
number of classifiers considered here is large (198), as we will ex-
plain later, the design space exploration still does not explode mul-
tiplicatively at each level. Among the classifiers considered at this
level, we choose the best performing one in terms of the prediction
accuracy on the validation set (derived from the training data set)
and use that as the classifier at this level. We make the important
observation that other classifiers considered at this level need not
be explored further as their prediction accuracy is lower, and no
matter how good the classifiers at the subsequent levels are, the
prediction error made at this level cannot be revoked. Hence, any
of those classifiers is likely to give lower overall prediction accu-
racy than the best-performing one at this level.

We continue the above step at each level, choosing one of tile
size or loop order classification but exploring all possible classifiers
at this level. But as we choose only the best-performing classifier at
each level, this essentially ensures that the total number of classi-
fiers explored is the sum of the classifiers explored at each level and
not their product. Note that the systematic approach does not guar-
antee identifying the optimal hierarchical classifier. However, it
will potentially find a hierarchical classifier whose performance is
close to that of the optimal. Our extensive experimentation shows
that our tuned hierarchical classifier (shown in Figure. 1), carefully
designed using the domain knowledge, and the one obtained from
the systematic approach perform equally well and results in trans-
formed loops whose performance differs only marginal from each
other.

3.3 Synthetic Loop Generation
We apply supervised learning method to find the best-performing
tile size and loop order for a loop. Supervised learning methods
require a large training data set. However, the number of avail-
able loops from various benchmark suites such as NAS parallel

392

ICS ’24, June 04–07, 2024, Kyoto, Japan Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

Figure 1: Hierarchical Classifier Design

benchmarks [7, 8], PARSEC [9], and Polybench [23], that are 2-
dimensional, tileable and could be used for training are very few,
perhaps yielding a few 10’s of loops. It is desirable to have amethod
that can generate thousands or even millions of (synthetic) loops
which are different (in terms of several loop characteristics) yet
representative of real-world applications. If the method can also
generate loops with a given set of loop characteristics, it will also
solve the problem of generating targetted loops for a given end
goal for which the machine learning technique is applied.

To address this, we have developed a tool to generate synthetic
loops automatically [5]. The synthetic loops are characterized by
certain properties such as the number of statements, the num-
ber and types of data dependencies between the statements, the
memory access patterns of one- and two-dimensional arrays, etc.
By choosing different values for these parameters, we can gen-
erate many loops. In this work, we have considered perfect, 2-
dimensional4 loop nests which can be tiled in either dimension.
Each loop nest generated is of the form shown in Listing 5, and
each statement is in the canonical 3-address form as: a = b op c.
Each operand in the 3-address statement can be a scalar, 1- or 2-
dimensional array with appropriate indices. 2-dimensional arrays
can have indices of the form A[f(i)][g(j)] or A[f(j)][g(i)]
where 𝑓 and 𝑔 are affine functions. Similarly, 1-dimensional arrays
can have an index of the form A[f(i)] or A[f(j)]. Constraints
such as affine accesses and perfect loop-nests are essential to ana-
lyze the loops and construct legal transformed versions.

Statements in the loop can have loop-carried or loop-
independent dependencies among them. All legal dependencies
of the form (=,=), (=, <), (<,=), (=, ∗), (∗,=) are allowed. Further,
each dependence can be true, anti-, or output-dependence, and the
4The synthetic loop generation methodology can be extended to higher dimension
loop nests as well.

dependence can be a self-dependence, i.e., from a statement to it-
self. The dependencies in the loop can be limited to permit paral-
lelism in either or both loop dimensions. We do not consider loops
with dependencies in both dimensions, as they do not permit par-
allelism.

for (i = 0 ; i <N ; i ++)
for (j = 0 ; j <N ; j ++)
{
S1 :A[i] [j]=B[j] [i] ∗C[i −1] [j + 1] ;
. . .
Sn : . . .
}

Listing 5: Template 2-D Loop Nest

3.3.1 Data Dependence Graph Generator: Each loop can be repre-
sented as a directed Data Dependence Graph (DDG) where nodes
represent statements of the loop and edges between a pair of nodes
represent data dependence between the corresponding statements
in the loop. The dependence can be of any of the forms mentioned
earlier such that the resulting loop is parallel in at least one of the
dimensions. Thus, ourmethod to generate synthetic loops first gen-
erates a random DDG and then synthesizes a compilable C-loop
corresponding to that DDG.

The tool receives the characteristics of the loop to be generated
as an input configuration file. The input file consists of the num-
ber of statements (in canonical three-address form) to be present in
the loop and the number of dependencies that should be present
between these statements. The input file also specifies the types
(true, anti-, and output) of dependencies and the dependence dis-
tance (in case of true and anti-dependencies) as simple probability
values. Further, the configuration file specifies whether additional
scalar, 1- or 2- dimensional arrays are used as read-only operands
in the loop. Last, the configuration file also specifies whether the

393

Tile Size and Loop Order Selection using Machine Learning for Multi-/Many-Core Architectures ICS ’24, June 04–07, 2024, Kyoto, Japan

Figure 2: DDG with implied edges

2-dimensional (1-dimensional) array access pattern of the desti-
nation and source operands are of the form A[f(i)][g(j)] or
A[f(j)][g(i)] (respectively, A[f(i)] or A[f(j)]) using proba-
bility values. These configuration parameters can be set by observ-
ing the respective characteristics of real loops. In our work, we
obtained these parameters using a characterization study done on
52 loops of the Polybench-3.2 [23] suite.

Using the values from the input file, our tool generates a ran-
dom DDG satisfying the above characteristics, involving 1- or 2-
dimensional arrays, having parallelism in at least one of the dimen-
sions. The distance vector is assigned randomly in the range (-2,2)
for each dimension. We limit the dependence value to this range
based on the characteristics observed in real loops. We anticipate
that for loops with a dependence distance greater than 2, the dis-
tance can be modelled as 2 in the feature vector for predicting tile
size and loop order. The transformed loop should, however, use
the actual dependence distance to ensure correctness. The nodes
of the DDG represent a destination or left-hand side (LHS) of the
statement. The pairs of nodes associated with the same destination
node will have output dependence. We ensure that our DDG gen-
erator generates only legal DDGs, i.e., DDGs in which there are no
cyclic dependencies among statements that prevent ordering the
statements within the loop nest. Our DDG generator tool is im-
plemented in Python and is represented using a dictionary data
structure.

3.3.2 Synthesizing C-code for the Generated DDG: . For each node
in the DDG, we generate corresponding C-statements in the order
of the node number, as node numbering dictates a valid ordering
of the statements in the loop. The statements are enclosed within
a 2-dimensional nested for-loop. In our training data set, we have
constructed programs with up to 35 statements and more than 70
dependence edges. Figure 2 shows the DDG with implied edges
added by our tool. The corresponding C-statements synthesized
by our tool are shown in Listing 6. We also have implemented a
small validation tool using the ISL (Integer Set Library) [35] tool
to ensure that our tool generates valid C-statements for a given
DDG. The ISL tool takes C-statements generated by our tool and

outputs all dependencies between these statements. The DDG con-
structed from all the dependence relations is then compared with
the random DDG generated by our tool.

for (i = 0 ; i <N−2 ; i ++) {
for (j = 0 ; j <N ; j ++) {
A[i] [j]=C[i +1] [j] ∗ a [i] ;
A[i] [j]=A[i] [j] + u0 ;
B [i] [j]=A[i] [j] − b [j] ;
C[i] [j]=A[i +2] [j] ∗ B [i +1] [j] ;
A[i] [j]=B[i] [j] ∗ c [i] ;
}

}

Listing 6: C-code generated by Synthesizer

4 IMPLEMENTATION AND EXPERIMENTAL
METHODOLOGY

4.1 Integrating into Compiler Toolchain
We have implemented our tool as a separate module consisting of
a machine-learning model which is trained offline. The training
cost of the model is an one-time overhead. The target loop should
be marked using compiler directives and the loop nest features are
extracted and given as input to our model for predicting the best
tile size and loop order. The rest of the compiler tool chain can
take the output of our model and generate the code. The additional
compilation overhead our approach is in 10’s of milliseconds, but
the benefits are observed in reducing the runtime of the loop nest.

4.2 Architectures Used
We have used two different target architectures, one consisting of
a multi-core processor (Intel Xeon Cascadelake 8268 [3]) and the
other a many-core processor (Intel Xeon Phi (KNL) [30, 31]) for our
experiments. The Intel Cascadelake system used is a part of a pro-
duction cluster and has 48 cores in 2-socket configuration. It has
192GB RAM (4 GB per core). The base frequency of the processor
is 2.9 GHz. The number of threads per core is 2. It has private L1d
and L1i caches each of capacity 32KB per core and an L2 cache of
capacity 1MB per core. The L3 cache of capacity 35.75MB is shared
across all cores in a socket. It supports AVX-512 [12] instructions.
Each socket has 2 memory controllers and 3 memory channels per
controller. It supports DDR4-2933 memory.

The second system used in our experimental work is based
on Intel Xeon Phi (KNL) [30, 31] architecture. The KNL proces-
sor used in our work has 32 active tiles, 64 cores, and 128 VPUs.
The VPU supports all floating-point computations up to the latest
AVX-512 [12] vector instructions, supporting up to eight double-
precision floating-point operations per cycle in each VPU. The
16GB direct-mapped multi-channel DRAM (MCDRAM) is in cache
mode. It supports L1 cache prefetcher, also known as Instruction
Pointer Prefetcher (IPP) and L2 hardware prefetcher.

4.3 Measuring Execution Cycles
We measure the execution cycles for the transformed loop nests
using _𝑟𝑑𝑡𝑠𝑐 function. The code for each of these versions for both
the architectures is obtained using the state-of-the-art compiler

394

ICS ’24, June 04–07, 2024, Kyoto, Japan Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

Table 5: List of Benchmarks Used

Benchmark
Name

No.of
loops

Benchmark
Name

No.of
loops

Benchmark
Name

No.of
loops

gemver 3 syrk 1 jacobi-2d 1
atax 2 adi 4 gemm 3
gesumm 1 fdtd-apml 2 syr2k 3
mvt 1 fdtd-2d 2

LLVM 11.0v integrated with Polly tool (opt 11.0) with appropriate
flags (polly-parallel, polly-vectorizer=polly, polly-tile-sizes=32,32,
mattr=+avx512f, mcpu=cascadelake, -O3). To minimize the varia-
tions in execution cycles due to operating environments and to re-
duce the effect of Operating System related latencies [16, 27], we
had exclusive access to the server during the run, and disabled hy-
perthreading. Further, to obtain robust measurement of execution
cycles, we run each program/loop nest 20 times and measure the
execution cycles in each execution. From these values, outliers are
removed using the standard 1.5 × 𝐼𝑛𝑡𝑒𝑟𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝑅𝑎𝑛𝑔𝑒 (𝐼𝑄𝑅) [28]
method. The resulting values are accepted if the coefficient of vari-
ation (CV) is less than or equal to 2% else we repeat the execution
ten more times, discard the outliers, and accept the values if the
CV is less than or equal to 2%. The average of these (accepted) val-
ues is the execution cycle for the loop. The whole run is discarded
if the CV is greater than 2% or if we find more than 20% of the
outliers are removed. We repeat such execution five times for each
program. The final execution cycle value is the average of all five
averages taken across five executions. With this rigorous proce-
dure for measuring the execution cycles, the CV was observed to
be less than 2% in all our measurements.

4.4 Benchmarks Used
We have used twenty-three 2-dimensional perfect loop nests from
Polybench-3.2 [23] benchmark suite that are permutable, tileable
in both dimensions and have parallelism in at least one dimension.
These loops have one or more statements (up to five statements)
but contain complex arithmetic expressions involving multiple op-
erations and operands. Further, we looked at PolyBench-4.2 as well,
but could not add any additional kernels to our test set as they
were not permutable. The name of the benchmark and the number
of loop nests taken from them are listed in Table 5. We refer to this
set of loops as Poly_Orig.

To evaluate the performance of our classifier on a different set of
test data, we have generated one more set of the same Polybench
benchmarks, where each statement of the loop is represented in
the canonical 3-address form (similar to Listing 5 using temporary
arrays). A loop of Polybench in its original form and its 3-address
form performs the same operations and produces the same out-
put; only the representation has changed. The canonical form also
changes the features of the loop nest and the introduction of tem-
porary arrays may influence the best-performing loop order due to
increased memory footprint/working set and the associated cache
behavior. We refer to this set of loops as Poly_3-AddressCode or
Poly_3AC for short. We have used five different N (problem size)
values, namely 𝑁 = 2048, 𝑁 = 3072, 𝑁 = 4096, 𝑁 = 6144, and
𝑁 = 8192, in our evaluation. We identify the best-performing tile
size and loop order for each loop nest by running these six different

loop orders for all six tile sizes on the Intel Xeon Cascadelake and
Intel KNL system and selecting the one with the lowest execution
cycles as its output class.

4.5 Support Vector Machine Classifier
As explained in Section 3.2, our classifier is developed using Sup-
port VectorMachines (SVM)[13] to predict the best-performing tile
size and loop order. We have experimented with different classifi-
cation methods including decision tree classifiers such as C5.0 and
random forest, as well as Linear Regression models for predicting
the execution time of different loop orders. We chose SVM as our
base method and the hierarchical classifier, as their prediction re-
sulted in better performance.

We have used the SVM implementation e1071 [21], which
solves a multi-class classification problem using a one-against-one
approach by constructing 𝑛(𝑛 − 1)/2 binary classifiers (where 𝑛

denotes the number of classes) and the class label of a data point
is found using a majority vote.

The training and test data were normalized to zero mean and
unit variance for all our experiments and results discussed in the
next section. We have explored both linear and radial basis func-
tion (RBF) kernels of the e1071 package of R(version 3.6.0) for our
hierarchical classification. Every classifier design in the hierarchi-
cal classification approach requires extensive experimentation in-
volving cross-validation techniques. Ten percent of the training
data was set aside as a validation set in our experiments. For every
classifier in Figure 1, the kernel function (linear/RBF), the corre-
sponding hyperparameters, and the feature set were chosen based
on the performance of the validation set.

5 RESULTS AND DISCUSSIONS
This section discusses the results of our experiments on Intel Cas-
cadelake [3] and Intel Xeon Phi (KNL) [30, 31] systems. On KNL,
we consider two hardware prefetch configurations: one where all
prefetchers are enabled (All_Enable or AE for short) and another
where none of the prefetchers are enabled (None_Enable or NE).
As the Cascadelake system used is a part of a production cluster,
we could only explore the AE prefetch configuration.

We refer to our tuned hierarchical classifier (shown in Figure 1)
as HC_Tuned, and compare its execution cycles with an oracle
method (referred to as Opt) that always picks the best-performing
tile size and loop order, among the 36 possible (tile size, loop or-
der) combinations. This is a “lower is better metric” and indicates
how far the performance of the identified tile size and loop order of
the method is from the best-performing one. Further, when report-
ing the performance for a set of test loops, we take the geometric
mean of the normalized execution cycles across different loops in
the test set. Last, we also show the performance of the hierarchi-
cal classifier obtained using the systematic approach, referred to
as HC_SysApp, and compare its performance with HC_Tuned.

We compare the performance of HC_Tuned and HC_SysApp
with (i) an oracle method that always picks the best-performing
loop order for a given tile size 32, lowest execution cycles among
the six loop orders, referred to as T32_Opt; (ii) an SVM based loop
order predictor [5], referred to as T32_Pred, for the tile size 32; (iii)
the code generated by Polly [18] and Pluto [11] for tile sizes 32

395

Tile Size and Loop Order Selection using Machine Learning for Multi-/Many-Core Architectures ICS ’24, June 04–07, 2024, Kyoto, Japan

Table 6: Performance using Synthetic Benchmarks as Training Data on Intel Cascadelake System

Pref. Geometric Mean of Normalized Execution Cycles
Test Set Config. HC_Tuned HC_SysApp T32_Opt T32_Pred Polly_32 Pluto_32 Polly_64 Pluto_64 Polly_Opt Pluto_Opt
Poly_Orig AE 1.18 1.22 1.31 1.57 1.84 1.64 2.02 1.78 1.33 1.15
Poly_3AC AE 1.09 1.16 1.21 1.31 1.72 1.66 1.80 1.66 1.42 1.29

Table 7: Performance using Synthetic Benchmarks as Training Data on Intel Xeon Phi (KNL) System

Pref. Geometric Mean of Normalized Execution Cycles
Test Set Config. HC_Tuned HC_SysApp T32_Opt T32_Pred Polly_32 Pluto_32 Polly_64 Pluto_64 Polly_Opt Pluto_Opt
Poly_Orig AE 1.18 1.17 1.41 1.84 2.64 2.18 3.63 2.58 1.88 1.36
Poly_3AC AE 1.07 1.07 1.33 1.50 2.59 2.08 2.93 2.18 1.98 1.43
Poly_Orig NE 1.13 1.14 1.39 1.65 2.20 1.87 3.13 2.35 1.53 1.22
Poly_3AC NE 1.17 1.14 1.27 1.45 1.89 1.56 2.26 1.74 1.48 1.15

and 64; and (iv) Polly_Opt and Pluto_Opt methods which refer to,
respectively, the code generated by Polly [18] and Pluto [11] for
the tile size that results in best performance. Note that all meth-
ods suffixed as Opt are oracle in nature. We do not compare with
PPCG [36] for C target as it does not support vectorization.

5.1 Performance Comparison
Table 6 reports the geometric mean of normalized execution cy-
cles on Intel Cascadelake architecture for different methods, nor-
malized w.r.t. the oracle Opt method. In Table 7 we report the per-
formance numbers for Intel KNL architecture. On both architec-
tures, both HC_Tuned and HC_SysApp perform consistently bet-
ter across all test loop sets and applicable prefetch configurations.
The performance of HC_Tuned differs from that of HC_SysApp
onlymarginally. Henceforth, we compare the performance of other
methods with one of them (HC_Tuned), while the observations
hold equally well for the other (HC_SysApp).

On the Intel Cascadelake system, both HC_Tuned and
HC_SysApp perform consistently better across both the test
sets, achieving the performance of 18% and 9% from the optimal
performance that can only be achieved by an oracle method.
T32_Opt incurs higher performance losses of 31% and 21% (i.e.,
has normalized execution cycles of 1.31 and 1.21), while T32_Pred
incurs even higher performance losses of 57% and 31%. The higher
performance loss value is due to selecting sub-optimal loop orders
and tile sizes. HC_Tuned achieves a performance improvement
of 1.11x for both Poly_Orig (1.31/1.18) and Poly_3AC(1.21/1.09)
over T32_Opt and 1.33x (=1.57/1.18) and 1.20x (=1.31/1.09) for
Poly_Orig and Poly_3AC, respectively, compared to T32_Pred. 5

HC_Tuned outperforms Polly and Pluto for fixed tile sizes (32
and 64) by a significant margin (1.39x to 1.71x). Also, HC_Tuned
performs significantly better than Polly_Opt and Pluto_Opt
(where the chosen tile size is the best performing one for the given
loop) in all but one case. Note that Pluto_Opt and Polly_Opt re-
quire an oracle predictor for the tile size and are not practical. The
performance of HC_Tuned is 1.35x and 1.42x better than Pluto [11]
for Poly_Orig and Poly_3AC, respectively, when the tile size is
5When comparing two competitive methods, e.g., HC_Tuned and T32_Pred, the per-
formance improvement is obtained by taking the ratio of normalized execution times
of T32_Pred and HC_Tuned.

fixed at 32. Similarly, HC_Tuned is 1.55x and 1.58x faster than
Polly [18] for Poly_Orig and Poly_3AC, for the default tile size 32.

HC_Tuned predicts the correct loop order for about 60% and 73%
loops, respectively, for Poly_Orig and Poly_3AC test sets. Also, we
observe that when HC_Tuned makes incorrect loop order predic-
tions, the predictions are made within the 𝐿1, 𝐿2, 𝐿3 or 𝐿4, 𝐿5, 𝐿6
groups, depending on the outermost parallel dimension. Hence,
even if the tile size is incorrectly predicted, predicting the correct
loop order or one among the two groups of loop orders reduces
performance loss. While this is true for Polly and Pluto too, fixing
the tile size across different loops and problem sizes is the cause of
the significant performance loss. The tile size 32 is best-performing
only in about 7% to 11% of the loops. Further, Polly does not take
data parallelism due to vectorization into account wherever possi-
ble. Pluto accounts for vectorization; however, it does not consider
problem size and the interplay between multiple architectural fea-
tures for selecting the loop orders. Thus, on average, HC_Tuned is
1.5x faster than Pluto and Polly.

Even on Intel KNL system, HC_Tuned and HC_SysApp perform
significantly better than all othermethods for both the test sets and
prefetch configurations. The performance improvement over other
competitive methods exhibit a similar trend to that seen for the
Cascadelake system. Further, HC_Tuned and HC_SysApp perform
considerably well even under the NE prefetch configuration on the
KNL system again for all competitive methods. Only for Poly_3AC
loops with NE configuration, Pluto_Opt performs marginally bet-
ter than HC_Tuned by 2%; however, as stated before, it is an oracle
predictor and not practical. The performance of HC_Tuned for tile
size 32 is 1.85x and 1.66x better than Pluto [11] and 2.24x and 1.95x
better than Polly [18] for AE and NE configurations, respectively.

5.2 Where does HC_Tuned lose its
Performance?

Compared to Opt, HC_Tuned results in 9% to 18% performance loss
on the Intel Cascadelake system. Where does this loss come from?
To understand this, we present a confusionmatrix-like structure in
Figure. 3, that reports the performance loss under each case of mis-
prediction. We show the performance loss of our HC_Tuned model
(against Opt) for each (tile size, loop order) combination of true
(in rows) and predicted classes (in columns) for the Poly_Orig test
set. The confusion matrix has 36 × 36 cells corresponding to six

396

ICS ’24, June 04–07, 2024, Kyoto, Japan Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

Figure 3: HC_Tuned Performance for AE Poly_Orig Test Set

tile sizes and six loop orders. Many cells in the confusion matrix
are empty (does not have any loops that fall under this category).
The number in each cell represents the number of test loops for
that combination. The color coding of each cell indicates the rela-
tive performance, obtained as the geometric mean of normalized
execution cycles for all those test loops, w.r.t. the best-performing
one. Diagonal cells, if present, will have a performance of 1, as the
predicted combination is indeed the best-performing one.

First, from Figure. 3, we observe that only a few cells have
a higher intensity (orange or red colored) while others (yellow
colored) have moderate performance loss (less than 1.25x). More
specifically, there are seven cells with geometric means in the
range 1.25–1.4 and six cells in the range 1.5–1.85. We observe that
for seven out of these thirteen cells, the loop orders are predicted
correctly for loops in these regions, but the tile size is sub-optimal.
For the remaining six cells, both tile size and loop orders are sub-
optimal. When a cell in the confusion matrix consists of multiple
loops (e.g., 6 in one of the dark yellow cells), not all contribute
to worse performance. The value reported in the cell is the geo-
metric mean; therefore, some of the loops in that cell could still
have a lower performance loss. For cells with a performance loss
in the range 1.25–1.4, about 30% – 50% of the loops contribute to
higher performance loss, while for cells with performance loss in
the range 1.5–1.7, 40% – 50% of the loops have higher performance
loss. Further, one cell with a true value of 7 and a predicted value of
2 has a count of ten loops with a geometric mean of 1.84. Here one
loop is mispredicted across all five problem sizes and another loop
is mispredicted for three problem sizes. For them, a sub-optimal
loop order is picked, which incurs scatter-gather memory accesses,
thus significantly adding to the performance loss. These are the re-
gions that require further fine-tuning of the model.

Figure 4: Full Application Performance with HC_Tuned

5.3 Full Application Performance
To show the benefits of using our approach for the entire ap-
plication, we have chosen five applications from the Polybench-
3.2 [23, 24] suite, with more than one kernel. We consider three
problem sizes i.e., 2048, 4096 and 8192 and measure the execution
cycles taken for the entire application, by applying the tile size and
the loop order given by HC_Tuned for each kernel and compare
with Polly [18] and Pluto [11]. For Polly [18] and Pluto [11], the
default tile size of 32 along with the loop orders given by them are
applied for each kernel of the application. Figure 4 shows the nor-
malized execution cycles normalized with respect to Polly for prob-
lem size 8192. We do not present the performance results for 2048
and 4096, as they show similar trends. HC_Tuned takes the lowest
execution cycles as compared to Polly and Pluto for all five appli-
cations. Specifically, HC_Tuned achieves a performance improve-
ment of nearly 50% and 18.50% over Polly and Pluto, respectively,
for these applications across all three problem sizes. The improve-
ment in performance of each kernel contributes to the overall im-
provement of the entire application.

5.4 Extending to Higher Dimension Loops
Our approach of building a machine learning based SVM model
and the synthetic loop generator are not limited by loop dimen-
sionality. They can be easily extended to handle higher-dimension
loops. However, as the loop dimension increases, the number of
loop orders to explore increases significantly. For a 3-D loop, there
are 90 loop orders to be explored for each tile size, which will re-
quire a larger training data set to handle all possible loop orders
and thus, could be computationally more expensive and challeng-
ing to classify accurately. To reduce the complexities associated
with higher dimensional loop nests, we use a simple approach
where our technique is applied only to the innermost two loop
orders. To decide the innermost loops we use a simple heuristic
based on the parallel dimension, number of 2-D arrays vectorized
or scattered/gathered, number of write-optimizations, and spatial
locality exploited by the loop permutation. On the selected loop
permutation, the innermost two loop orders are tiled and our ap-
proach is applied on them.We have tested this approach, for a prob-
lem size of 2048, on five 3-D test loops consisting of two loops from
the Polybench [23, 24] suite and three hand-generated loops, to in-
clude different array access patterns. The geometric mean of nor-
malized execution cycles of the loop orders identified byHC_Tuned
is within 21.29% of the best performing loop order among the 108

397

Tile Size and Loop Order Selection using Machine Learning for Multi-/Many-Core Architectures ICS ’24, June 04–07, 2024, Kyoto, Japan

i.e., 36 loop orders for each of the three loop permutations. This
demonstrates that our approach can be extended to higher dimen-
sional loops.

5.5 How Many Models do We Require?
For Intel Xeon Phi (KNL) system, the hierarchical classifier used for
the AE configuration is slightly different from the hierarchical clas-
sifier used for the NE configuration. What would happen if we use
the same hierarchical classifier for both configurations? We used
the AE model for prediction in NE configuration (and vice-versa)
and found that the additional performance loss is only marginal
(1% and 4%, respectively), and they performed better than all com-
peting models (T32_Opt to Pluto_Opt in Table 7).

5.6 Unknown Input Sizes
To handle cases where the input size value, 𝑁 is not known at com-
pile time, we predicted the (loop-order, tile-size) variant for one in-
put size (4096) and measured the performance loss of that variant
on other input sizes for different loopnests. The additional perfor-
mance loss varied between -4% to 2%, on an average, with marginal
improvement or decrease in the performance loss. This indicates
that when the input sizes are not known, one could use an arbi-
trary size, and additional performance loss is still within tolerable
limits. Further such predictions (from a fixed input size) performed
significantly better than Polly_32 or Pluto_32.

6 RELATEDWORK
Girbal et al. [17] present a framework based on unified repre-
sentation of loops and statements to support program transfor-
mations such as loop fusion, tiling, array forward substitution,
etc., and compositions of these transformations. Trifunovic et
al. [34] present a fast and accurate cost model and a framework
to extract vectorization opportunities using polyhedral represen-
tation. Pouchet et al. [26] propose the decomposition of the op-
timization problem represented as convex polyhedron into sub-
problems of much lower complexity, introducing fusibility con-
cept in PoCC [25]. Bondhugula et al. [10] develop a framework for
automatic parallelization and data locality optimization of imper-
fectly nested loops in the polyhedral model to minimize inter-tile
communication volume. A framework for integrated data locality,
multi-core parallelism, and SIMD execution of programs was pro-
posed in [20] using codelets. However, these approaches always
generate the same transformed code for a loop nest, irrespective
of the problem size or prefetch configuration or tile size. As our
work demonstrates, these approaches, hence may incur significant
performance losses.

An end-to-end, fully automatic framework driven by an integer
linear optimization framework that finds out good ways of tiling
for parallelism and locality using affine transformations is pro-
posed in [11]. Grosser et al.[18] implement polyhedral techniques
on top of the LLVM framework to transform and optimize parts of
the program in a language-independent way. While [18] attempts
to exploit task-level parallelism and data locality; it does not tar-
get data-level parallelism/SIMD vectorization. We have performed
a quantitative comparison of our method with [11] and [18]. The

work reported in [37] and [22] propose analytical models for iden-
tifying tile size and and target to optimize any one cache hier-
archy level. They do not consider all possible loop permutations
i.e., [22] favors vectorizable innermost loops. They consider rectan-
gular and parallelogram tiles of arbitrary size. We currently focus
only on square and power-of-2 tile sizes, which in general, perform
well from locality, prefetching, and vectorization point of view as
cacheline size, cache size, and vector width are all power-of-2.

Stock et al. [33] develop an ML model trained using tensor con-
tractions (TCs) for loop permutation, vectorized loop, and unroll-
and-jam optimizations. In [1], the authors develop an ML model
for iterative optimization for simple transformations like loop un-
rolling, common subexpression elimination, etc. Ashouri et al. [4]
apply ML techniques to predict the phase order of compiler op-
timization sequences and models the speedup predictor that se-
lects the best set of compiler optimization sequences. Haj-Ali et
al. [19] use different machine learning methods to come up with
an auto-vectorization method, but focussing only on vectorization.
Stephenson et al. [32] apply supervised classification to predict the
unroll factors for loops. A framework for synthesizing C programs
using a combination of web crawling and type inferencing by fill-
ing the missing pieces is proposed in [15]. Cummins et al. [14] pro-
pose CLgen tomine open-source repositories for OpenCL program
fragments and apply deep learning techniques to construct models
for generating programs automatically. The methodologies do not
generate nested loops with dependence characteristics akin to loop
nest in real-world programs. OpenTuner [2] ensembles different
search techniques for autotuning a code for a given architecture
based on the architectural parameters. Sioutas et al.[29] developed
an analytical model targetting Halide DSL that selects the cache
hierarchy level to optimize and the tile size such that cache misses
are reduced. These focus more on memory hierarchy and domain-
specific languages.

7 CONCLUSION
In this work, we proposed a technique for identifying the best-
performing tile size and loop order for a given loop nest using
a supervised machine-learning approach. Our approach builds a
Support Vector Machine (SVM) based hierarchical classifier. Our
proposed model identifies best-performing tile sizes and loop or-
ders for Intel Xeon Cascadelake system, which are within 18% and
9% of the optimal performance for two test data sets and outper-
forms state-of-the-art techniques, Pluto and Polly. The proposed
approach is generalizable to other architectures with the similar
architecture characteristics.

ACKNOWLEDGMENTS
Wewould like to acknowledge the research fundings received from
Intel Technology India Private Limited and Volvo Group India Pri-
vate Limited which supported this work. We are grateful to Prof.
Ramakrishna Upadrasta, Indian Institute of Technology, Hyder-
abad, for the fruitful discussions and his insightful suggestions.We
thankMs. Prashanthi S K for her help in the initial parts of the syn-
thetic loop generator tool.

398

ICS ’24, June 04–07, 2024, Kyoto, Japan Shilpa Babalad, Shirish K Shevade, Matthew Jacob Thazhuthaveetil, and R Govindarajan

REFERENCES
[1] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori Fursin,

Michael FP O’Boyle, John Thomson, Marc Toussaint, and Christopher KI
Williams. 2006. Using machine learning to focus iterative optimization. In In-
ternational Symposium on Code Generation and Optimization (CGO’06). IEEE,
295–305.

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jef-
frey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd in-
ternational conference on Parallel architectures and compilation. 303–316.

[3] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi,
Sreenivas Mandava, Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha Vedara-
man, et al. 2019. Cascade lake: Next generation intel xeon scalable processor.
IEEE Micro 39, 2 (2019), 29–36.

[4] Amir H Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer
Kulkarni, and John Cavazos. 2017. Micomp: Mitigating the compiler phase-
ordering problemusing optimization sub-sequences andmachine learning. ACM
Transactions on Architecture and Code Optimization (TACO) 14, 3 (2017), 1–28.

[5] Shilpa Babalad, Shirish K Shevade,Matthew Jacob Thazhuthaveetil, and RGovin-
darajan. 2023. A Machine Learning Approach to Identify the Best-Performing
Loop Order. https://github.com/knightlander2023/OptLoopOrder, Technical Re-
port, Department of Computer Science and Automation, Indian Institute of Sci-
ence, Bengaluru.

[6] David F Bacon, Susan L Graham, and Oliver J Sharp. 1994. Compiler transfor-
mations for high-performance computing. ACM Computing Surveys (CSUR) 26,
4 (1994), 345–420.

[7] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,
and Maurice Yarrow. 1995. The NAS parallel benchmarks 2.0. Technical Report.
Technical Report NAS-95-020, NASA Ames Research Center.

[8] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski,
Rob S Schreiber, et al. 1991. The NAS parallel benchmarks summary and prelim-
inary results. In Supercomputing’91: Proceedings of the 1991 ACM/IEEE conference
on Supercomputing. IEEE, 158–165.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. 72–81.

[10] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, Jagannathan Ra-
manujam, Atanas Rountev, and Ponnuswamy Sadayappan. 2008. Automatic
transformations for communication-minimized parallelization and locality opti-
mization in the polyhedral model. In International Conference on Compiler Con-
struction. Springer, 132–146.

[11] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy
Sadayappan. 2008. A practical automatic polyhedral parallelizer and locality
optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 101–113.

[12] Marius Cornea. 2015. Intel AVX-512 instructions and their use in the implemen-
tation of math functions. Intel Corporation (2015), 1–20.

[13] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[14] Chris Cummins, Pavlos Petoumenos, ZhengWang, andHugh Leather. 2017. Syn-
thesizing benchmarks for predictive modeling. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 86–99.

[15] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de Souza Magal-
hães, Jerônimo Nunes Rocha, Breno Campos Ferreira Guimaraes, and Fernando
Magno Quinão Pereira. 2021. AnghaBench: A suite with one million compilable
C benchmarks for code-size reduction. In 2021 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO). IEEE, 378–390.

[16] Pradipta De, Ravi Kothari, and Vijay Mann. 2007. Identifying sources of oper-
ating system jitter through fine-grained kernel instrumentation. In 2007 IEEE
International Conference on Cluster Computing. IEEE, 331–340.

[17] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello,
Marc Sigler, and Olivier Temam. 2006. Semi-automatic composition of loop
transformations for deep parallelism and memory hierarchies. International
Journal of Parallel Programming 34, 3 (2006), 261–317.

[18] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin
Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral optimization in
LLVM. In Proceedings of the First International Workshop on Polyhedral Compila-
tion Techniques (IMPACT), Vol. 2011. 1.

[19] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ion Stoica. 2020. Neurovectorizer: End-to-end vectorization with
deep reinforcement learning. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization. 242–255.

[20] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël Pouchet,
and Ponnuswamy Sadayappan. 2013. When polyhedral transformations meet
SIMD code generation. In Proceedings of the 34th ACM SIGPLAN conference on

Programming language design and implementation. 127–138.
[21] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, Friedrich

Leisch, Chih-Chung Chang, Chih-Chen Lin, and Maintainer David Meyer. 2019.
Package ‘e1071’. The R Journal (2019).

[22] Kumudha Narasimhan, Aravind Acharya, Abhinav Baid, and Uday Bondhugula.
2021. A practical tile size selection model for affine loop nests. In Proceedings of
the ACM International Conference on Supercomputing. 27–39.

[23] LN Pouchet. 2012. Polybench: The polyhedral benchmark suite. http://www.cs.
ucla.edu/pouchet/software/polybench.

[24] LN Pouchet and Scott Grauer-Gray. 2011. PolyBench: The Polyhedral Bench-
mark suite (2011), Version 3.2. http://www-roc.inria.fr/~pouchet/software/
polybench.

[25] Louis-Noël Pouchet, C. Bastoul, and U. Bondhugula. 2019. PoCC: the polyhedral
compiler collection. http://web.cs.ucla.edu/~pouchet/software/pocc/.

[26] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, Jagan-
nathan Ramanujam, Ponnuswamy Sadayappan, and Nicolas Vasilache. 2011.
Loop transformations: convexity, pruning and optimization. ACM SIGPLAN No-
tices 46, 1 (2011), 549–562.

[27] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan. 2012. Thread tran-
quilizer: Dynamically reducing performance variation. ACM Transactions on
Architecture and Code Optimization (TACO) 8, 4 (2012), 1–21.

[28] Peter J Rousseeuw and Mia Hubert. 2011. Robust statistics for outlier detection.
Wiley interdisciplinary reviews: Data mining and knowledge discovery 1, 1 (2011),
73–79.

[29] Savvas Sioutas, Sander Stuijk, Henk Corporaal, Twan Basten, and Lou Somers.
2018. Loop transformations leveraging hardware prefetching. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. 254–
264.

[30] Avinash Sodani. 2015. Knights Landing (KNL): 2nd generation Intel® Xeon Phi
processor. In 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 1–24.

[31] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. 2016.
Knights Landing: Second-generation Intel Xeon Phi product. IEEE Micro 36, 2
(2016), 34–46.

[32] Mark Stephenson and Saman Amarasinghe. 2005. Predicting unroll factors us-
ing supervised classification. In International symposium on code generation and
optimization. IEEE, 123–134.

[33] Kevin Stock, Louis-Noël Pouchet, and P Sadayappan. 2012. Using machine learn-
ing to improve automatic vectorization. ACM Transactions on Architecture and
Code Optimization (TACO) 8, 4 (2012), 1–23.

[34] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen.
2009. Polyhedral-model guided loop-nest auto-vectorization. In 2009 18th Inter-
national Conference on Parallel Architectures and Compilation Techniques. IEEE,
327–337.

[35] Sven Verdoolaege. 2010. isl: An integer set library for the polyhedral model. In
International Congress on Mathematical Software. Springer, 299–302.

[36] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Chris-
tian Tenllado, and Francky Catthoor. 2013. Polyhedral parallel code generation
for CUDA. ACM Transactions on Architecture and Code Optimization (TACO) 9,
4 (2013), 1–23.

[37] Rui Xu, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Yuhong Song, and HanWang.
2023. Loop interchange and tiling for multi-dimensional loops to minimize write
operations on NVMs. Journal of Systems Architecture 135 (2023), 102799.

399

https://github.com/knightlander2023/OptLoopOrder
http://www. cs. ucla. edu/pouchet/software/polybench
http://www. cs. ucla. edu/pouchet/software/polybench
http://www-roc. inria. fr/~ pouchet/software/polybench
http://www-roc. inria. fr/~ pouchet/software/polybench
http://web.cs.ucla.edu/~pouchet/software/pocc/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Tile Size and Loop Order Selection Problem
	3.1 Formulation as Machine Learning Problem
	3.2 Hierarchical Classification
	3.3 Synthetic Loop Generation

	4 Implementation and Experimental Methodology
	4.1 Integrating into Compiler Toolchain
	4.2 Architectures Used
	4.3 Measuring Execution Cycles
	4.4 Benchmarks Used
	4.5 Support Vector Machine Classifier

	5 Results and Discussions
	5.1 Performance Comparison
	5.2 Where does HC_Tuned lose its Performance?
	5.3 Full Application Performance
	5.4 Extending to Higher Dimension Loops
	5.5 How Many Models do We Require?
	5.6 Unknown Input Sizes

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

